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Abstract
In mathematical biology, a morphoelastic model, which combines elasticity and growth,has been used for, e.g., wound healing and tumour growth modelling. Here, it is usedto model the growth of an embryo. In order to do so, a growth curve from literaturehas been fitted to a morphoelastic model which has been extended with a PDE for thenormalised cell concentration. In the one dimensional situation, this fitting resultedinto a curve with a shape similar to the desired shape. Despite the similar shape, itdid not fulfil the total growth requirements; it fell short by a factor 100. Instead, aGaussian curve was used to represent the cell concentration. In one dimension thisgave a similar looking curve, with a relative error of 0.2316 for the first couple of weeksof the gestational age of the embryo, where the length of an embryo is measured formcrown-to-rump. For the other weeks, when the length of the embryo is measured fromcrown-to-heel, a relative error of 0.0507 was observed.The one dimensional problem is solved using the finite element method with linearbasis functions and an Euler backwards time integration method. This is implementedin matlab. The output is compared to results of a comsol multiphysics® file createdon this topic and verified to be similar.In three dimensions, the model without the cell concentration contribution is ver-ified. For this, experiments have been done in which a force is applied in variousdirections separately. All results were similar to the one dimensional model with apulling force. The model containing cell concentration is not verified in this thesis.Further, the effects of the growth term and mesh choice have been investigated. Thesecalculations have all been done with comsol multiphysics®.
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1 Introduction
In the Netherlands, each year around 5 000 babies are born with birth defects [1].A proportion of them originates from abnormal growth during the embryonic phase.Modelling of the growth and dynamics of the embryo during this phase can give in-sights in the underlying process and the possible things that can go wrong. Withthese insights, therapies can be discovered to prevent those birth defects from oc-curring. The aim of this thesis is to make a contribution to the available models ofembryonic growth, from which insights can be derived, by creating a morphoelasticmodel that simulates the dynamics and the growth of an embryo.
1.1 Embryonic and Fetal GrowthAfter fertilisation, the cell divides into a cluster of cells. When the cell-cluster isimplanted in the uterus, one talks about an embryo and a placenta. In the uterus,the embryo grows to a fetus with the help of the oxygen and nourishments suppliedthrough the placenta [2].Subsequently the embryo develops into three different layers. After about twoweeks (conceptual age), the embryo is shaped like a disc, which grows in the nexttwo weeks to a sphere-like object of around 4 mm in diameter [3]. From this pointon, the embryo starts to evolve into a human shape and develops organs and tissues.This time is a crucial moment for the health of the baby. For example, when anorgan or limb does not start to grow properly, a handicap can grow, such as anorectalmalformations [4, 5], see also Figure 1.1. At the end of this embryonic stage, theembryo is seven to eight weeks old and its crown-to-rump length is about 2.3 cm [3].

Figure 1.1: Fetal Development Chart. Red bars show when the different organs are mostprone to birth defects. The pink bars show when those organs are sensitive to functionaldefects and minor malformations [3].
1



(a) Length curve of fetal growth. (b) Weight curve of a fetus.
Figure 1.2: Growth curves of a fetus. In 1.2a, the length of the fetus is plotted. The blue lineshows the crown-to-rump length of the first stage. The red line presents the crown-to-heellength of the last 2/3rd of the pregnancy. In 1.2b, the weight of the fetus is shown. Later inthis thesis, this length curve (1.2a) will be used to compare the obtained results.

(a) Crown-to-rump length of an embryo [6]. (b) Size of a fetus. C – R is the crown-to-rump length, and C – H the crown-to-heellength [6].
Figure 1.3: These figures show how the length of an embryo and a fetus is measured.
When all the body elements are settled, the whole body can grow until it is readyfor birth. For this, all the organs, limbs, and tissues, need to grow to an appropriatesize and need to function well. This period, from week eight till week 38/40 of thepregnancy is called the fetal growth period. During this time the fetus grows to acrown-to-heel length of approximately 52 cm and to a weight of around 3500 grams.
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In Figure 1.2 it is shown how an embryo develops into a fetus which is ready forbirth. The length and corresponding weights are given in those figures. The weightof an embryo is only measured from week 8 on, while the length is already knownfrom week six. During the first couple of weeks, the length is measured as the crown-to-rump length (Figure 1.3a). Thereafter, the length of the embryo is measured fromcrown-to-heel (Figure 1.3b). In Figure 1.2a this is made clear by different lines. Thefirst period is given in blue, while the second period, which uses another measurementapproach, is given in red. These plots have been created from the table in Appendix A.In this thesis, the term embryo will be used to refer to the unborn child in boththe embryonic and fetal phase.
1.2 Previous ResearchIn the search for a mathematical model for embryonic growth, one will see that thistopic has not been studied extensively under the scientists yet. Though, there aresome other relevant researches in this area. One can think of mathematical modellingof tumour growth, or wound healing after, for example, burns.Mathematical research to wound healing was started not long ago by Tranquilloand Murray [7]. With their obtained model, they described the behaviour of tissuesmathematically. It describes the (dermal) tissue as an isotropic linear viscoelasticsolid. They extended the model by adding various cell properties such as the tractionforce applied by fibroblasts.After a while, Olsen et al. [8] modified and extended the model even more. Theyadded myofibroblasts to the model and collagen molecules replaced the extracellularmatrix as a model variable.Both research teams have verified their results by comparing it to experimentaldata on wound contraction in rats obtained by McGrath and Simon [9]. They coulduse these data since their models contained isotropic stresses produced by differentcells.Later in time, Hall [10] worked on evolution equations which describe the changeof effective strain over time mathematically. This used multiple states of a system:one in which it describes the current strains and one in which it is in relaxation.Therefore, it could be used for modelling the dermal layer over time [11]. In order towork with his results, the effective strains should be small.The resulting evolution equation has been used by Koppenol [11] to describe thedynamic change of the infinitesimal effective strain over time. In his dissertation, heinvestigated mathematical models for wound healing in different settings. The lastmodel he introduced was a morphoelastic model using the evolution equation for theeffective strain by Hall. Although this thesis is not about wound healing, the modelhe used there has been used here as well.
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Looking into another direction, biological cell behaviour is also described in liter-ature by cellular-automata [12, 13, 14]. Vivas et al. [12] used this type of modelling todescribe the cell population behaviour by cell adhesion and proliferation. The cellsformed a sphere which was retained through the rest of simulation time.
1.3 Purpose of this ThesisIn this thesis, the main focus is on the mathematical model of morphoelasticity. Thegrowth of an embryo is simulated with this model in matlab (only in 1D) and comsolmultiphysics®. The models used are based on the one for wound healing describedin [10] and [11].The idea is that, with this model, the growth of an embryo can be simulated as well.With a change of some parameters, effects leading to a birth defect can be generated.In future research, this could be an important aspect for which the models of this thesiscould be used. Birth defects could be modelled and, therefore, be understood better.To achieve this goal, a morphoelastic model is set up and investigated mathe-matically, see Section 2. The numerical elaborations are shown in Section 3. Thethree dimensional model is verified by using the one dimensional solutions, whichthemselves are verified by comparisons with simpler models, e.g., viscoelasticity, andwith a manufactured solution. The results and verifications are given in Section 4.Finally, there are some concluding remarks, a discussion on this research and ideasfor future research on this topic in Section 5.The main focus of this thesis is the question "Is it possible to model the growth of anembryo by using morphoelastics models?" This research question will be substantiatedby the following subquestions:• What is a morphoelastic model? And where has it been used for before? (Sec-tion 1.2, Section 2)• How does an embryo grow? (Section 1.1)• Is cell density a good source to stimulate the growth? And how can this beimplemented? (Section 2.3)• What method could be used for solving a morphoelastic problem? (Section 3)
1.4 Physical Properties of an EmbryoThe morphoelastic model used in this thesis is based on the physical concept ofelasticity. For this model, the physical quantities of the Young’s modulus (or elasticmodulus), shear modulus, and Poisson ratio are needed. The values for these constants
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can be measured in various ways, e.g. via a tension or suction test, and on differentparts of the body.A lot of research has been done on the Young’s modulus of the human skin. Un-fortunately, the obtained results vary widely. The fact that the results vary widelyis discussed in [15]. This research mentions that different techniques for measuringand the different positions on the body can give such an effect in the results. Next tothat, when getting older, the skin becomes thinner, stiffer, less tense and less flexible,which results in a higher Young’s modulus [16, 17], thus it varies per person.An embryo develops into three layers after a few weeks. At this moment, the skintissue starts to develop [18]. Therefore, the results of given references on the Young’smodulus of the skin are used in this research. After considering all those references,a Young’s modulus of 0.23 MPa has been chosen. How this value is established canbe seen in Appendix B.The viscosity values of a human are hard to find in literature. This is substantiatedby the fact that Koppenol has estimated the value of the shear viscosity and bulkviscosity for his research [11]. He did the same for the Poisson ratio.For the Poisson ratio he took 0.49, which is close to a fully incompressible material(ν=0.5). While playing with the skin, one sees that the skin moves along. In itsbehaviour one could compare the skin to rubber material. Both show large lateralcompression under longitudinal tensile load. Rubber has a Poisson ratio close to 0.5[19]. Therefore, it is chosen to take a Poisson ratio of 0.49 in this thesis as well.The human body consist of a lot of water. The body gets dryer wile getting older.So, when a child is born the body is the wettest. Therefore, it is chosen to use theviscosity of water, which is 0.6978 mPa s for a temperature of 37 degrees[20].Lastly, a mass density of 826 kg/m3 is used. This number is derived from the length,weight and abdominal circumference of the embryo. It turned out that this numberis more or less constant over time, and hence assume this value to be constant. Thevalues used can be found in Appendix A.All other parameters are fitted in this research to get a curve which looks like thegrowth of an embryo, see Figure 1.2a. This thesis focuses on writing a mathematicalmodel for embryonic growth. This means that the values of the mechanical propertiesare not the main focus here. It is, however, interesting to investigate this further infuture research, such that well-found numbers can be used.

5



2 Introduction into the Mathematical Models
The skin of a vertebrate, and in particular of a human, is viscoelastic [21, 22, 23]. Thiscan also be seen when you pull your skin, and release it. It swiftly goes back to itsoriginal state. It has some memory of how it was before. When doing this experimentwith your grandparents, you will notice that it takes a little more time for the skin torecover. This is since the tissue gets stiffer over time, which has also been discoveredin Section 1.4. The skin also has anisotropic characteristics [15], however in this thesisanistropy is not taken into account.When looking at a human embryo, it will also grow, next to stretch. Combiningthese two phenomena, one could use the theory of morphoelasticity to describe anembryo. That is what has been done in this thesis.In this section, we dive into the formulas of morphoelasticity, based on the workof Hall [10] and Koppenol [11]. First, it will be described in one dimension. Then thegeneral version is given, which will be used for the three dimensional case. In theend, properties of the cell will be added to the morphoelastic models to create morerealistic results.
2.1 One-Dimensional Morphoelastic ModelFirst a simple model is explored. The simple model consists of only one dimension.
The Morphoelastic PDEsThe model of morphoelasticity is an expanded form of the mathematical descriptionof viscoelasticity, which in itself is an expansion of linear elasticity. How the lattertwo models are setup, is given in Appendix C. Results of the viscoelastic model willbe used to verify results of the morphoelastic model. These results can easily becompared when the growth term in the morphoelastic problem is set equal to zero.The mathematical model of morphoelasticity is described by [10, 11]:


ρ(DvDt + v ∂v∂x

)− ∂σ∂x = Fb x ∈ (x0, xL], t ∈ (0, T ];
σ = µ∂v∂x + Eε x ∈ (x0, xL], t ∈ (0, T ];DεDt + (ε − 1)∂v∂x = −G x ∈ (x0, xL], t ∈ (0, T ];

(P1)
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subject to 
v (x, 0) = 0 x ∈ [x0, xL];u(x, 0) = 0 x ∈ [x0, xL];σ = F x = xL, t ∈ (0, T1];σ = 0 x = xL, t ∈ (T1, T ].

(BC1)
Since the above equations are solved for v and ε, this requires a post-processing stepto obtain the displacement u: DuDt = vx(t) = X + u(x, t).The displacement indicates how much the initial body has been grown. Togetherwith the initial size, the final length can be calculated. The evolution equation of theinfinitesimal strain (tensor) is derived by Hall [10] and given in Appendix D.The physics are illustrated in Figure 2.1. It is chosen to first look at a rod oflength xL which is fixed on one side (x0 = 0 m). On the other end, an external forceF is applied.The differential equations require a material derivative (total derivative) due tomovement of the domain. Since the equations will be solved in the material frame, thistype of derivative is used instead of a partial time derivative in order to measure thetime rate of change. This setting will make the calculations easier as no interpolationis needed between time steps and adjacent mesh nodes. How to work in the Eulariansetting is described in Section 3 by defining a moving mesh.
One Dimensional Problem StatementsThe first setup is the pulling rod problem. This is where one side of a rod is fixed anda force is applied on the other side. For this problem the external force F is nonzero,but the growth tensor G is equal to zero.

x0 = 0 xL F
Figure 2.1: The pulling rod problem. In one dimension, the rod is hold on the left side, wherex = 0 m. On the other side, x = xL, an external force F is applied.

The second problem statement is when growth comes into the system. This canbe done by a nonzero G , and either a zero or nonzero external force F . The drawing
7



of Figure 2.1 is also applicable to this problem statement. The latter option willafterwards be stimulated by cell properties of a human being. This is further explainedin Section 2.3.The growth tensor G is set to be constant or linear dependent on the infinitesimalstrain (tensor) ε, as was done in [11].In all scenarios, except for the stimulated growth, the length of the rod is set to1 m. This means that the value for xl is 1 m. For the stimulated growth, the lengthis set to 2 mm, since growth is first measured from week 6 of the gestational ageonwards (Section 1.1). Because of the choice of symmetric growth, the total initiallength will be 4 mm as is the average embryo size in week 6. This ensures that theresults can be compared to Figure 1.2a.
2.2 Three-Dimensional Morphoelastic ModelMorphoelastic PDEsWhen generalising the morphoelastic formulas given in Section 2.1, they become muchmore complex, especially the formula for the infinitesimal strain (tensor) ε. How theseequations are derived can be found in Hall [10]. The equation for the Cauchy stress(tensor) σ is directly derived from the isotropic Hooke’s law for the purely elastic part.In addition, the balance of momentum, which is the partial differential equation for thedisplacement velocity v , is easily transformed into multiple dimensions. Usage of thedivergence operator replaces the partial space derivatives.Below, the three dimensional morphoelastic system corresponding to the x-directionalpulling bar problem discussed later on are given. For this, the domain Ω ⊂ R3 isused. It will have a fixed plane (∂Ω1) on x = 0 m, and on the opposite side, x = xL(∂Ω2), an external force will be applied. The bar will have a thickness of 0.2× 0.2 m.The three dimensional morphoelastic differential equations are given by [10, 11]:

ρ (DvDt + v∇ · v)−∇ · σ = Fb, x ∈ Ω, t ∈ (0, T ];
σ = µ1 sym(L) + µ2tr(sym(L))I + E1 + ν

(ε + ν1− 2νtr(ε)I
) , x ∈ Ω, t ∈ (0, T ];

L =∇v, x ∈ Ω, t ∈ (0, T );D εD t + (tr(ε)− 1)sym(L) = −G, x ∈ Ω, t ∈ (0, T );D εD t = DεDt + ε skw(L)− skw(L)ε, x ∈ Ω, t ∈ (0, T );
(P2)
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subject to 

v(x, 0) = 0 x ∈ Ω;u(x, 0) = 0 x ∈ Ω;u(x, t) = 0 x ∈ ∂Ω1, t ∈ (0, T ];σ · n = (F 0 0) x ∈ ∂Ω2, t ∈ (0, T1];σ · n = 0 x ∈ ∂Ω \ (∂Ω1 ∪ ∂Ω2), t ∈ (T1, T ).
(BC2)

In these equations, the skew-symmetric and the symmetric part of the velocity gradientL are used. These are given by:
sym(L) = 12(L+ LT )
skw(L) = 12(L − LT ).

