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Abstract

In mathematical biology, a morphoelastic model, which combines elasticity and growth,
has been used for, e.g, wound healing and tumour growth modelling. Here, it is used
to model the growth of an embryo. In order to do so, a growth curve from literature
has been fitted to a morphoelastic model which has been extended with a PDE for the
normalised cell concentration. In the one dimensional situation, this fitting resulted
into a curve with a shape similar to the desired shape. Despite the similar shape, it
did not fulfil the total growth requirements; it fell short by a factor 100. Instead, a
Gaussian curve was used to represent the cell concentration. In one dimension this
gave a similar looking curve, with a relative error of 0.2316 for the first couple of weeks
of the gestational age of the embryo, where the length of an embryo is measured form
crown-to-rump. For the other weeks, when the length of the embryo is measured from
crown-to-heel, a relative error of 0.0507 was observed.

The one dimensional problem is solved using the finite element method with linear
basis functions and an Euler backwards time integration method. This is implemented
in MATLAB. The output is compared to results of a comsoL multiphysics® file created
on this topic and verified to be similar.

In three dimensions, the model without the cell concentration contribution is ver-
ifted. For this, experiments have been done in which a force is applied in various
directions separately. All results were similar to the one dimensional model with a
pulling force. The model containing cell concentration is not verified in this thesis.
Further, the effects of the growth term and mesh choice have been investigated. These

calculations have all been done with comsoL multiphysics®.
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1 Introduction

In the Netherlands, each year around 5 000 babies are born with birth defects [1].
A proportion of them originates from abnormal growth during the embryonic phase.
Modelling of the growth and dynamics of the embryo during this phase can give in-
sights in the underlying process and the possible things that can go wrong. With
these insights, therapies can be discovered to prevent those birth defects from oc-
curring. The aim of this thesis is to make a contribution to the available models of
embryonic growth, from which insights can be derived, by creating a morphoelastic
model that simulates the dynamics and the growth of an embryo.

1.1 Embryonic and Fetal Growth

After fertilisation, the cell divides into a cluster of cells. When the cell-cluster is
implanted in the uterus, one talks about an embryo and a placenta. In the uterus,
the embryo grows to a fetus with the help of the oxygen and nourishments supplied
through the placenta [2]

Subsequently the embryo develops into three different layers. After about two
weeks (conceptual age), the embryo is shaped like a disc, which grows in the next
two weeks to a sphere-like object of around 4 mm in diameter [3]. From this point
on, the embryo starts to evolve into a human shape and develops organs and tissues.
This time is a crucial moment for the health of the baby. For example, when an
organ or limb does not start to grow properly, a handicap can grow, such as anorectal
malformations [4, 5], see also Figure 1.1. At the end of this embryonic stage, the
embryo is seven to eight weeks old and its crown-to-rump length is about 2.3 cm [3].

Developmental stage Embryonic Stage Fetal Stage
Gestational Age 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 20 | 40
(weeks)

Conceptual Age 0 0 1 2 3 4 5 6 7 8 9 10 11 12 18 38
(weeks)

Developing Organ(s)
Central Nervous System
Heart

Ear

Eyes

Limbs

Lip

Palate

Teeth

External genitals

Figure 1.1: Fetal Development Chart. Red bars show when the different organs are most
prone to birth defects. The pink bars show when those organs are sensitive to functional
defects and minor malformations [3].
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(a) Length curve of fetal growth. (b) Weight curve of a fetus.

Figure 1.2: Growth curves of a fetus. In 1.2a, the length of the fetus is plotted. The blue line
shows the crown-to-rump length of the first stage. The red line presents the crown-to-heel
length of the last 2/3rd of the pregnancy. In 1.2b, the weight of the fetus is shown. Later in
this thesis, this length curve (1.2a) will be used to compare the obtained results.

Crown to Rump Length

Fia, lu—EmbrvoNo. l!l :mun.l siss. Length of /' 68 mm., sitting helgm( rown.
or ve ogth), 90 mm.; undu hum 90+ 21 +25), 134 T

(b) Size of a fetus. C — R is the crown-to-

(a) Crown-to-rump length of an embryo [6]. rump length, and C — H the crown-to-heel
length [6].

Figure 1.3: These figures show how the length of an embryo and a fetus is measured.

When all the body elements are settled, the whole body can grow until it is ready
for birth. For this, all the organs, limbs, and tissues, need to grow to an appropriate
size and need to function well. This period, from week eight till week 38/40 of the
pregnancy is called the fetal growth period. During this time the fetus grows to a
crown-to-heel length of approximately 52 cm and to a weight of around 3500 grams.
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In Figure 1.2 it is shown how an embryo develops into a fetus which is ready for
birth. The length and corresponding weights are given in those figures. The weight
of an embryo is only measured from week 8 on, while the length is already known
from week six. During the first couple of weeks, the length is measured as the crown-
to-rump length (Figure 1.3a). Thereafter, the length of the embryo is measured from
crown-to-heel (Figure 1.3b). In Figure 1.2a this is made clear by different lines. The
first period is given in blue, while the second period, which uses another measurement
approach, is given in red. These plots have been created from the table in Appendix A.