Note that now, the displacement velocity v and the displacement u are vectors in R3,and so are the body force Fb, and external force F (given as F = (F 0 0)). Forthe Cauchy stress (tensor) σ and the infinitesimal strain (tensor) ε the Voigt notationis used. This can be done since we assume to have a symmetric growth tensor,and thus symmetry in the infinitesimal strain (tensor) and the Cauchy stress (tensor).Both are casted in a six dimensional vector instead of a tensor notation. This savescomputational time and memory.As in the one dimensional model, the material derivative is used. Next to that,the Jaumann derivative, which takes into account the rotation of the body, is usedto describe the infinitesimal strain (tensor) ε differential equation. This formula isalready given as the last equation in (P2).
System Setup

F1 m
0.2 m

0.2 m

Figure 2.2: The pulling rod problem expanded into its 3D version: the pulling bar problem.The block has a length of 1 meter and its thickness is 0.2×0.2 m. One side (gray) is fixed bya zero constraint and on the opposite side an external force F is applied.
First, the three dimensional version of the pulling and the growing rod problem (thepulling and the growing bar problem) will be investigated. This is mainly for verifi-cation. Therefore, the bar will be small in height and width. There has been chosen
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to examine a bar of 1 m and a height and width of 0.2 m. One squared side is fixedand on the other side an external force F is applied (see Figure 2.2). For the growingbar problem, both with and without an external force have been examined.Further, a growing cube and sphere will be examined, as shown in Figure 2.3, tolook at the impact of using different kinds of meshes (quadrilaterals vs tetrahedrals).Further, growth in multiple directions is implemented. These bodies are startingoff as symmetric geometries. The growth tensor used here will also be symmetric.Therefore, and to reduce computation time and safe memory, only 1/8-th of the bodywill be considered. For this, zero-constraints on v in the normal directions are usedon the three symmetry boundaries. This means that the body is forced not to move inthose normal directions. The visualisations of the final results of the body shape arethen given by using the laws of symmetry.In the end, cell properties are added to the system to stimulate growth. In order tobe able to verify these results, a bar with a smaller size, which is more representativeof an embryo, will be investigated. The same length as for the one dimensional caseis used for this; 2 mm. The thickness is then said to be 0.1 mm. This stimulant isalso tried on a sphere shaped body for a more embryo-like result.

(a) Cube (b) Sphere
Figure 2.3: Three dimensional setup of growing bodies made with comsol multiphysics®geometry.
2.3 Adding Cell Properties to the SystemsAs a last model, a growing rod or bar, without any external forces, but with a body(or internal) force Fb is used. This allows the system to grow by an internal stimulus.It will be stimulated by cellular phenomena, like the cell concentration, proliferation,apoptosis, and so on. These stimuli are used in wound healing models by, e.g.,
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Koppenol [11], but modelled separately. Due to time constraints it has been chosento use a general formula for this. This PDE then shows the general normalised cellconcentration: the normalised amount of cells per unit area. It is added to the systemof equations by adding the PDE (Pc) shown below.
DcDt + c∇ · v −∇ · (D(x, t)∇c) = βc(1− c), x ∈ Ω, t ∈ (0, T );(D(x, t)∇c) · n = 0, x ∈ ∂Ω;c(x(0), 0) = c0(x(0)). x ∈ Ω (Pc)

This equation describes the mass conservation for the cell concentration. It is based on[24], where the diffusion term in its limits can be approximated by the Fisher equation:D = v2/4β , with β the proliferation rate. This kind of conservation formula has beenused among others in [10, 11, 25]. The difference between (Pc) and the one describedin [24] is the source term, which is written as βc(c − 1) and βc respectively. This isused since in this thesis we deal with a growing body, an embryo, which can and willreach a maximum size. However, a tumour can grow aggressively without boundaries.Swanson et al. [24], have added chemotherapy to their system, by subtracting kc,with k a constant measure of the effectiveness of the treatment. For this, k must begreater than proliferation rate β , in order to reduce the size of the tumour. In ourformula, (Pc), this works similarly. Whenever the cell concentration c reaches thevalue one, the embryo stops growing. This is a stable asymptotic solution, as can beseen in Figure 2.4.

Figure 2.4: Phase portrait of (Pc), where D(x,t)=0. Various phase lines are plotted; c(0) <0, 0 < c(0) > 10, and c(0) > 1. One sees that c = 0 is an unstable solution and c = 1 stable.
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The results of this PDE will be implemented as a body force Fb for the dis-placement velocity v PDE in (P1), as in Koppenol [11]. For this the negative spatialderivative of the cell concentration is multiplied by a force constant k , that is:
Fb = −k∇c. (2.1)

According to [23], the internal forces are given by cytoskeletal contraction, actin poly-merisation, microtube elongation and shortening, adhesion, differential growth, andswelling of the ECM (extracellular matrix). They also note that cells migrate throughthe embryo and exchange neighbours to change tissue shape, which motivates theusage of a diffusion equation for the cell concentration.In order to let the body grow, there need to be a stimulant in the system. Therefore,the cell concentration PDE needs to have non-zero initial conditions. The diffusionequation (Pc) has a Gaussian as homogeneous solution [26]. Therefore a normaldistribution, with mean zero and standard deviation s, is used as an initial condition.Hence, the rod, or the three dimensional body, is centred at zero. This point in spacewill be fixed with a zero constraint for the displacement velocity v . The Gaussian issuppressed by the value of c0 in order to let the cell concentration be less than one.A schematic one dimensional overview has been given in Figure 2.5.

x = 0 12xLx0 = −12xL
Figure 2.5: The schematic one dimensional growing rod. The rod is stimulated by cellphenomena to grow in both positive and negative x-direction from the centre. Therefore, thecentre, x = 0, is fixed with a zero constraint. The ends of the rod have a zero-flux bound.This makes it possible for the rod to grow freely, while the centre, and therefore its position,is fixed. The blue curve presents the initial cell concentration, which is implemented as aGaussian.
2.4 Alternative Idea for the Cell Properties PDEWhile solving the growing body problem with the use of internal forces stimulatedby cell properties, some problems, which were not solvable in an easy way, wereencountered. It is known that the solution to (Pc), is a Gaussian, which depends onthe ratio of β and D [24]. Here D is the diffusion rate of cells and tells us how fast theinitial Gaussian will be spread out over the domain, or physically how fast the cells
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will be equally divided over the domain. Further, the proliferation rate β describeshow fast the maximum amount of cells at a point or in an area will be reached. So,how fast c(x, t) will be equal to one at the point x .The growth depends on the spatial derivative of the cell concentration c, as de-scribed before. To have a larger growth, this derivative should be larger too. In orderto achieve this, the ratio between β and D should give a Gaussian with a largederivative, thus has a small standard deviation.Since we would like to have a slow growth, it should take about 40 weeks beforethe embryo reaches a length of 52 cm, the diffusion rate of cells D should be smallcompared to what is expected physically. Whenever the cells are equally dividedover the domain, the spatial derivative gets equal to zero, which results in no furthergrowth, only in cell concentration which will then reach one everywhere at the sametime.On the other hand, the proliferation rate β should not be big either. If this number istoo big, the spatial derivative is too large at the beginning of the run time. However,the cells will also be spread faster. The reason for this is that if they reach themaximum for that point, the cells will still divide, but diffuse instantaneously to thesides and push the cells there away, until the existing body is fully filled with cells.The last difficulty that needs to be dealt with is the Péclet number. This is aratio of the advection and the diffusion in a differential equation. When the numbergets too big, the results start to oscillate. In the PDE (Pc), this ratio consists of theterms β and v , and is given by: Pe = h ∗ β2v , with h the node distance. This ratioshould be below one in order to get a smooth non oscillating result if a standardGalerkin discretisation is used. However, one could play with this number by addingan artificial diffusion term [27].So, a good balance between the diffusion rate of cells and proliferation rate isneeded in order to get a curve lasting for at least forty weeks, for a specific choiceof h. Although, a large rate is needed to achieve this, it does not look like reality (avery thick stomach, but almost no head and toes, see Figure 2.6).Then, two more parameters are involved: force constant k and constant growthfactor Cg. Those parameters affect value of the maximum displacement u. Increasingthese values gives a larger displacement and thus a larger growth of the body. Withthis a more realistic starting state could be used to get the same valued curve.The down side of (Pc) is that it also depends on the displacement velocity v ,because of the total derivative. This unfortunately pushes the results down, causingthe force constant k and constant growth factor Cg to have less effect. In the end itresulted into a curve shape similar to the desired shape (Figure 1.2a) over time, buta very moderate displacement u of 0.24 cm, which is one hundred times smaller thandesired.
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Figure 2.6: The embryonic body together with a tight Gaussian curve. This shows schemati-cally how the cell concentration is presented in the model, which is far from realistic as canbe seen in this figure.
Because of this, it is decided to use a different approach with the same idea.Instead of using a PDE for the cell concentration c, one could use a prescribed bodyforce. it is known that (Pc) results in a Gaussian which evolves over time t . Thereforeit is chosen to use a standard Gaussian here. This is given as

c1 [2πs2]d/2 exp(−||x||22s2
) ∗ (1− exp(−βt)) (2.2)

where c1 suppresses the Gaussian such that it does not exceed the value one, s thestandard deviation, d the dimension, and β represents here the proliferation rate aswell. This rate will cause a delay, starting off with no cells at all. This Gaussianonly grows in height, but not in length over time. It therefore does not adjust to thecurrent state. For that, the standard deviation should also be time dependent.Again the negative spatial derivative of this function will be implemented as thebody force Fb, together with the force constant k . In order to verify the results in threedimensions, the following setup has been tested: The body force is described in thelength direction of the rod by the negative spatial derivative of the Gaussian. For theother directions, the body force is set to zero.
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3 Numerical Method
As shown in the previous chapter, a system of non-linear partial differential equations(PDEs) needs to be solved. To approximate the solution of the problem, a numericalmethod is used. Theoretical aspects on the numerical methods that are used can befound in [28, 29, 30].The three classical options for the discretisation of PDEs are: Finite Difference(FDM), Finite Volume (FVM) and Finite Elements methods (FEM). All use finiteshaped elements, but all in a different manner. The FDM is an efficient solvingmethod for regular grids. Because of this, rectangular or block shaped elements areused when working with FDM. However, FEM and FVM both use geometricallysimple shaped elements instead. Since an embryo is not regularly shaped, FEM andFVM are preferred and the FDM is not considered currently as an option.A main difference between FVM and FEM, is that FVM is based on local conser-vation, whereas the FEM only guarantees global conservation. In case of the FVM,this means that whatever goes into a cell or an element on one boundary, shouldleave this element on another boundary.For FEM all equations are weighted by a test function ψ and averaged by in-tegrating over the domain. The finally obtained weak form should hold for all testfunctions ψ = ψh. In general, FVM is just a special case of FEM, where the testfunction ψ = 1 is chosen and no integration by parts is performed to enlarge the classof possible weak solutions regarding the integrability requirements. Next to that, thiscorresponding weak form should then hold for all control volumes Ω = Ωh.In the end, it is chosen to work with FEM. This method will shortly be explainedin the next paragraph. Furthermore, the application of FEM to the problem de-scribed in Section 2 will be described. Afterwards, the engineering platform comsolmultiphysics®, which will be used for solving the multidimensional problem, is ex-plained. This platform is created for solving multiphysics problems with the finiteelement method. This leads to an extra motivation to use FEM, since this allowscomparing the results with the certainty that the choice of the numerical method doesnot contribute to any potential differences.A property of a multiphysics problem is the existence of coupled partial differentialsystems in your problem. Accordingly, comsol multiphysics® could be used for theproblem stated in this thesis.
3.1 Finite Element ApproachWorking with the finite element method gives the user a broad range of choices formodifying the solver. First, a finite element mesh with geometrically simple finiteshaped elements is created. Generally, it uses tetrahedral and brick-shaped elementsin three dimensions, or triangles and quadrilateral elements in two dimensions. An
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advantage of FEM is the use of a finer mesh at specific areas of the geometry, suchthat at, e.g., geometric transitions the solution can accurately be approximated andgradients too.The next step is to choose what type of basis functions will be needed. Fora simple approach one could use linear elements, while for tracking stress over anelement, parabolic elements could be more appropriate.Then, the PDE is mathematically rewritten in a weak form and further elaboratedwith the use of the basis functions. This results in the so called Galerkin weak form.This can be solved element-wisely.This will result in a typical sparse matrix for numerical problems, which can besolved with a direct or iterative method.Below it is described how the finite element method is used for the one dimensionalproblem given in Section 2.1.
Moving MeshThe first thing to do when using a numerical method is to define the grid. In onedimension, one can choose between an equidistant grid and a non-equidistant grid.For ease, the first one is chosen as initial mesh for this research. The mesh then looksas in Figure 3.1.

x0 = 0 xi−1 xi xi+1 xn+1 = xLh
Figure 3.1: One dimensional equidistant mesh

This mesh has a constant node distance h which is defined as h = xi − xi−1.This type of mesh is easy in use, although the non linearity in the PDEs will behard to calculate. For this, there is simple modification to the mesh to deal with thenon linearity, which is a moving mesh.A moving mesh is, as it says, a mesh which moves along the results over time.Every time step a new mesh corresponding to the new solution is created. This alsomeans that it is possible that the grid will not be equidistant over time. This type ofmesh is often used in fluid dynamics, but also in solids which deform largely. Sincethe embryo will grow largely as well, this is a second reason to use a moving mesh.
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x0(t0) = 0 xi−1(t0)xi(t0)xi+1(t0) xn+1(t0) = xL(t0)hi(t0)

x0(tk ) = 0 xi−1(tk ) xi(tk ) xi+1(tk ) xn+1(tk ) = xL(tk )hi(tk )
Figure 3.2: An illustration of how a mesh evolves over time when the amount of nodes ispreserved. For this, the distance between two nodes also depends on which nodes you arelooking at and thus the node distance varies over the mesh by hi(t) = xi(t)− xi−1(t).

The idea of a moving mesh is schematically given in Figure 3.2. Every time stepthe node distance is updated byhi(tk ) = hi(tk−1) + ∆t(vi(tk )− vi−1(tk )). (3.1)with vi the displacement velocity at node i. This value is available since it is thesolution to the velocity PDE (given in (P1)). It is important to realise that the nodedistance hi is given over an area [xi−1, xi] where the displacement velocity vi is givenat a certain node i. Hence, the first node velocity needs to be subtracted from thesecond node velocity (vi(tk )− vi−1(tk )).
Basis FunctionsBasis functions are functions used within an element to describe the behaviour of thesolution. The simplest option is to use piecewise linear basis functions. The solutionat both ends of the element are calculated. A linear line is then plotted in betweenthose points to describe the solution behaviour within the element.For the sake of simplicity it is chosen to use linear basis functions. In this case,the mathematical form of the basis function φi is given by

φj (x) =

x − xj−1hi x ∈ [xj−1, xj ],xj+1 − xhj+1 x ∈ [xj , xj+1],0 elsewhere.

Here, the node distance hi is given as in (3.1). For a visualisation, we refer toFigure 3.3.
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x0 = 0 xi−1 xi xi+1 xL = L

φi(x)

Figure 3.3: Linear basis function φi drawn in red.
Galerkin Weak FormFor solving the system of coupled differential equations, given in (P1), the Galerkinfinite element approach is used. In this thesis the derivation is based on the approachof Boon et al. [31]. Therefore the PDEs are first multiplied by a test function ψ . Themethod is shown only for the displacement velocity PDE, the balance of momentum:

ρ(DvDt + v ∂v∂x
)− ∂σ∂x = Fb, x ∈ (x0, xL], t ∈ (0, T ].

The ε-PDE, the evolution equation for the infinitesimal strain (tensor), is treated anal-ogously. When deriving the velocity PDE into its Galerkin weak form, we assume thatthe infinitesimal strain (tensor) ε is known and vice versa. This means, a segregatedapproach in solving the system will be used.The test function will be taken from a standard Sobolev space; ψ ∈ H1(It), whereIt = [x0, xL(t)] is the domain interval. Subsequently, the equation is integrated overthis domain, which gices
ˆ
It ψρ

(DvDt + v ∂v∂x
) dx − ˆIt ψ∂σ∂x dx = ˆIt ψFb dx.Next, the Cauchy stress (tensor) σ is partially integrated over the domain. With theknowledge that ψ(0) = 0 and from the second boundary condition that σ (xL) = F , theexternal force, one gets

ˆ
It ψρ

(DvDt + v ∂v∂x
) dx + ˆIt µ∂ψ∂x ∂v∂x dx = ˆIt ψFb − Eε∂ψ∂x dx + ψ(xL(t))F.

As a next step, the product rule for the total derivative,DψvDt = ψDvDt + DψDt v,is used to obtain
18



ˆ
It ρ∂ψv∂t + ρ ∂∂x [vψv ]− ρDψDt v dx + ˆIt µ∂ψ∂x ∂v∂x dx = ˆIt ψFb − Eε∂ψ∂x dx + ψ(xL(t))F.

The first total derivative is written out now.Applying Gauss theorem (that is the fundamental theorem of calculus in one di-mension), results intoˆ
It ρ∂ψv∂t − ρDψDt v dx + ρ[vψv ]∂It + ˆIt µ∂ψ∂x ∂v∂x dx = ˆIt ψFb −Eε∂ψ∂x dx + ψ(xL(t))F,

with [vψv ]∂It the boundary integral in one dimension.As last, the transport theorem of Reynold (or Leibniz’ Rule in one dimension) isaplied to the first term on the left hand side.
ρ ddt
ˆ
It ψvdx − ρ

ˆ
It
DψDt v dx + ˆIt µ∂ψ∂x ∂v∂x dx = ˆIt ψFb − Eε∂ψ∂x dx + ψ(xL(t))F

With this, the Galerkin weak form, which is the element-wise form of the above, canbe formulated as follows:Find vh ∈ H1(It) such that ∀ψh ∈ H1(It)
ρ ddt
ˆ
It ψhvhdx − ρ

ˆ
It
DψhDt vh dx + ˆIt µ∂ψh∂x ∂vh∂x dx =

ˆ
It ψhFb − Eε∂ψh∂x dx + ψ(xL(t))F. (Gv )

Similarly, we obtain the Galerkin weak form for the evolution equation for the in-finitesimal strain (tensor):Find εh ∈ H1(It) such that ∀ψh ∈ H1(It)ddt
ˆ
It ψhεh dx −

ˆ
It
DψhDt ε dx = ˆIt ψh(∂v∂x − G) dx, (Gε)where ψ , the test function, is from the same test space as described above. In thiscase, the displacement velocity v is set to be known.For the cell concentration PDE, the cell concentration c on the right hand sidewill be taken from the last time step. In this way, the cell concentration c is knownfor that part of the equation. No extra iterations because of non-linearity are thenneeded. The Galerkin weak form for the cell concentration c is given below.Find ch ∈ H1(It) such that ∀ψh ∈ H1(It)ddt

ˆ
It ψhch dx −

ˆ
It
DψhDt ch dx + ˆIt D∂ψh∂x ∂ch∂x dx = ˆIt ψhβct−1h (1− ct−1h ) dx (Gc)
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Linear systemWe continue with the Galerkin weak form for the displacement velocity v , (Gv ). Thefinite element variables are rewritten with the basis function φi.
i) vh = ∑n+1j=1 ξj (t)φj (x(t)), with ξ the approximation of vh and v (t, 0) = 0.ii) ψh = φj (x(t)), i = 1, 2, . . . , n+ 1

These are filled in into the Galerkin weak form (Gv ). Then the transport property ofthe basis functions (DφiDt = 0)[32] is applied.
ddt n+1∑

j=1 ξjρ
ˆ
It φiφj dx︸ ︷︷ ︸Mv

+ n+1∑
j=1 ξjµ

ˆ
It φ′iφ′j dx︸ ︷︷ ︸A

= ˆIt φiFb − Eεφ′i dx + φi(xL(t))F︸ ︷︷ ︸bvWith this we get the time dependent system for the displacement velocityddt (Mvξ) + Aξ = bv
which can be solved in matlab with a time integration method. In this thesis, the EulerBackwards method is used. This method has been chosen because of its stability.A similar system can be found for the infinitesimal strain (tensor) ε and the cellconcentration c. The Galerkin Weak form of all the PDEs and the composition of thematrices can be found in Appendix F. In this appendix, there is also a brief elaborationon the idea of time integration in this setting.

Remark: One can note that in both cases, solving the displacement velocity v andsolving the infinitesimal strain (tensor) ε, one needs a mass matrix (M) of the newtime step, i.e. tk+1, while one only knows the results of t0, t1, . . . , tk . This meansthat the node distance hi(tk+1), at the new time step is also unknown (see Equation(3.1) for its construction). To solve this problem, an additional iteration step has beenapplied to first solve the displacement velocity v PDE. This means that there will firstbe iterated over solving this part of the problem, to find an acceptable value for thenode distance vector h. For this, the l2-norm ||ξn−1tk −ξntk ||, with ξntk the approximationfor vh at time tk at iteration step n to find htk , should not be greater than 10−12.
3.2 comsol multiphysics®
According to the official comsol multiphysics® website [33]: "comsol multiphysics® isa general-purpose simulation software for modelling designs, devices, and processes
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in all fields of engineering, manufacturing, and scientific research". At the core, comsolmultiphysics® is able to setup and solve arbitrary coupled second order PDEs. Thesecan be in a combined coefficient form, general form or weak form.For each of the built-in physics, a dedicated set of (weak form) PDEs is readyfor use. After building or loading the geometry, the end user just has to provide therequired material coefficients and has to choose from a set of predefined boundaryconditions. This implicates that the software can be used off the shelf for engineeringproblems where there is no need for mathematical intervention.For scientific research, the full potential of comsol multiphysics® becomes clearbecause all predefined PDEs are accessible and can be expanded by the end user.Furthermore, there are dedicated mathematics interfaces to setup user defined PDEs,ODEs, functions, variables and coupling operators.As a typical example in scope of this research, comsol multiphysics® has built-inviscoelastic models in the Structural Mechanics interface, such as the Maxwell model.After filling in the Prony series coefficients, an engineer can compute the relaxationbehaviour for an arbitrary structure subject to stresses.Since viscoelasticity is a special case of a morphoelastic model (see also Ap-pendix C), and since the underlying equations are accessible, the software allows usto expand the viscoelastic equations to account for morphoelasticity by adding termsto the PDE. Instead, it is also possible to start from scratch and setup our own set ofmorphoelastic PDEs.The built-in viscoelastic equations in this version of comsol multiphysics® aredisplacement based. However, the equations used in this research are worked out forthe displacement velocity instead. Therefore, it was not possible to adjust the built-inviscoelastic equations to the given morphoelastic equations given in Equation (P1)and (P2). Therefore, a user defined set of (displacement velocity based) PDEs hasbeen used. Nonetheless, this gave more flexibility with the domain. More on this userdefined set of PDEs can be found in the next paragraph.
Adding a PDE to comsol multiphysics®
First of all, comsol multiphysics® does have a lot of in-built physics. The easiest,and safest option is to use one of those when they exist for your problem.The equations in this thesis are not implemented as a predefined physics interface.Fortunately, comsol multiphysics® offers the possibilities to set up your own PDEsvia, e.g., the Coefficient Form PDE of the mathematical environmentThis physics gives a general equation,

ea∂2u∂t2 + da∂u∂t +∇ · (−c∇u − αu+ γ) + β · ∇u+ au = f ,
which can be modified to the preferred PDE by modifying the coefficients.
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coefficient v-PDE ε-PDE u-PDEea 0 0 0da ρ 1 1c µ 0 0α 0 0 0γ −E ∗ ε 0 0β ρ ∗ 2 ∗ v v va 0 0 0f Fb (1− ε) ∗ vx −G v
Table 3.1: list of coefficient values in the one dimensional Coefficient Form PDE of comsolmultiphysics® corresponding to the one dimensional PDEs (P1).

To fill in the coefficients, it is important to realise that comsol multiphysics® wouldlike to get everything written out. For example, every matrix multiplication (e.g. A ·B)will have to be done by hand before it can be put in the coefficients. In other words,the coefficients of the PDE only except scalars, e.g. a11 · b11 +a12 · b21 +a13 · b31 . . ..
In the one dimensional case the coefficients are set as in Table 3.1. When work-ing in three dimensions the formulas and with that the coefficients of the comsolmultiphysics® Coeffiecient Form PDE get more complex. To get a better view onthe correctness of the coefficients, the comsol multiphysics®LiveLinkTM for matlab hasbeen used. More about this can be found in Appendix G.To specify what happens on the boundaries, one needs boundary conditions. Thoseexist of two main types: Dirichlet and Neumann. Further, there are mixtures of thosetwo. Nonetheless, comsol multiphysics® has some more frequently used boundaryconditions implemented. They are all derived from those two main types.In comsol multiphysics®, by default a zero flux boundary condition is added toall the boundaries of a physics. This means that the bounds are free to move and asolution to these boundaries should be found by the use of the PDE, which is basicallya zero Neumann condition.In the problem statement, two boundary conditions are given: a Dirichlet boundon the fixed side and a Neumann bound on the pulling side. In comsol multiphysics®it is chosen to use a constraint to fix one boundary and a flux/source to apply theexternal force F on the other, pulling, boundary. These two are both implementedunder the Coefficient Form PDE for the displacement velocity v . For the other fourboundaries and all other PDEs it is sufficient to just use the zero flux condition.
Note that in the three dimensional case, more boundaries (surfaces) are available.
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Figure 3.4: Visualisation of a swept mesh with bricks located entirely over the smallest surface.The mesh is made in comsol multiphysics®.
For the remaining surfaces in the v-PDE (in (P2)), it is sufficient to keep the zeroflux bound there. Although, it might give a solution in which the bar will movein the y- and/or z-direction instead of only grow into the x-direction. It seems tohappen only when the mesh is not chosen properly. Therefore, a recommendationfor when working with the bar problem, is to use brick-shaped elements insteadof tetrahedrals. Preferably, use bricks which are located entirely over the smallestsurface (see Figure 3.4).