In this thesis, the term embryo will be used to refer to the unborn child in both
the embryonic and fetal phase.

1.2 Previous Research

In the search for a mathematical model for embryonic growth, one will see that this
topic has not been studied extensively under the scientists yet. Though, there are
some other relevant researches in this area. One can think of mathematical modelling
of tumour growth, or wound healing after, for example, burns.

Mathematical research to wound healing was started not long ago by Tranquillo
and Murray [7]. With their obtained model, they described the behaviour of tissues
mathematically. It describes the (dermal) tissue as an isotropic linear viscoelastic
solid. They extended the model by adding various cell properties such as the traction
force applied by fibroblasts.

After a while, Olsen et al. [8] modified and extended the model even more. They
added myofibroblasts to the model and collagen molecules replaced the extracellular
matrix as a model variable.

Both research teams have verified their results by comparing it to experimental
data on wound contraction in rats obtained by McGrath and Simon [9]. They could
use these data since their models contained isotropic stresses produced by different
cells.

Later in time, Hall [10] worked on evolution equations which describe the change
of effective strain over time mathematically. This used multiple states of a system:
one in which it describes the current strains and one in which it is in relaxation.
Therefore, it could be used for modelling the dermal layer over time [11]. In order to
work with his results, the effective strains should be small.

The resulting evolution equation has been used by Koppenol [11] to describe the
dynamic change of the infinitesimal effective strain over time. In his dissertation, he
investigated mathematical models for wound healing in different settings. The last
model he introduced was a morphoelastic model using the evolution equation for the
effective strain by Hall. Although this thesis is not about wound healing, the model
he used there has been used here as well.



Looking into another direction, biological cell behaviour is also described in liter-
ature by cellular-automata [12, 13, 14]. Vivas et al. [12] used this type of modelling to
describe the cell population behaviour by cell adhesion and proliferation. The cells
formed a sphere which was retained through the rest of simulation time.

1.3 Purpose of this Thesis

In this thesis, the main focus is on the mathematical model of morphoelasticity. The
growth of an embryo is simulated with this model in MATLAB (only in 1D) and comsoL
Multiphysics®. The models used are based on the one for wound healing described
in [10] and [11].

The idea is that, with this model, the growth of an embryo can be simulated as well.
With a change of some parameters, effects leading to a birth defect can be generated.
In future research, this could be an important aspect for which the models of this thesis
could be used. Birth defects could be modelled and, therefore, be understood better.

To achieve this goal, a morphoelastic model is set up and investigated mathe-
matically, see Section 2. The numerical elaborations are shown in Section 3. The
three dimensional model is verified by using the one dimensional solutions, which
themselves are verified by comparisons with simpler models, e.g., viscoelasticity, and
with a manufactured solution. The results and verifications are given in Section 4.
Finally, there are some concluding remarks, a discussion on this research and ideas
for future research on this topic in Section 5.

The main focus of this thesis is the question ‘Is it possible to model the growth of an
embryo by using morphoelastics models?" This research question will be substantiated
by the following subquestions:

e What is a morphoelastic model? And where has it been used for before? (Sec-
tion 1.2, Section 2)

How does an embryo grow? (Section 1.1)

Is cell density a good source to stimulate the growth? And how can this be
implemented? (Section 2.3)

What method could be used for solving a morphoelastic problem? (Section 3)

1.4 Phuysical Properties of an Embryo

The morphoelastic model used in this thesis is based on the physical concept of
elasticity. For this model, the physical quantities of the Young's modulus (or elastic
modulus), shear modulus, and Poisson ratio are needed. The values for these constants



can be measured in various ways, e.g. via a tension or suction test, and on different
parts of the boduy.

A lot of research has been done on the Young's modulus of the human skin. Un-
fortunately, the obtained results vary widely. The fact that the results vary widely
is discussed in [15]. This research mentions that different techniques for measuring
and the different positions on the body can give such an effect in the results. Next to
that, when getting older, the skin becomes thinner, stiffer, less tense and less flexible,
which results in a higher Young's modulus [16, 17] thus it varies per person.

An embryo develops into three layers after a few weeks. At this moment, the skin
tissue starts to develop [18]. Therefore, the results of given references on the Young's
modulus of the skin are used in this research. After considering all those references,
a Young's modulus of 0.23 MPa has been chosen. How this value is established can
be seen in Appendix B.

The viscosity values of a human are hard to find in literature. This is substantiated
by the fact that Koppenol has estimated the value of the shear viscosity and bulk
viscosity for his research [11]. He did the same for the Poisson ratio.

For the Poisson ratio he took 0.49, which is close to a fully incompressible material
(v=0.5). While playing with the skin, one sees that the skin moves along. In its
behaviour one could compare the skin to rubber material. Both show large lateral
compression under longitudinal tensile load. Rubber has a Poisson ratio close to 0.5
[19]. Therefore, it is chosen to take a Poisson ratio of 0.49 in this thesis as well.