Next to boundary conditions, the problem also needs to be initialised to be welldefined. The comsol multiphysics® Coefficient Form PDE is given in its standardform, with a second time derivative term. Therefore two initial conditions (its realvalue and the value for the first time derivative when t = 0) are asked for. ThePDEs are initialised according to the default by comsol multiphysics® by settingboth equal to zero. Looking at our problem statement (in Section 2), this is exactlywhat is wanted. Unless the cell properties are added to the system. This PDE needsa stimulus from the start. Otherwise no growth will enter the system. Therefore, thefirst initial condition (c(., 0)) for this PDE should be modified.
Adding a (Moving) Mesh in comsol multiphysics®
Creating a mesh in comsol multiphysics® is easy at first sight. You get a standardtetrahedral mesh when nothing is changed to the mesh settings. An important optionis that one can choose how fine the mesh should be. In general, a finer mesh wouldgive a more accurate result, while it takes longer to solve.Another nice feature in the mesh settings is that one can tell comsol multiphysics®that you would like to have a finer mesh at some area and broader it somewhere else.
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For the one dimensional rod problem, a coarse mesh works fine and fast. In threedimensions this works too, although you need to be careful in selecting the right kindof mesh. Based on experiments, longitudinal swept quadrilaterals are recommended,since the movement of the rod should only be in one direction.When adding the cell properties, one changes the setting of the problem. Theinitial length will be much shorter (approximately only a few millimetres) and thefinal displacement should be quite large compared to its initial state (approximatelyfifty centimetres). For this reason a finer mesh is chosen. Further, it is chosen to havean even finer mesh near x = 0, since there you will have something like a source ofcells, because of the chosen initial condition and PDE solution which are Gaussians.With this mesh, the necessary spatial derivative will be presented better.As explained in the previous subsection, a moving mesh will be used. This is done,because the object, which is a representation of an embryo, should grow (enormously)over time. In comsol multiphysics® there is an option to use a moving mesh. In theone dimensional setting, one can find this in the Physics. Otherwise, one can rightclick on Definitions.It is necessary to define how the mesh moves. The given problem exists of twomain equations: one for the displacement velocity v and one for the infinitesimal strain(tensor) ε. Next to those, there is a DE for the displacement u. The first two needto be solved together, since they are coupled. The third one stands on its own andcan be determined by their results. This last PDE, however, gives the displacementu over time t . This can be used in the moving mesh settings, resulting that this PDEshould also be solved in the same iteration loop as the two coupled PDEs. For this,a Prescribed Deformation with, u1, u2, u3 in X, Y, and Z direction respectively is used.When a mesh moves, its quality could deteriorate. This mostly happens when (apart of) one element moves faster then another. To keep the quality of the mesh, onecould chose to remesh once in a while. When working with the cell properties, it ischosen to use this option in comsol multiphysics®, because the total growth is quitelarge. This option can be chosen in the Time-Dependent Solver of the Study. Asremesh criterion the distortion criterion is used. Different values of this criterion hasbeen tried. When working with the Gaussian to represent the cell concentration ofthe embryo, comsol multiphysics® will remesh when the distortion criterion exceeds0.5. The amount of mesh elements after remeshing is the same as before.
Next to the distortion criteria to remesh, comsol multiphysics® also contains aquality criteria for the remeshing. Although this works fine for the tetrahedral meshes,it does not for the swept brick meshes.
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4 Results
In this section the results of this research are shown. First, the results of the onedimensional pulling rod problem, described in Section 2.1, are given. These resultsfrom the morphoelastic model are verified by using the viscoelastic model and bysetting the growth tensor to zero (G= 0 in (P1)) in the morphoelastic model. This onedimensional model is implemented in matlab and filled in into comsol multiphysics®.Therefore, both models are also verified by comparing the results of both programs.To see if the growth tensor is implemented correctly, the model is also verified bya manufactured solution.Secondly, the results of the three dimensional cases are given. For this, the pullingbar problem (Section 2.2) will be compared to its one dimensional counterpart, thepulling rod problem. Furthermore, the growing rod will be compared to the growingbar. In this setting, there is a non-zero growth tensor and an external force.Finally, the results of the growing body, with an internal stimulus, will be brieflydiscussed, in both the one and the three dimensional setting. All equations can befound in Appendix C.
4.1 One-Dimensional ProblemIn the one dimensional setting, the pulling rod problem is examined first. This problemis given in Section 2.1, and its schematic view in Figure 2.1.For most of the one dimensional calculations the parameter values given in Ta-ble 4.1 are used, unless stated otherwise. When an external force F is used in thesetting, the force is applied during the time interval of t ∈ (0, T /2). Then, at T = T /2,the rod is loosened at once. However, this could give a non-differentiable point. Itwould be more realistic to loosen the rod smoothly, by for example using an S-shapefunction around that time.The value of the Young’s modulus has been chosen to be one GPa, as it is astandard unit for this. The shear modulus and mass density have been chosen suchthat their effects are visible, so they are of the same order as the Young’s modulus.The viscosity gives a damping to the system, while the mass density adds a delay.This results into a new equilibrium (while pulling continues) that gets reached after awhile instead of immediately, as is the case for linear elasticity. This may result intoa little overshoot while reaching this equilibrium. The behaviour starts to resemblelinear elasticity more when the shear modulus approaches zero, see also Appendix H.In this same appendix, the effect of the mass density is shown too.In the first problems, only the situations without any growth and body force areexamined. For these situations, a stability check has been performed. This checkcan be found in Appendix E. It turns out that in the situations of zero displacementvelocity and constant infinitesimal strain (tensor), the system is stable. This is when
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the maximum displacement has been reached while continuing pulling the rod. Therod will not change size.
symbol value unitx0 0 mxL 1 mnode distance h 0.1 mtime step ∆t 0.001 send time T 20 sYoung’s modulus E 1e9 Pashear modulus µ 1e9 Pa·smass density ρ 1e9 kg/m3body force Fb 0 N/mexternal force F 1e6 N/mgrowth tensor G 0 1/su(0, t) 0 mu(x, 0) 0 mv (0, t) 0 m/sv (x, 0) 0 m/s

Table 4.1: List of values used in the one dimensional problems, unless stated different. Thevariable h, is the initial equidistant node distance.
4.1.1 Pulling Rod ProblemIn Figure 4.1, the schematic visualisation of the pulling rod problem is given.

x0 = 0 xL F
Figure 4.1: The pulling rod problem. In one dimension, the rod is hold on the left side, wherex = 0m. On the other side, x = xl, an external force F is applied.

The coefficients of the PDE corresponding to this problem (P1), are given inTable 4.1. The results to this problem are given in Figure 4.2. This figure showsthe displacement u of xL over time t . For this, three solutions are plotted together:viscoelasticity (Visco), morphoelasticity by matlab (Morpho), and morphoelasticity bycomsol multiphysics® (COMSOL). Those three curves are plotted together to showthat they give similar results. For this the growth tensor G is set equal to zero inthe morphoelastic models. It can be seen that the morphoelastic result reproduces theviscoelastic behaviour if the growth tensor is zero.
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(a) Full result

(b) Zoomed result, t ∈ [1.5, 5]s
Figure 4.2: Morphoelastic results with a zero growth tensor (G= 0) of both matlab (dark blue)and comsol multiphysics® (yellow) compared to viscoelastic results (light blue). The lines aredrawn for x = xL.
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The viscoelastic result (Visco) is used as verification, and verified by comparing itto the linear elastic results, see Appendix H through variation of the damping term µ.It is used as a verification to verify the results of the morphoelastic results of both thematlab script (Morpho) and the comsol multiphysics® simulation (COMSOL). Bothmake use of a moving mesh.In addition, the comsol multiphysics® program is modified such that the calculationwill most likely be the same. To this extent, the time steps taken are fixed on 0.001 s,as in Table 4.1. This can be done in the Time-dependent solver by setting the stepstaken by solver to manual. The inter node distance has been set to 0.1 m by puttingthis as the maximum element size. Importantly, the Euler Backwards method has beenused to deal with the time derivatives. Therefore, comsol multiphysics® is forced touse this method too. This is done by using the BDF time stepping method withexactly the order 1.All three results are basically on the same line, with a little deviation at the cornerwhere the force equilibrium gets reached. A zoomed figure is given around this time,Figure 4.2b.In Appendix H, these same results are shown for two different values for the timestep. To see the positions of the curves better, one result is added in every subsequentsubfigure.This shows us that the results are reliable, especially when taking a small timestep or when you work in comsol multiphysics® with a moving mesh. This motivatesus to use the moving mesh in comsol multiphysics® in the next settings.
4.1.2 Verification by the Use of a Manufactured Solution

(a) Displacement velocity v (b) Infinitesimal strain (tensor) ε
Figure 4.3: Manufactured solutions of the morphoelastic problem. The functions of equation(4.1) are plotted over time, for x = 1m.
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The second method of verification used is the method of a manufactured solution.For this method, a solution for the displacement velocity v and the infinitesimal strain(tensor) ε is formulated and by using this solution, the parameters for the growthtensor G , body force Fb, and the external force F are constructed. Those parameterfunctions are then implemented in the model (P1) to determine v and ε again. Thisshould match the created solutions.It is chosen to use the functions
v (x, t) = (eαx2 − 1) sin βt; (4.1)ε(x, t) = ε0 (1− e−γt)

with the values
α = 0.1β = 0.05πγ = 0.1ε0 = 0.001.

This gives the curves shown in Figure 4.3.These functions are implemented in the PDE (P1) to determine a function for G ,Fb and F . This is done by using the symbolic environment of matlab, together withthe derivative function diff(.). The functions v and ε, (4.1), are created with the

(a) Displacement velocity v (b) Infinitesimal strain (tensor) ε
Figure 4.4: The manufactured solution (blue) and the comsol multiphysics® generated solution(red dashed) of the morphoelastic problem. The results and functions are plotted over a timeinterval of 20 seconds, and at the end point of the rod x = 1m.
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symbols x, t . Then the parameters are determined as follows:
Fb = ρ · ∂v∂t + 2 v ∂2v∂x2 − ∂ε∂x ;
G = −(∂ε∂t + v ∂ε∂x + (ε − 1)∂v∂x

) ;
F = µ ∂v∂x + E · ε.

The matlab-output is thereafter plugged in for the corresponding variable in comsolmultiphysics®.For this, only the model in comsol multiphysics® has been used. This is since inthe previous subsection, the results of matlab and comsol multiphysics® were closeto each other. Also, comsol multiphysics® will be used in three dimensional setting,where matlab will not.Figure 4.4 shows the comsol multiphysics® results together with the formulation ofv or ε. In this figure one can see that the lines are close to, or even on each other.With this we conclude that the model has been implemented correctly.
4.1.3 The Effect of Two Different Growth TermsIn the end, we would like to have an autonomously growing body. This means that itsstarting point will never be reached again, since the body will grow, instead of (only)get stretched.To first see the effect of the growth tensor G , a constant growth tensor has beenchosen. A second choice is a growth tensor depending on the infinitesimal strain(tensor) ε. This has been chosen since it is also used by Koppenol [11] to describethe growth tensor.Note that an external force is still applied on the system to stimulate the growth,which is especially needed in the second case.
Linear Growth Finally, a growth tensor will be added to the system. To this end,first a constant growth tensor has been chosen of 10−5 s−1. With a constant growthtensor, one would expect a linear increase in displacement u. In Figure 4.5 one cansee that this indeed happens.
Strain Dependent Growth Another case is to look at a strain dependent growthtensor. This has also been done by Koppenol [11]. Here, it is chosen to use G = αε,with α = 10−2 s−1 as the morphoelastic change (i.e., the rate at which the effectivestrain changes actively over time)[11]. With this, one would expect to reach a newequilibrium after a while. This will briefly be explained.
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Figure 4.5: Morphoelastic results of the pulling rod problem with a constant growth tensor inthe rod. The line is drawn for x = xL.
From the problem statement (P1) one can note that the infinitesimal strain (tensor)ε is linked to the Cauchy stress (tensor) σ , and therefore the external force F . Whenone loosens the rod, this force is equal to zero, and so there should be no stressafter this point. This results into a displacement velocity v with an opposite signof the infinitesimal strain (tensor). Logically, the infinitesimal strain (tensor) anddisplacement velocity should both get equal to zero. Then the growth rate is given by10−2ε, as stated before. As a result, there is no current growth and an equilibriumhas been reached.The obtained results are shown in Figure 4.6. In this case the results of the matlabmodel agree with the results of the comsol multiphysics® model. In both results, onecan see that indeed a new equilibrium is found after about 15 seconds.Interesting to remark is the fact that the rod keeps on growing between 5 –10 s. This is explainable in the same way the new equilibrium is explained. Inthis interval, an external force is applied on the rod. This provides stress in the endnode, xl. This means that the Cauchy stress (tensor) σ is non-zero. The displacementvelocity v together with the infinitesimal strain (tensor) ε are therefore still present.Subsequently, the growth tensor G is non-zero. Thus, the infinitesimal strain (tensor)ε is still varying over time. This results into a small increase in displacement velocityand thus in the displacement, which shows the total growth of the system relative to
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Figure 4.6: Results of the morphoelastic model of the pulling rod problem with an straindependent growth tensor in the rod. The line is drawn for x = xL

Figure 4.7: Infinitesimal strain (tensor) (green, epsi) and displacement velocity (blue, v) plottedover time for the growing rod problem with an infinitesimal strain (tensor) dependent growthtensor. For both variables, the end point of the rod, x = xl, is plotted.
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its initial state.This added growth during the time interval that was mentioned earlier does notinfluence the Cauchy stress (tensor) and therefore it could reach a new equilibriumafter switching off the applied external force F . The growth effect, while pullingand the maximum force has not been reached yet, is undone by the time the finalequilibrium (after loosening the rod) is reached, because it has the same effect afterreleasing the rod.The explanations above can also be illustrated by plotting the infinitesimal strain(tensor) and displacement velocity in one figure, see Figure 4.7.
4.1.4 Results with Added Cell PropertiesA more realistic setting is to stimulate growth from the inside. For this reason anextra PDE (Pc) is added to the system. This PDE describes the behaviour of thecells, but can be seen as a description of the cell concentration.For the results given in Figure 4.8, the physical parameter values given in Sec-tion 1.4 are used. The other four parameters are found by trial and error. The valuesare given in Table 4.2 and 4.3.A Gaussian Pulse is used as initial condition. It has been given a standard devia-

Figure 4.8: Results of the model of morphoelasticity with a cell concentration PDE growthstimulus. The curve shows the displacement of the end node of an initially 2mm long rod.Therefore, the results should be multiplied by 2 to get the total growth of the one dimensionalembryo representation. To get the total length, the initial length should be added too.
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Parameter Valuek 10D 0.0000123 [cm2/day]Cg 1 [1/s]
Table 4.2: Parameter values used for solvingthe problem with the morphoelastic model andcell concentration.

start (d) end (d) Function (1/day)42 100 0.000013100 150 0.013150 300 0.00013
Table 4.3: The variation of the proliferationrate β over time

tion of 5 · 10−7 and is divided by a factor 106 to keep the maximum cell concentrationwithin the domain [0,1].
4.1.5 Results on the Alternative Idea for the Cell Concentration

Figure 4.9: Total size over time of the initial 2mm long rod, representing the embryo in onedimension. It has a fixed end for symmetry, and a zero flux end. The growth is stimulated bythe spatial derivative of a Gaussian which represents the cell concentration. The time t axisis in weeks.
As it was discussed in Section 2.3, an alternative idea will be investigated too. Forthis Equation (2.2) is used as stimulus. It has been shrunk by a factor 10 000 to get

34



a curve below one, which can grow. The disadvantage of using this Gaussian is thatits standard deviation does not change in time. With a chosen standard deviation of5 ·10−4 m, it starts as a nice curve on the initial length. This results into the behaviourthat new cells will be created at the midpoint of the (symmetric) rod. Those cells willbe pushed to the side and this will result in growth. However, it never reaches themaximum amount of cells in grown parts (x > 2 mm). The physical parameters havethe value given in Section 1.4.The cell proliferation rate β changes discretely over time. This has been done tobe able to represent the lengths based on both the measurements methods that areused for measuring the length of an embryo (crown-to-rump and crown-to-heel). Inthis way, the curve will look more like the one in literature (Figure 1.2a). For theproliferation rate a piecewise function is used and filled in as in Table 4.4.Secondly, the force constant k , see (2.1), changes over time in a similar manneras the proliferation rate. A piecewise function has been used as well for this with thevalues in Table 4.5.Solving this system of PDEs resulted in the blue graph plotted in Figure 4.9. Thefigure shows two other lines. The red and yellow lines are the ones from literatureand show the crown-to-rump length of the first weeks and the crown-to-heel lengthof the last twenty five weeks, respectively.The discrete changes in proliferation rate β and force constant k result in a nodaround week 15-16. This is about the time where the method of measurement isswitched from crown-to-rump to crown-to-heel. At that moment it looks like theembryo has gained in size enormously in Figure 4.9, which just represents the changeof measurement method.In order to analyse the the accuracy of the model, the relative error is calculated.In the first fifteen weeks the model has a relative error of 0.2316. The next 25 weeksgive a relative error of 0.0507.
4.2 Three-Dimensional ProblemA more realistic setting for a growing embryo is to work in three dimensions. Tocheck the formula’s and their implementation in comsol multiphysics®, the results arecompared to the one dimensional results. This can only be done on a similar situation.
start (d) end (d) Function (1/day)6*7 110 0.013*0.005110 300 0.013*.3

Table 4.4: The variation of the proliferation rateβ over time.

start (d) end (d) Function6*7 110 500110 300 50
Table 4.5: The variation of the force con-stant k over time.
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Method absolute error relative errorC-R 3.9026 0.2316C-H 9.6499 0.0507
Table 4.6: The absolute and relative error of the model results. The errors are given for theweeks 6 – 15, where the crown-to-rump measurement is used and the second period, weeks16 – 40, when the measurements are done between crown-to-heel.
Therefore, a pulling bar and growing bar setting have been examined.After this has been verified, the geometry will be changed into a unit block andsphere. For those, the mesh type has been investigated.Lastly, some words are given on the growing body without an external force, buta stimulus from inside the body, by using cell division phenomena.For the comparison between the one and the three dimensional case the parametervalues given in Table 4.7 and 4.8 are used.It is chosen to use a mass density which is closer to reality, while working withthe given Young’s modulus. As it can be seen, the bulk viscosity µ2 and Poisson ratioν are both set to zero. This is chosen since in the pulling rod or bar problem, thereshould be no influence from the other directions than the pulling direction.
4.2.1 Verification by the Use of the One-Dimensional ResultsAs a first check on the generalised formulas of (P2), the results will be compared totheir one dimensional counterpart.For this, the pulling and growing rod problems are transformed into three di-mensional pulling and growing bar problems. The schematic drawing is repeated inFigure 4.10.The bar is placed with one edge on the x-axis, such that a fixed corner is on (0 00). The other edges are in the positive y-, and z-direction.

Name Expression Value Descriptionµ 1e9 [Pa*s] 1E9 Pa·s shear modulusE 1e9 [Pa] 1E9 Pa Young’s modulusρ 8e3 [kg/mˆ3] 8000 kg/m3 mass densityCg 0 [1/s] 0 1/s constant growth factorFb 0 [Pa/m] 0 N/m3 body forceT 20 [s] 20 s end time∆t 0.1 [s] 0.1 s time step
Table 4.7: Parameter list of the one dimensional pulling rod problem, for comparison to thethree dimensional case.
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Name Expression Value Descriptionµ1 1e9 [Pa*s] 1E9 Pa·s shear viscosityµ2 0 [Pa*s] 0 Pa·s bulk viscosityE 1e9 [Pa] 1E9 Pa Young’s modulusν 0 [1] 0 Poisson ratioρ 8e3 [kg/mˆ3] 8000 kg/m3 mass densityCg 0 [1/s] 0 1/s constant growth factorFb1 0 [Pa/m] 0 N/m3 body force, x directionFb2 0 [Pa/m] 0 N/m3 body force, y directionFb3 0 [Pa/m] 0 N/m3 body force, z directionT 20 [s] 20 s end time∆t 0.1 [s] 0.1 s time step
Table 4.8: Parameter list of the three dimensional pulling bar problem.

In Figure 4.11, the results are presented. The red striped line shows the displace-ment-curve of the outermost upper right corner of the bar; (1 0.2 0.2)m. The curve isclose on the one dimensional result (at x = xl).A three dimensional visualisation of the result is illustrated in Figure 4.12. Thecoloured slice shows how much that point x-directionally is moved from its startingpoint, blue meaning the least and red the most. The result is scaled by a factor of 100to get a visible displacement. In Figure 4.11 one sees that the displacement u wouldotherwise be 1 mm, which is barely visible. From Figure 4.12, the one dimensionalnature is clearly visible.The bar has eventually also been rotated. It is placed on the y- and z-axis andalso hovering in the space. For this scenario, the bar was rotated 45◦ around thez-axis, and 45◦ around the (1 −1 0) line. Results for these rotations are given inAppendix I.

F1 m
0.2 m

0.2 m

Figure 4.10: The pulling rod problem expanded into its 3D version: the pulling bar problem.The block has a length of 1 meter and its thickness is 0.2×0.2 m. One side (gray) is fixed bya zero constraint and on the opposite side an external force F is applied.
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Figure 4.11: The displacement-curve of the one dimensional pulling rod problem (blue) com-pared to the one resulting from the three dimensional pulling bar problem (red, striped). Theone dimensional result is drawn for x = xL and the three dimensional results for x = (1 0.2 0.2).The bar is placed with one edge on the x-axis.

Figure 4.12: Visualisation of the pulled bar, created with comsol multiphysics®. The colouredbar shows the displacement u1 (x-directional displacement) of that point. The colour bluerepresents the least movement, while the colour red represents the most movement. It isplotted at t = 6.4 s in order to plot the maximum displacement. The scale is 100x.
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4.2.2 Added GrowthIn the section before, it is shown that the three dimensional problem is implementedcorrectly by comparing the results to the one dimensional case. Therefore, the effectof different kinds of growth factors and the influence of a mesh can be examined.
Growing Bar Again, a bar of which one edge is situated on the x-axis, with a cornerof the fixed plane on (0 0 0), is examined. It is said to grow in x-direction only.Therefore, only G11 has been given a value. Also, the Poisson ratio and bulk viscosityare set equal to zero.The setup has been tested in multiple directions as was done for the pulling barsituation. For this, both the linear growth as the strain dependent growth results inone dimension (Section 4.1.3) has been used for verification. About this, no furtherdetails are given.Constant growth in the x-direction, G11 =Cg, is added to the system. Three casesare investigated:1. Cg= 0.01 1/s2. Cg= 0.1 1/s3. Cg= 1 1/sFor all cases no external force has been put in the system. The results of theseproblems are given in Figure 4.13. One can notice that the growth and the displace-ment are mainly in the x-direction (u1). However, in Appendix I one can note thatfor the extreme constant growth factor of 1 s−1 the bar eventually will bend. Though,in this time frame of 20 s the bending is negligible compared to the x-directionaldisplacement.

The system of equations (P2), described in Section 2, is tested by extreme growthfactors, e.g. Cg= 1 s−1. The geometry of the bent solution used a swept mesh inthe longitudinal direction. The mesh does not influence the results much. Whenevera tetrahedral mesh is used or when the mesh is swept over its width or height, thebending is much greater in the results. By using an appropriate scaling on theunknowns, this effect disappears. These bendings, however, could also be explainedby the fact that the formulas are only defined for small displacements u. In thisscenario, the bar grows 6 km.Further is observed that the fully coupled solver is not able to solve for all these bigconstant growth factors. It automatically took extremely small time steps of about10−5 and smaller. A segregated solver is therefore used instead.
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(a) Cg = 0.01 1/s

(b) Cg = 0.1 1/s

(c) Cg = 1 1/s
Figure 4.13: Displacement u through time for various values of Cg, the constant growth factorin x-direction. The displacement in the main directions is plotted in each figure.
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(a) Constant growth (b) Growth by norm
Figure 4.14: A visualisation of the three dimensional growing unit cube. In (a) it is grown bya constant growth factor of 0.1/s. In (b) the constant growth factor is given by the norm of x,in other words, the distance from a point in space to the origin.
Growing Block Gradually, a more realistic shape will be used. A unit cube (Fig-ure 2.3a) will be grown symmetrically in all directions, stimulated by an external force.For this, the cube is centred at (0 0 0). This point is fixed with a zero-constraint onthe displacement velocity in all directions. This keeps the block from moving insteadof growing.The outer boundaries get an equal flux source, which is the external force. Becauseof symmetry, the inner boundaries get a zero-constraint on the displacement velocityin the outward directed normal.For this geometry, two growth tensors have been tried on to see their effects.1. Constant growth: a constant growth tensor, with Cg= 0.1 s−1.2. Growth by norm: a growth tensor depending on the distance to its centre:0.1 · (x2 + y2 + z2) s−1m−2.This gives the entries of the main diagonal of the growth tensor. The off-diagonalsare set to zero.Note that the growth and displacement will now be in all directions. Therefore,a longitudinal, vertically and horizontally swept mesh is used (a combination of amapped and swept mesh).In Figure 4.14 the results of both growth tensors are given. Figure 4.14a showsthe results for the constant growth factor. In all directions, the block grows evenly tomore than two meters. This corresponds to the results in Figure 4.13b.
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The second figure, 4.14b, shows a distance dependent growth factor. The growthfactor is given by the norm of x, which is the distance between a point x and theorigin. One can see that the corners grows the fastest, while the midpoints of theedges do not move much. When running for a longer time, the spikes, which can beseen in the solution (Figure 4.14b), will go through each other, which indicates thatthe model is not functioning correctly.
Growing Sphere To make an even more realistic shape, a sphere with a radius of0.5 m has been examined. In this way, the results could be compared to the resultsof the block. For this problem, the same constant growth factors as for the growingblock are used. Tetrahedral elements are used for the sphere.Next to that, the behaviour is examined when the bulk viscosity µ2 and Poissonratio ν are taken into account. It is chosen to use a bulk viscosity of the same valueas the shear viscosity, 109 Pa · s, and a Poisson ratio of about rubber, 0.49.In Figure 4.15 the displacement of both the growing sphere and the growing blockare given. For this the end points of the three main axis are used. The displacementof the corresponding axis is then plotted. One can see that the growth is similar forboth objects.Figure 4.16 shows the results of the two different growth tensors, both with andwithout interdependence of the growth directions. One can see that without theinterdependence, the sphere grows faster in all directions. Both methods keep thesphere shape regardless of the choice of including the interdependency. Although, inFigure 4.16d the sphere has gotten wobbly, due to the coarser mesh.

(a) Growing block. (b) Growing Sphere
Figure 4.15: Displacement of both the growing block and the growing sphere without interde-pendence of the growth directions are given. The displacement of the end nodes of the threemain axis are plotted. The displacement direction of the corresponding axis is plotted.
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(a) Constant growth, no µ2 and ν . (b) Constant growth, with µ2 and ν .

(c) Growth by norm, no µ2 and ν . (d) Growth by norm, with µ2 and ν .
Figure 4.16: Results of the growing sphere with different kinds of growth tensors, existingof a constant Cg of 0.1/s and given by the norm of x. Both have been examined with andwithout the interdependence of the growth directions, by using either a positive or a zero bulkviscosity µ2 and the Poisson ratio ν . For all these calculations a coarser mesh is used.
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4.2.3 Results with Added Cell PropertiesThe idea is to verify the three dimensional problem containing the cell concentrationand without any external force by the one dimensional results on this topic. Where-after the situation can be extended to a sphere-like object which grows in multipledirections. Since the results while using the cell concentration PDE in the systemwere not realistic, this has not been looked at in multiple dimensions. Therefore, onlythe alternative idea of implementing a Gaussian to represent the cell concentrationhas been considered.
Alternative Idea The pulling bar model, that has been verified before, is modified byremoving the external force and adding a body force generated by a cell concentration.Unfortunately, this final model gives an error of no convergence after a few time stepsof which the amount varies per setting. Various settings in comsol multiphysics® havebeen tried to solve this problem, however, no setting without this problem has beenfound yet. It can be seen that before the time step at which the program runs into anon convergence error, the results already start to deviate in the first time step fromthe results in one dimension. More on this can be found in the discussion: Section 5.1.

(a) 1D (b) 3D
Figure 4.17: (a) shows the one dimensional displacement results when using a Gaussian torepresent the cell concentration of the embryo. (b) shows a three dimensional result, seenfrom all four corners of the outermost plane (end plane of the rod). Both figures are given ina time frame of 8 days, starting from week 6 (day 42) till day 50.
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4.3 Summary of the Results
Dim. Geometry comsolmultiphysics® matlab F G Fb c-PDE Correct1D Rod (1m) � � � x x x �1D Rod (1m) � � � � x x �1D Rod (2mm) � x x � � � ?*1D Rod (2mm) � x x � � x �3D Bar (1m) � x � x x x �3D Bar (1m) � x � � x x �**3D Cube � x � � x x �3D Sphere � x � � x x �3D Bar (2mm) � x x � � x x***

Table 4.9: List of experiments, their properties and whether their results are verified to becorrect.* Since the end size of the embryo was not close to the values in literature, it has beendecided not to put effort in verifying this method.** Although not given in the results section, it has been verified by using the same constantgrowth factor Cg as in one dimension.*** Deviation in first time step and a no convergence error is encountered.
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5 Conclusion
A morphoelastic model is simply a mathematical description of the elasticity combinedwith growth. The generalised model is given in (P2).This model is used to describe the growth of an embryo, mainly in one dimension.According to literature, the embryo size is first measured from crown-to-rump andafter a couple of weeks this measurement method is switched to crown-to-heel. Theresulting curves from the observations are shown in Figure 1.2a. Figure 1.3 showsthe two lines ot the measurement methods over the embryonic body.To get this type of curve, a PDE for the cell concentration c is used in this thesis.This worked partly in one dimension; the size of the embryo only got 100 timestoo small. Instead a Gaussian has been used as a replacement. In one dimensionthis showed a comparable curve with a relative error of 0.2316 and 0.0507 for thecrown-to-rump and crown-to-heel measurement periods respectively.These results are obtained by using a finite element approach. The resultingsystem of linear equations is given in Section 3.To conclude, a morphoelastic model approximating the embryo growth in one di-mension has been constructed in this thesis. However, the current results of the threedimensional model indicate that some modifications have to be made to improve themodel. Suggestions for further research on modifications that have to be taken intoaccount to improve this model in three dimensions are given in Section 5.1.
5.1 DiscussionDuring this research some observations were encountered which lead to proposals forimprovement. Those observations and proposals are discussed below. First, the onedimensional model containing the cell concentration is discussed. Then the corre-sponding three dimensional model. And lastly, some general remarks on this researchare given together with different theories that could be applied on this topic as well.
One Dimensional Model with the Cell Concentration By adding a PDE, describingthe cell concentration (Pc), to the system, the mathematical model obtained a morerealistic approach to capture the growth of an embryo. With this the model alsoincorporated the cell concentration, which is a biological phenomenon. With thecell concentration a body force is described in order to have an internal stimulus.Therefore, the external force was removed from the system. Since I was unable to fitthe parameters of the cell concentration PDE in order to get a growth curve of theorder of magnitude as in literature (Figure 1.2a), it raises the question whether addingjust a single PDE, describing the phenomena of the cells, is sufficient to model thegrowth curve of an embryo.
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In one dimension, this PDE (see Equation (Pc) in Section 2.3) gives a final growthwhich is too small (around 0.24 cm instead of 26 cm, since only half of the body isconsidered). The difficulty was to fit the parameters correctly. By this observation, itmight be that other factors should be taken into account as well.In the mathematical section, Section 2, it is already explained what effect allparameters in the equation have. A short recap on which restrictions on parameterchoices we have to deal with is given next: the relation between the proliferation rateβ and diffusion rate of cells D give the standard deviation of the resulting Gaussian.Both quantities cannot be too low or too high in magnitude, since this effects the timeinterval in which the body grows. Furthermore, the ratio of the proliferation rate β andthe displacement velocity v (Péclet number) must be taken into account in order to geta stable, non oscillating, result. The displacement velocity is present in the equationsince we work with a moving mesh. However, this results in a smaller impact of theforce constant k and the constant growth factor Cg, which both effect the maximumgrowth. Removing this dependency on the displacement velocity in this PDE resultsin a larger growth.This interplay of the parameters seems to have the unpleasant effect of not beingable to get the growth curve from literature. Therefore, the model used in this thesismight be missing indispensable (cellular) phenomena for describing embryonic growthin a mathematical way. Koppenol successfully used this additional equation (Pc) forconstructing a wound healing model [11]. However, he added four equations with thisstructure instead of one. Each of those describe one cell type, such as: fibroblasts,myofibroblasts, a generic signalling molecule, and collagen molecules. Because of hisresults, it is believed that it should be possible to use this type of PDE in order todescribe the cell concentration.This contributes to a second question: is the time interval of 40 weeks too long, oris the maximum displacement of 52 cm too much for this model? Koppenol [11] lookedat a situation of a wound of about 4 cm in diameter within a two dimensional frame,representing the skin and the wound, of [-4:4, -4:4] cm. The total growth is, comparedto the starting situation of the amount of skin, many times smaller then needed tomodel the growth of an embryo. This question is also motivated by the fact that thecurrent, Hookean based morphoelastic model can only be used for small displacements[10]. However, it is not said what small displacements are. In Section 4, the modelhas been tested for extreme valued constant growth factors. The model results stilllooked stable, although the displacement was very large: 6 km. With this, it seemsthat the maximum displacement does not play a role in this. Therefore, it is still anunanswered question why using the c-PDE (Pc) does not work properly.One could try to fit the Gaussian used as an alternative idea to represent the cellconcentration by modifying the parameters of the PDE. Another idea is to put thismodel in matlab as well and see if the same problems occur. A last recommendation
47



for this problem is to try to look at it from a different angle. An example is to lookat adding a formula for the chemicals present in the uterus. One of the chemicalsinvolved in embryonic growth is BMP4. This affects the way of growing, In the sensethat it tells cells to which part of the body they belong, such as: arms, legs and organs[34].Another idea for a follow-up research, is to fit two curves instead of one to representboth embryo measurement methods separately. It would be nice to see if the samebiological and/or physical parameter values can be used for both curves, while bothcurves have a different initial length and start time.Lastly, a comment on the alternative idea of adding cell properties to the system.In this thesis it is chosen to use (2.2), a Gaussian which grows over time. However, thestandard deviation is not time dependent, and thus the Gaussian does not adjust to thecurrent state of the body. In order to let the Gaussian move along, one could multiplythe standard deviation s simply by the time t , which will also make the Gaussiansatisfy a diffusion equation. Though, it will probably not spread accordingly with thedisplacement velocity. For this reason, one should try out which (time dependent)value for the standard deviation works best.
Three Dimensional Model with the Cell Concentration Contrary to the one dimen-sional case, the three dimensional situation containing a Gaussian representing thecell concentration is not verified. This model setup, unfortunately, results in a ’noconvergence error’. Furthermore, it can be seen that the results, before the error isencountered, deviate from the ones in the one dimensional setting (Figure 4.17). Thisindicates that already something went wrong in the first time step and that it is not aresult of accumulating (numerical) instabilities over time. Therefore, we have to con-sider that something is going wrong with how the equations are solved at an individualtime step. This thought is because of the fact that the verified growing bar model hasbeen adjusted to the one with a Gaussian representing the cell concentration.Multiple settings within comsol multiphysics® have been tried on this problem.First, it seemed like the mesh was not translated correctly over time. In this problem, amoving mesh was used in combination with a remeshing tool. The mesh was remeshedafter the given distortion condition was fulfilled. At every time step, the current meshwas plotted. After some steps, the mesh seemed not to be okay anymore. Multipleelements were drawn through each other. Although, it seems like a big problem, itturned out not to be. The remeshed meshes within the mesh section all looked fine, asstraight bricks. The plot however did not draw the mesh as the mesh was given. Thiswas repaired by turning the smoothing off in the figures. Hence, the meshes wherefine, the fact that they looked ill-shaped was caused by a post-processing error.Together with the comsol multiphysics® support, at least the following optionshave been modified: time stepping, and the tolerance; the initial mesh size, a moving
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mesh described by the edges instead of on the full geometry, and different remeshingproperties (distortion, mesh quality, both for various values); discretisation order ofthe physics, and extra constraints on the physics to specify not to bend; the updatefrequency of the Jacobian, and the damping factor of the newton iterations in the fullycoupled solver; scaling of the dependent variables; and lastly, the direct solver type(MUMPS vs PARADISO). Furthermore, the system has been tested when multiplyingthe body force by zero. Then the expected zero solution is found.After having done all these modifications in order to reach an appropriate result,the following questions arise: Is the model implemented right? Is the chosen solverappropriate for the mathematical description which includes the cell concentrationequation? And why does the first time step already deviate from the one dimensionalcase?That the physics are implemented right, is partly discussed in Section 4.2. Thedifference to the situation described in that section is that we are now looking at theproblem containing a body force, described by a Gaussian which represents the cellconcentration, and without an external force. So the flux/source bound has been re-placed by a zero flux bound in order to allow the bound to move outwards. Next to that,the body force in the v-PDE/physics is changed to the negative x-directional deriva-tive of the suppressed Gaussian, which represents the cell concentration. This is doneby a copy of the analytical formulas from the one dimensional comsol multiphysics®model. Therefore, this hints at the correct implementation. As said before, when mul-tiplying the body force by zero, the zero solution is found, which additionally sustainsthe claim that the implementation is correct.The non linear solver in comsol multiphysics® performs Newton iterations. Thiscan be modified in different aspects, such as its damping factor. A Newton methodneeds a starting point. It could be that the chosen starting point is too far away fromthe solution, which can cause that the method will not converge. Another approach isto first use a couple of Picard iterations and afterwards start the Newton iterationsfrom that point on. Picard iterations are generally slow, but computationally cheap.Because of its slow convergence, a few steps in the beginning of the non lineariterations can be helpful for the Newton approach in order to get a reasonable startingpoint. Therefore, I suggest to try this option as well. The down side is that comsolmultiphysics® does not contain this type of iteration method. Next to Newton methods,it only contains a double dogleg solver. This however, can only be used for stationaryproblems.Looking at the results again (Figure 4.17), it seems that the curve is increasingtoo quickly, so a too big displacement could have been reached at the point the solvergives an error. In order to avoid the error, one should investigate what goes wrong inthe first time step and how this accumulates through the next steps.
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General Remarks First of all, it might have been a good idea to try the model intwo dimensions as well. Results can be interpreted easier, both with the parametersand physics. Further, it would have been nice to see if the Gaussian representationof the cell concentration would have worked out in two dimensions, or if it alreadygot stuck there.For this research, only one mechanical physical value of the skin is used. Moreresearch on the mechanics of the skin or of an embryo would be necessary to make amore realistic mathematical model.The one dimensional results have been verified by a one dimensional growth curvefound in literature. In three dimensions, it would be nice to have a(n) (exact) threedimensional biological growth model of an embryo. For this, one could for exampleconsider the three dimensional model discussed in [34]. This paper shows that anembryo already in an early stage cannot be described by symmetric models, whichwas a simplification adopted in this thesis because of computation time in combinationwith the preferred mesh size.As a final idea, it could be interesting to dive into the theory of tensegrity, whichprovides an alternative way of modelling human tissue and its dynamics and growth.This principle describes relations between body parts in their tension. It comes fromthe idea that all body parts are connected to each other. Bones are attached to thefascia and so they are connected to other bones through your body. In this way,imbalances in the body can be described from places that are counter-intuitive sincethey are located somewhere else in the body then where you, e.g., feel the pain. Thismodel describes generally how all the forces are divided over the body in order tostay in balance. Modelling growth can also be done using this model. In light of thisresearch on embryonic growth, in the uterus, the embryo adapts to compressive forces,which influence the growth. More information about (bio)tensegrity can be found in[35] and [36].
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Appendix



A Embryonic Growth Table
Table A.1: Crown-to-rump and Crown-to-heel length of an embryo in centimetres given perweek according to two studies; the weight of an embryo according to these two studies ingrams given per week; the Abdominal Circumference of an embryo in centimetres is given perweek. All are measured for the gestational age of the embryo.

Week C-R[3] C-R[6] C-H[3] C-H[6] Weight[3] Weight[6] AC[37][cm] [cm] [cm] [cm] [g] [g] [cm]6 0.4 - - - - - -7 1 - - - - - -8 1.6 1.6 - - 1 1 -9 2.3 2.3 - - 2 2 -10 3.2 3.1 - - 35 4 -11 4.2 4.1 - - 45 7 -12 5.3 5.4 - - 58 14 -13 6.5 7.4 - - 73 23 -14 7.9 8.7 - - 93 43 -15 - 10.1 16.41 - 117 70 -16 - 11.6 18.3 - 146 100 10.417 - 13 20.1 - 181 140 11.418 - 14.2 22 - 223 190 12.519 - 15.3 23.7 - 273 240 13.520 - 16.4 25.5 25.60 331 300 14.521 - - 27.2 26.7 399 360 15.522 - - 28.8 27.8 478 430 16.523 - - 30.4 28.9 568 501 17.524 - - 32 30 670 600 18.525 - - 33.6 34.6 785 660 19.526 - - 35.1 35.6 913 760 20.527 - - 36.5 36.6 1055 875 21.428 - - 37.9 37.6 1210 1005 22.429 - - 39.3 38.6 1379 1153 23.330 - - 40.6 39.9 1559 1319 24.231 - - 41.9 41.1 1751 1502 25.132 - - 43.2 42.4 1953 1702 25.933 - - 44.4 43.7 2162 1918 26.834 - - 45.6 45 2377 2146 27.6... ... ... ... ... ... ... ...
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Week C-R[3] C-R[6] C-H[3] C-H[6] Weight[3] Weight[6] AC[37][cm] [cm] [cm] [cm] [g] [g] [cm]35 - - 46.7 46.2 2595 2383 28.436 - - 47.8 47.4 2813 2622 29.237 - - 48.9 48.6 3028 2859 29.938 - - 49.9 49.8 3236 3083 30.639 - - 50.9 50.7 3435 3288 31.340 - - 52 51.2 3619 3462 31.941 - - 52.7 51.7 3787 3597 32.5
Table A.1: [Cont.] Crown-to-rump and Crown-to-heel length of an embryo in centimetres givenper week according to two studies; the weight of an embryo according to these two studiesin grams given per week; the Abdominal Circumference of an embryo in centimetres is givenper week. All are measured for the gestational age of the embryo.
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B The Young’s Modulus of an Embryo
The Young’s modulus is a physical value for the elasticity of a material. For the humanskin, different measurement methods are available: tension, suction, indentation, andtorsion are the most commonly used methods. Next to this, the measurement cantake place on different locations on the skin. All these have influence on the results.Therefore, the numbers in literature vary widely.

Reference Method Location Age Young’s modulusJansen (1958) Tension Abdomen 0–99 2.9–54.0 MPaDunn (1958) Tension Abdomen/Thorax 47–86 18.8 MPaVogel (1987) Tension Various 0–90 15–150 MPaJacquemoud (2007) Tension Forhead/Arm 62–98 19.5–87.1 MPaAgache (1980) Torsion Back 3–89 0.42–0.85Diridollou (1998) Suction Forhead/Arm 20–30 0.12–0.25 MpaKhatyr (2004) Tension Tibia 22-68 0.13–0.66 MPaPailler-Mattei (2008) Indentation Arm 30 0.0045–0.008 MPaZahouari (2009) Indentation/ Arm 55–70 0.0062–0.0021 MPaStatic FrictionAnnaidh (2012) Tensile Back 81–97 83±34.9 MPaPawlaczyk (2013) Torsion - - 0.42–0.85 MPaMechanical - - 4.6–20 MPaSuction - - 0.05–0.15 MPa
Table B.1: The Young’s modulus of the skin from various studies together with the age range,method and location on the skin. The first ten are from [15], the last three values from [16].

First the data is separated into two groups: greater and less than age 40. Whengiven an age range, the first given modulus will be represented by the youngest age.This since the skin get stiffer over time and therefore the Young’s modulus will getbigger.In this thesis, we will look at an embryo, which is an unborn child. Therefore,only the group less than 40 years old is considered. Of this group, the outliers willbe deleted. Those are having the value of 0.00035 MPa and 0.00625 MPa.An average of the remaining values is then used as the Young’s modulus of theembryo. This value is 0.23 MPa.
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C Partial Differential Equations
In this appendix, an overview of the used PDEs is given. There are PDEs for thedisplacement u, the displacement velocity v , the infinitesimal strain (tensor) ε and thecell concentration c.
C.1 One-Dimensional PDEsLinear Elasticity 

−Euxx = Fb; x ∈ (x0, xL]u(0) = a a ∈ RE dudx = F ; x = xL (PL)
With F an external force applied to the system, and x0, xL ∈ R defining the lengthand position of the rod. The Cauchy stress (tensor) and infinitesimal strain (tensor)are given by σ = Eε;ε = dudx.For this system an exact solution can be found. The exact solution for the displacementis given by a linear polynomial: u(x) = F/E ∗x for x ∈ [0, 1]. Next to this, the solutionfor the Cauchy stress (tensor) is then given by: σ (x) = F .
Viscoelasticity The full viscoelastic problem is given below. To make it quasi-static,the second time t derivative of the displacement u is set to zero.

ρ∂2u∂t2 − ∂σ∂x = Fb x ∈ (x0, xL], t ∈ (0, T ]
σ = µ∂ε∂t + Eε x ∈ (x0, xL], t ∈ (0, T ]
ε = ∂u∂x x ∈ (x0, xL], t ∈ (0, T ]∂u∂t = v x ∈ (x0, xL), t ∈ (0, T ]v (x, 0) = 0 x ∈ [x0, xL]u(x, 0) = 0 x ∈ [x0, xL]u(0, t) = 0 t ∈ [0, T ]σ = F x = xL, t ∈ (0, T1]σ = 0 x = xL, t ∈ (T1, T ]

(PV )
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This system can be rewritten since Equations 2 – 4 can be implemented in Equation1. As it is preferred to start in rest, u(0, x) is set to zero. A force F will then beapplied until a time T1 has been reached.
Morphoelasticity The morphoelastic problem below is subject to the boundary andinitial conditions of Equation (PV ).

ρ(DvDt + v ∂v∂x
)− ∂σ∂x = Fb x ∈ (x0, xL], t ∈ (0, T ];

σ = µ∂v∂x + Eε x ∈ (x0, xL], t ∈ (0, T ];DεDt + (ε − 1)∂v∂x = −G x ∈ (x0, xL], t ∈ (0, T ];
(PM )

This requires a post-processing step to obtain the displacement u.DuDt = v x ∈ (x0, xL], t ∈ (0, T ];x(t) = X + u(x, t) x ∈ [x0, xL], t ∈ [0, T ]Here, x(t) is the current position of a point in your body seen from the new frame, Xis the starting position in the original frame and u is the displacement.These equations all use the material derivative, which is given byDuDt = ∂u∂t + ∂u∂x ∂x∂t= ∂u∂t + v ∂u∂xand can be applied in a similar way to all of them.
Cell Concentration

∂c∂t + c∂v∂x − ∂∂x
(D(x, t)∂c∂x

) = βc(1− c) x ∈ [x0, xL], t ∈ (0, T ];
D(x, t)∂c∂x = 0, x = 0, x = xL t ∈ (0, T ];c(x(0), 0) = c0 · N(0, s), x ∈ [0, xL]

(Pc)

Alternative to the Cell Concentration PDE
c1 [2πs2]1/2 exp(−|x|22s2

) ∗ (1− exp(−βt)) (C.1)
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C.2 Three-Dimensional PDEsMorphoelasticity

ρ (DvDt + v∇ · v)−∇ · σ = Fb, x ∈ Ω, t ∈ (0, T ];
σ = µ1 sym(L) + µ2tr(sym(L))I + E1 + ν

(ε + ν1− 2νtr(ε)I
) , x ∈ Ω, t ∈ (0, T ];

L =∇v, x ∈ Ω, t ∈ (0, T );D εD t + (tr(ε)− 1)sym(L) = −G, x ∈ Ω, t ∈ (0, T );D εD t = DεDt + ε skw(L)− skw(L)ε, x ∈ Ω, t ∈ (0, T );
(PM )

subject to 

v(x, 0) = 0 x ∈ Ω;u(x, 0) = 0 x ∈ Ω;u(x, t) = 0 x ∈ ∂Ω1, t ∈ (0, T ];σ · n = (F 0 0) x ∈ ∂Ω2, t ∈ (0, T1];σ · n = 0 x ∈ ∂Ω \ (∂Ω1 ∪ ∂Ω2), t ∈ (T1, T ).
(BCM )

Cell Concentration
DcDt + c∇ · v −∇ · (D(x, t)∇c) = βc(1− c), x ∈ Ω, t ∈ (0, T );(D(x, t)∇c) · n = 0, x ∈ ∂Ω;c(x(0), 0) = c0(x(0)). x ∈ Ω (Pc)
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D Derivation of the One-Dimensional Evolution Equa-tion of the Infinitesimal Strain

Figure D.1: Transformation of a body over time. Its original state, current state and equilibriumstate corresponding to the current state.
This section is based on the calculations made in Hall [10]. Here, only the onedimensional case is described. The zero stress deformation gradient Y is given by∂xeq∂x . The infinitesimal strain (tensor) ε is written as ε = L(t)− L(0)L(t) , where L(t) isthe length of the rod at time t . This can be transformed into ε = 1− Y , and thus

Y = 1− ε. (D.1)
In a same way as for Y , F and Z can be described as ∂x∂X and ∂xeq∂X respectively.

In this way, F can be transformed into ∂x∂xeq∂xeq∂X = Y −1Z . If we look at the change in
Z : D∆ZDt = g(x, t)∆x , for small values of ∆x .

D∆ZDt = DZDt ∆X = D(YF )Dt ∆X = D(Y∆x)Dt = g∆x (D.2)In this equation, g = g(x, t) has units of inverse time and represents the rate of growth
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at point x . This equation can be converted to
D(YF )Dt = gF.

Multiplying this by F−1 and working out de total derivatives gives
∂Y∂t + ∂Y∂x v + Y ∂v∂XF−1 = g

⇔ ∂Y∂t + ∂(Y v )∂x = g. (D.3)
These steps are allowed since ∆x is small.Now we substitute Equation (D.1) into (D.3) and obtain

∂∂t (1− ε) + ∂∂x(v (1− ε)) = g
⇔ − ∂∂t ε + (1− ε) ∂∂xv + v ∂∂x(1− ε) = g
⇔ ∂∂t ε + (ε − 1)∂v∂x + v ∂ε∂x = −g
⇔ ∂∂t ε + ∂x∂t ∂ε∂x + (ε − 1)∂v∂x = −g
⇔ DεDt + (ε − 1)∂v∂x = −g

which results in the infinitesimal strain (tensor) equation used for morphoelasticity.
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E Stability
Consider the one dimensional morphoelastic problem stated in Section 2 with zerogrowth and zero body force:ρ

∂v∂t + 2ρv ∂v∂x − µ ∂2v∂x2 − E ∂ε∂x = 0∂ε∂t + (ε − 1) ∂v∂x + v ∂ε∂x = 0. (S1)
The boundary conditions are given by:v (0, t) = 0∂v∂x(1, t) = 0.
In this appendix, the stability of (S1) around the equilibrium points

(v, ε) = (0, ε0), ε0 ∈ R,
is investigated. In order to do so, this system is linearised around the equilibriumpoints where (v, ε) = (δ1v̂ , ε0 + δ2ε̂), δ1,2 ∈ R have been used as perturbations. Thelinearised system is given by:

∂v̂∂t − µρ ∂2v̂∂x2 − Eρ ∂ε̂∂x = 0∂ε̂∂t + (ε0 − 1)∂v̂∂x = 0. (S2)
The following general solutions will be used next:

v (x, t) = eλv t+ikxε(x, t) = eλεt+ikx .
In the end, it turns out that the frequencies k do not have any influence on the stability.Therefore, they are chosen to be equal. The system (S1) is stable if Re(λv ) ≤ 0, andRe(λε) ≤ 0.These general solutions are substituted into the linearised system (S2):λv eλv t+ikx + k2 µρ eλv t+ikx − ik Eρ eλεt+ikx = 0λε eλεt+ikx + (ε0 − 1) ik eλv t+ikx = 0. (S3)
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Division by eλv t+ikx in the first equation and by eλεt+ikx in the second leads toλv + k2 µρ − ik Eρe(λε−λv )t = 0λε + (ε0 − 1) ik e(λv−λε)t = 0. (S4)
Looking only at the real terms of those equations givesRe(λv ) = −k2 µρ ≤ 0Re(λε) = 0.
Thus, the system (S1) is stable.Looking at the results of the pulling rod problem in this thesis, one can assumethat the real parts of the eigenvalues λv and λε are equal. In this problem, one pullsa rod with constant force. This force is applied for a limited time. After that time,the rod is loosened. The rod will reach a maximum displacement corresponding toits mechanical properties and the applied force. The results show that this maximumdisplacement is constant. No oscillations are found, neither with smaller time steps.With this, one can conclude that the real part of the eigenvalues are equal, and thuszero. This is since the last terms of both equations in (S4):

− ik Eρe(λε−λv )t and
(ε0 − 1) ik e(λv−λε)t,

should be constant over time when no oscillations are found.
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F Numerics of this Thesis
F.1 Velocity Displacement PDEGalerkin Weak Form Find vh ∈ H1(It) such that ∀ψh ∈ H1(It)

ρ ddt
ˆ
It ψhvhdx − ρ

ˆ
It
DψhDt vh dx + ˆIt µ∂ψh∂x ∂vh∂x dx =

ˆ
It ψhFb − Eε∂ψh∂x dx + ψ(xL(t))F. (Gv )

Linear Systemi) vh = ∑n+1j=1 ξj (t)φj (x(t)), with ξ the approximation of the displacement velocity vhand v (t, 0) = 0.ii) ψh = φj (x(t)), i = 1, 2, . . . , n+ 1Substitution of the above equations into the Galerkin weak form (Gv ), results into
ddt n+1∑

j=1 ξjρ
ˆ
It φiφj dx︸ ︷︷ ︸Mv

+ n+1∑
j=1 ξjµ

ˆ
It φ′iφ′j dx︸ ︷︷ ︸A

= ˆIt φiFb − Eεφ′i dx + φi(xL(t))F︸ ︷︷ ︸bv
.

In short notation: ddt (Mvξ) + Aξ = bv .The mass matrix, stiffness matrix and load vector are given by the following.
Mv = ρ6


2h(t)1 + 2h(t)2 h(t)2h(t)2 2h(t)2 + 2h(t)3 h(t)3. . . . . . . . .hn 2h(t)n + 2h(t)n+1 h(t)n+1h(t)n+1 2h(t)n+1

 ;
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A = µ



1h(t)1 + 1h(t)2 − 1h(t)2− 1h(t)2 1h(t)2 + 1h(t)3 − 1h(t)3. . . . . . . . .
− 1h(t)n 1h(t)n + 1h(t)n+1 − 1h(t)n+1− 1h(t)n+1

1h(t)n+1


;

bv = h(t)Fb − E ˆIt εφ′dx + Fen+1
Here en+1 represents the unit vector, with only a one at the (n+1)th position. Theleftover integral in the load vector will be described in detail below.For every element of the mesh, the integral will have a different result. Firstwe look at an inner node xi. Since the space derivative of the basis function is notdepending on the position x , we can drag this term out of the integral.

−E ˆIt εφ′i dx = −E ˆ xi+1
xi−1 εφ′i dx

= −Eφ′i ˆ xi+1
xi−1 ε dx

= −Eφ′i i+1∑
k=i

εk−1 + εk2 · hk (trapezoidal rule)
= E (hiφ′i εi−1 + εi2 + hi+1φ′i εi + εi+12 )
= E2 (εi+1 − εi−1)

Since we only look at the segment around node xi, the sum starts at i and ends at i+1.All others are equal to zero (see the description of the basis function in Section 3.1).

bv =


h1(t)Fb − E2 (ε2 − ε0)h2(t)Fb − E2 (ε3 − ε1)...hn(t)Fb − E2 (εn+1 − εn−1)hn+1(t)Fb − E2 (εn + εn+1) + F


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Time Integration For this PDE the Euler backwards method is used.
Mk+1v ξk+1 −Mkv ξk∆t + Ak+1ξk+1 = bkv⇒ (Mk+1v + ∆tAk+1)ξk+1 = Mkv ξk + ∆tbkvTo be able to solve the above system easily, (Mk+1v +∆tAk+1) should be invertible.To show that this is true, it will be proved that this is symmetric positive definite(SPD).

Proof of its Symmetric Positive Definiteness Symmetry of Mv , A, and Mv + ∆tfollows immediately from their definitions. It remains to prove the positive definiteness.For this, first we prove that Mv is positive definite, that is: xTMvx > 0 ∀x 6= 0. Weget:
xTMvx = n+1∑

i=1
n+1∑
j=1 ximi,jxj = n+1∑

i=1
n+1∑
j=1 xi ρ ˆIt φiφj dx̂ xj

= ρ ˆIt
n+1∑
i=1

n+1∑
j=1 xiφiφjxj dx̂ = ρ ˆIt (

n+1∑
i=1 xiφi)2 dx̂ > 0.

Further, we treat A similarly. It follows that
xTAx = n+1∑

i=1
n+1∑
j=1 xiai,jxj = n+1∑

i=1
n+1∑
j=1 xi µ ˆIt ∇φi · ∇φj dx̂ xj

= µ ˆIt |∇(n+1∑
i=1 xiφi)|2 dx̂ ∗≥ αµ ˆIt (

n+1∑
i=1 xiφi)2 dx̂ > 0

* Poincaré’s inequality, with α > 0.Herewith
xT (Mv + ∆tA)x = xTMvx + ∆txTAx > 0 ∀x 6= 0.

Hence (Mv + ∆tA) is SPD.This together results in that Mk+1v +∆tA is SPD and moreover it is invertible. Sothe above system can be solved for ξk+1 by the use of the Euler backwards methodand the matlab backslash solver.
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F.2 Infinitesimal Strain PDEGalerkin Weak Form Find εh ∈ H1(It) such that ∀ψh ∈ H1(It)ddt
ˆ
It ψhεh dx −

ˆ
It
DψhDt εh dx = ˆIt ψh(∂v∂x − G) dx. (Gε)

Linear Systemi) εh = ∑n+1j=0 ζj (t)φj (x(t)), with ζ the approximation of the infinitesimal strain (ten-sor) εh.ii) ψh = φi(x(t)), i = 0, 2, . . . , n+ 1Together with the transport property of basis functions, the system is given by
ddt n+1∑

j=1 ζj
ˆ
It φiφj dx︸ ︷︷ ︸Mε

= ˆIt φ
(∂v∂x − G

) dx︸ ︷︷ ︸bε
.

In short notation, this is given by: ddt (Mεζ) = bε.
The mass matrix for the infinitesimal strain (tensor) equation is given by

Mε = 16


2h(t)1 + 2h(t)2 h(t)2h(t)2 2h(t)2 + 2h(t)3 h(t)3. . . . . . . . .h(t)n 2h(t)n + 2h(t)n+1 h(t)n+1h(t)n+1 2h(t)n+1


and the load vector by bε = (∂v∂x − G · 1

)h(t),
where 1 is a vector filled with all ones.For implementing this load vector, one needs the spatial derivative of the dis-placement velocity v . This, however, is not a result of the velocity system, though onecan use this result in combination with a difference scheme to approximate its spatial
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derivative. Lets say v = (0 v1 v2 . . . vn+1), where vi is the velocity in node i onthe mesh. Then the spatial derivative in node i at time t can be approximated byvi(t)− vi−1(t)hi(t) ,
with hi(t) the distance between node i and i − 1. For the first and last equationfor the load vector bε , an upwind and backward scheme are respectively used. Forthe infinitesimal strain (tensor) PDE there are no boundary conditions needed. How-ever, this means that the values on the boundary aren’t known and thus need to bedetermined by solving the PDE.
Time Integration Mk+1ε ζk+1 −Mkε ζk∆t = bkε⇒ Mk+1ε ζk+1 = Mkε ζk + ∆tbkεBecause the mass matrix is SPD, this system in the spatial dimension can easilybe solved with the matlab backslash solver.
F.3 Cell Concentration PDEGalerkin Weak Form Find ch ∈ H1(It) such that ∀ψh ∈ H1(It)ddt

ˆ
It ψhch dx −

ˆ
It
DψhDt ch dx + ˆIt D∂ψh∂x ∂ch∂x dx = ˆIt ψhβch(1− ch) dx. (Gc)

Further use of this equation will be in the explicit form. This means that the righthand side will be taken from the last time step. With that the values for ch are known.
Linear Systemi) ch = ∑n+1j=0 ηj (t)φj (x(t)), with η the approximation of the cell concentration ch.ii) ψh = φi(x(t)), i = 0, 2, . . . , n+ 1Together with the transport property of basis functions, the system is given by

ddt n+1∑
j=1 ηj (t)

ˆ
It φiφj dx︸ ︷︷ ︸Mc

+ n+1∑
j=1 ηj (t)

ˆ
It D∂φi∂x ∂φj∂x dx︸ ︷︷ ︸Ac

= ˆIt φiβct−1(1− ct−1) dx︸ ︷︷ ︸bc
.
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One gets the short notation systemddt (Mεη) + Acη = bc.
The mass matrix is exactly the same as for the infinitesimal strain (tensor) equation.The stiffness matrix is similar to the one for the velocity equation, only this time it ismultiplied by D, instead of µ. Last, the load vector by

bc = βct−1(1− ct−1)h(t).
Time Integration The Euler Backwards method is used, while considering the factthat the right hand side will be taken from the last time step.

Mk+1c ηk+1 −Mkc ηk∆t + Ak+1c ηk+1 = bkc⇒ (Mk+1c + ∆tAk+1c )ηk+1 = Mkc ηk + ∆tbkc
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G comsol multiphysics®LiveLinkTM for matlab
The comsol multiphysics®LiveLinkTM for matlab has been used to reduce the risk ofimplementation errors. It has been used for automatically filling in the componentsof comsol multiphysics® PDE Coefficient Form when working in three dimensions.For this, the formulas given in Section 2 are implemented in matlab by the use of thesymbolic environment, and transformed via the comsol multiphysics®LiveLinkTM to acomsol multiphysics® model.In this subsection, it is briefly explained how the symbolic environment of matlab isused, and how this is implemented in comsol multiphysics® by using the LiveLinkTM.

it is a good idea for first time users of the comsol multiphysics®LiveLinkTM formatlab is to save a comsol multiphysics® model as an ’.m’ file and open it in mat-lab afterwards. In this way, the matlab commandos to call comsol multiphysics®commandos are shown.
G.1 The matlab Symbolic EnvironmentThe symbolic environment of matlab can do mathematical calculations with sym-bolic variables instead of just numbers. Symbolic equations are also used in comsolmultiphysics®. However, every matrix equation should be written out per matrix ele-ment. This has to be done since symbolic matrix equations are not available in thestandard interface. It can, however, be done with the physics builder interface. ThePDEs given in (P2) are very complex. For this reason, the symbolic environment ofmatlab in combination with the comsol multiphysics®LiveLinkTM for matlab would bea less error prone method to get all the formulas in a correct fashion in a comsolmultiphysics® model, than filling in the coefficients in comsol multiphysics® directly.As an example of how the symbolic environment works and how to use theLiveLinkTM, an example will be given using the symbolic expression of the Cauchystress (tensor) σ .

σ = µ1 sym(L) + µ2tr(sym(L))I + E1 + nu
(ε + ν1− 2νtr(ε)I

)
The equation for the Cauchy stress (tensor) σ consists of four interesting parts: sym(.),tr(.), L and ε, which will be described in the sense of the symbolic environment below.For tr(.), the int-built the matlab function trace(.) is used to get the trace of asquared matrix.For the symmetric part of a matrix (sym(.)), a small function has been written:
symm = @(L) 1/2*(L+L.'). Note that the name of this function consists of a double’m’, since sym(.) already exists in matlab and constructs an object of the symbolic

68



class from its input. This however has already been used (to create symbols), andoverwriting base functions is general bad practice. Further note that the transposeof the matrix is taken with the notation .', otherwise the conjugate transpose istaken, which is not needed in our case. Though, the conjugate transpose would notgive any troubles because only real numbers are worked with. The matlab symbolicenvironment will write down how to get the conjugate transpose which is larger thannecessary. So the real numbers transpose is used instead. Now the symmetric partof a function can be called by symm(.).The values of the variables L and ε are unknown (those are results of the PDE),therefore those matrices should also be given in symbolic form. For the infinitesimalstrain (tensor) ε the self-made function createMatrix_sym('var',n,m) is used.This function creates an n × m matrix of variable ′var′. The matrix entries will benamed as follows: the entry of row i and column j will be called vari_j. This iseasily done by using the commando sym('var',[n m]). Then the underscores aredeleted by the use of sym(strrep(string(mat),'_','')). In this way the 3×3matrix for the infinitesimal strain (tensor) ε, knowing that the symbol ’ε’ cannot beimplemented in both matlab as comsol multiphysics®, has the form:
E11 E12 E13E21 E22 E23E31 E32 E33


The infinitesimal strain (tensor) ε is said to be symmetric, and so the lower triangleis replaced by the transposed upper triangle triu(A,0) + triu(A,1).' to savememory.

E11 E12 E13E12 E22 E23E13 E23 E33


Finally, the symbolic formulation of the velocity gradient L is described. One firstneeds to know how to write a derivative in comsol multiphysics®. There are two waysto describe, e.g, a spatial derivative of u:1. d(u,x);2. ux.The second option can only be used for dependent variables, such as the displacementu. For other type of variables, the first must be used. Since the velocity gradientcontains spatial derivative of the dependent variable for the displacement velocity v , it
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is chosen to use the second option. To create the velocity gradient matrix, a functionhas been written called grad3D_sym(A,isVar). A can be either a matrix (’isVar’ isfalse) to which only the derivative form needs to be added, or a variable (’isVar’ istrue) of which the whole matrix including its derivatives needs to be created.After a simple matrix (such as for the infinitesimal strain (tensor)) has been created,the spatial derivative notation is added. For this, a matrix for the spatials has beenmade via the repmat(.) function of matlab. Then the two matrices are added ascharacters. Consequently, the unnecessary parts are deleted and the following matrixis created. v1x v1y v1zv2x v2y v2zv3x v3y v3z


In the end, this matrix needs to be transposed to get the correct form for the velocitygradient L.
Note that the function grad3D_sym(.) only works if the variable ’A’ is lower inthe alphabet than x, y and z, since this is how this symbolic function and char(.)works when adding variables (B + A always becomes A + B).

To save some memory while solving in comsol multiphysics®, the Voigt notation isused. This can be used since the infinitesimal strain (tensor) ε and so the Cauchystress (tensor) σ are said to be symmetric. In this way, there are three fewer unknownsto solve. For this, a function called voigtNotation_sym(.) is implemented in matlab.It rewrites a symmetric matrix to a vector of only the elements of its upper triangle.The first elements of the vector are the diagonal elements of the matrix.With all the above knowledge, the symbolic expression of the Cauchy stress (tensor)σ can be implemented. With similar tricks, the other formulas of (P2) are written outby the use of the symbolic environment of matlab.
G.2 Usage of the comsol multiphysics®LiveLinkTM for matlabAfter all the preliminary work, such as creating the correct matrices has been done,it is implemented in comsol multiphysics® with the use of the LiveLinkTM for matlab.The order in this matlab file is the same as how you should create a comsolmultiphysics® file. First, a model is selected and created. Subsequently a geometryis added, physics are added and a mesh is chosen. Of course more complex ideas canbe added too this way, such as a parameter and variable list, but extra functions canalso be added under definitions.For every part, it first needs to be created before it can be adjusted. For example,if one adds a bar to the geometry, the the following lines of code are used.
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1 model.component('comp1').geom.create('block', 3);
2 model.component('comp1').geom('block').label('Geometry: Bar');
3 model.component('comp1').geom('block').create('blk1', 'Block');
4 model.component('comp1').geom('block').run;

To the model component ’comp1’ a three dimensional geometry called or tagged’block ’ is added in line 1. As a next step, this geometry will get the label ’Geometry:Bar ’, which can be handy when comsol multiphysics® is opened. Then a standardunit cube is created and named ’blk1’. To use the geometry throughout the code, itneeds to be ran.In a same way physics can be added to the file. When adding a PDE CoefficientForm to comsol multiphysics®, a standard Poisson equation is already filled in. Toavoid this, the entries of the diffusion (c), source (f ), and mass (da) terms are set equalto zero. For instance, the mass term:
1 nv = length(V);
2 for i = 0:(nv-1)
3 model.component('comp1').physics('v').feature('cfeq1').
4 setIndex('da', 0, i*(nv+1)); %matrix da
5 end

Then, the values are added to the right coefficient. Again, the mass coefficient, forthe displacement velocity v PDE, is shown as example.
1 for i = 0:(nv-1)
2 model.component('comp1').physics('v').feature('cfeq1').
3 setIndex('da', 'rho', i*(nv+1));
4 end

One thing to note is that this LiveLinkTM commandos would like to have stringsas inputs, and thus no symbols. Therefore, all the symbolic terms are transformed tostrings, by using the function string().
As a last step, the boundary conditions are added. These conditions, however,differ between the cases; do we work on the pulling bar problem or the growingproblem? The below example is of the pulling bar problem, where a force is appliedon one boundary.

1 model.component('comp1').physics('v').create('flux1',
2 'FluxBoundary', 2);
3 model.component('comp1').physics('v').feature('flux1').

71



4 setIndex('g', '1e6*(t<=t_end/2) [Pa]', 0);
5 model.component('comp1').physics('v').feature('flux1').
6 selection.set([6]);

First, the boundary condition of a flux/source is implemented for a two dimensionalspace, a surface boundary, and named ’flux1’. Then, the value of this force is addedto this boundary condition ’flux1’. Lastly, it is set to be only applicable on boundarynumber 6.
This way of working with the combination of comsol multiphysics® and matlab hasshown off its merits. The implementation worked amazing and the results, comparedto the one dimensional cases, look excellent. Even after rotating the geometry intomultiple positions, the results were as they should. For this see Appendix I.

72



H One Dimensional Results
H.1 Viscoelastic Results Compared to Linear Elasticity

Figure H.1: Results of applying the viscoelastic model with different values of the viscosity µ.The end point of the rod with length one is plotted.
To see the effect of the viscosity, simulations over the first 40s have been shown. Anexternal force is applied for the first 20s. In this examined system, no mass density ispresent. Only the effect of the shear modulus has been considered. The arrows showthe decrease in shear modulus. The outer yellow line shows when the viscosity µ isnear zero. This looks like linear elasticity. The maximum displacement when pullingby a constant external force has been reached (almost) immediately.
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H.2 Viscoelasticity; Varying the Mass Density ρ

(a) ρ = 5 · 107 kg/m3 (b) ρ = 109 kg/m3

(c) ρ = 5 · 1010 kg/m3 (d) ρ = 5 · 1010 kg/m3, T = 300s.
Figure H.2: Results of applying the viscoelastic model with different values of the mass densityρ. The end point of the rod with length one is plotted.
The effects of the mass density ρ are shown in the figures above. In the case of a massdensity with a higher order than the order of the Young’s modulus E and the shearmodulus µ, as in Figure H.2c, the behaviour of the system appears to be unstable.However, from Figure H.2d one can conclude that the oscillating effect gets dampedand the solution is stable.
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H.3 Viscoelastic Results vs. Morphoelastic Results

(a) Visco1 (dt=0.1 s) (b) ViscoByV (dt=0.1 s)

(c) Comsol (dt=0.1 s) (d) Morpho (dt=0.1 s)

(e) Comsol MM (dt=0.1 s) (f ) Visco1 (dt=0.001 s)
Figure H.3: A comparison of the different solving methods. Visco1, ViscoByV, Comsol, Morpho,and Comsol MM are all plotted for two time steps (dt=0.1 s and dt=0.001 s), over a time of50 seconds. Every figure (a) – (j) one line is added, which line is mentioned in their caption.
In the figures in this appendix, the zoomed results of a matlab viscoelastic model arecompared to a matlab morphoelastic model and the morphoelastic model in comsol
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(g) ViscoByV (dt=0.001 s) (h) Comsol (dt=0.001 s)

(i) Morpho (dt=0.001 s) (j) Comsol MM (dt=0.001 s)
Figure H.3: (Cont.) A comparison of the different solving methods. Visco1, ViscoByV, Comsol,Morpho, and Comsol MM are all plotted for two time steps (dt=0.1 s and dt=0.001 s), over atime of 50 seconds. Every figure (a) – (j) one line is added, which line is mentioned in theircaption.
multiphysics®.Two solving techniques are used for the viscoelastic results. Both make use of aorder reduction in the time derivative. The first method is to write the Euler Backwardstime integration method in a system and to solve for two variables (the displacement uand the displacement velocity v ). The results from this method are called Visco1. Thesecond approach is the same as has been done and described for the morphoelasticproblem, using a post processing step to find the displacement. This result is calledViscoByV in the figures above.For the results created with comsol multiphysics®, it is chosen to compare bothmorphoelastic calculation without a moving mesh (Comsol) and with a moving mesh(Comsol MM). Lastly, Morpho shows the results of the written matlab program tosolve the morphoelastic model.

A first look shows that Visco1 and Comsol have a slight undershoot, while Vis-
76



coByV and Morpho have a slight overshoot when using a bigger time step. Further,it is interesting that the Comsol MM results are in between, just on the line whereall the results will be converging to when using a smaller time step.
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I Three Dimensional Results
I.1 Rotations of the Pulling Bar ProblemIn this appendix a verification of the three dimensional setup is given. The pullingbar setup is compared to the pulling rod problem. For this the displacement in thelongitudinal direction of the bar is calculated for different directional states of the bar:• placed with an edge on the x-axis (3Dx)• placed with an edge on the y-axis (3Dy)• placed with an edge on the z-axis (3Dz)• placed with an edge on the x-axis, then rotated in space by 45◦ in the xy-planeand thereafter rotated by 45◦ in the plane that the longitudinal direction of thebar makes with the z-axis (3Drot)All the results are plotted together in the figure below together with the one dimen-sional result. One can see that the results overlap.

Figure I.1: One dimensional pulling rod results (blue) compared to the three dimensionalpulling bar results.
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I.2 Bar BendingFor the extreme growth trials, a bending takes place after an amount of time. Thiscan be seen most easily for the constant growth factor of 1 s−1. To show this, they- and z-directional displacement is given in Figure I.2. Further, it can be seen thatthe solving from approximately that point of bending in time on gets tougher. Smallertime steps are taken (see Figure I.3).

Figure I.2: A constant growth factor of 1 s−1 has been used for this result. Only the displace-ment in the y- and z-direction are drawn. However, the growth tensor only had values in thex-direction. One can see that the bar will eventually bend. Although the bar will bend, thebending is minimal compared to the x-directional displacement.

Figure I.3: One can see that solving gets tougher, because in the end, the solver takes biggertime steps.
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