The human body consist of a lot of water. The body gets dryer wile getting older.
So, when a child is born the body is the wettest. Therefore, it is chosen to use the
viscosity of water, which is 0.6978 mPa s for a temperature of 37 degrees|20].

Lastly, a mass density of 826 kg/m? is used. This number is derived from the length,
weight and abdominal circumference of the embryo. It turned out that this number
ts more or less constant over time, and hence assume this value to be constant. The
values used can be found in Appendix A,

All other parameters are fitted in this research to get a curve which looks like the
growth of an embryo, see Figure 1.2a. This thesis focuses on writing a mathematical
model for embryonic growth. This means that the values of the mechanical properties
are not the main focus here. It is, however, interesting to investigate this further in
future research, such that well-found numbers can be used.



2 Introduction into the Mathematical Models

The skin of a vertebrate, and in particular of a human, is viscoelastic [21, 22, 23] This
can also be seen when you pull your skin, and release it. It swiftly goes back to its
original state. It has some memory of how it was before. When doing this experiment
with your grandparents, you will notice that it takes a little more time for the skin to
recover. This is since the tissue gets stiffer over time, which has also been discovered
in Section 1.4. The skin also has anisotropic characteristics [15], however in this thesis
anistropy is not taken into account.

When looking at a human embryo, it will also grow, next to stretch. Combining
these two phenomena, one could use the theory of morphoelasticity to describe an
embryo. That is what has been done in this thesis.

In this section, we dive into the formulas of morphoelasticity, based on the work
of Hall [10] and Koppenol [11] First, it will be described in one dimension. Then the
general version is given, which will be used for the three dimensional case. In the
end, properties of the cell will be added to the morphoelastic models to create more
realistic results.

2.1  One-Dimensional Morphoelastic Model

First a simple model is explored. The simple model consists of only one dimension.

The Morphoelastic PDEs

The model of morphoelasticity is an expanded form of the mathematical description

of viscoelasticity, which in itself is an expansion of linear elasticity. How the latter

two models are setup, is given in Appendix C. Results of the viscoelastic model will

be used to verify results of the morphoelastic model. These results can easily be

compared when the growth term in the morphoelastic problem is set equal to zero.
The mathematical model of morphoelasticity is described by [10, 11]:

Dv ov 80_/__ fe (0Tl
Plprtva | — 3o =F xEboxl t€(07]
3 ov
0=pg tEe X € (xo,x) t€(0,T] .
De 1 8v_ C fe (0 TT
LDt+(5_ )a_— X € (xo0, X1, € (0, 7]



subject to

vix,00=0 x € [xo, xJ;
ulx,0) =0 x € [xo, xJ;
og=F x=x, te(0,T11]
o= x=x, te(T1,T]

(BC1)

Since the above equations are solved for v and ¢, this requires a post-processing step
to obtain the displacement u:

Du
Dt
x(t) = X 4+ u(x, t).

The displacement indicates how much the initial body has been grown. Together
with the initial size, the final length can be calculated. The evolution equation of the
infinitesimal strain (tensor) is derived by Hall [10] and given in Appendix D.

The physics are illustrated in Figure 2.1, It is chosen to first look at a rod of
length x; which is fixed on one side (xo = 0 m). On the other end, an external force
- is applied.

The differential equations require a material derivative (total derivative) due to
movement of the domain. Since the equations will be solved in the material frame, this
type of derivative is used instead of a partial time derivative in order to measure the
time rate of change. This setting will make the calculations easier as no interpolation
is needed between time steps and adjacent mesh nodes. How to work in the Eularian
setting is described in Section 3 by defining a moving mesh.

One Dimensional Problem Statements

The first setup is the pulling rod problem. This is where one side of a rod is fixed and
a force is applied on the other side. For this problem the external force F is nonzero,
but the growth tensor ( is equal to zero.

| o
X0 /= 0 XL

Figure 2.1: The pulling rod problem. In one dimension, the rod is hold on the left side, where
x =0 m. On the other side, x = x;, an external force F is applied.

The second problem statement is when growth comes into the system. This can
be done by a nonzero (, and either a zero or nonzero external force /. The drawing
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of Figure 2.1 is also applicable to this problem statement. The latter option will
afterwards be stimulated by cell properties of a human being. This is further explained
in Section 2.3.

The growth tensor ( is set to be constant or linear dependent on the infinitesimal
strain (tensor) ¢, as was done in [11].

In all scenarios, except for the stimulated growth, the length of the rod is set to
1 m. This means that the value for x; is 1 m. For the stimulated growth, the length
is set to 2 mm, since growth is first measured from week 6 of the gestational age
onwards (Section 1.1). Because of the choice of symmetric growth, the total initial
length will be 4 mm as is the average embryo size in week 6. This ensures that the
results can be compared to Figure 1.2a.

2.2 Three-Dimensional Morphoelastic Model
Morphoelastic PDEs

When generalising the morphoelastic formulas given in Section 2.1, they become much
more complex, especially the formula for the infinitesimal strain (tensor) . How these
equations are derived can be found in Hall [10]. The equation for the Cauchy stress
(tensor) o is directly derived from the isotropic Hooke's law for the purely elastic part.
In addition, the balance of momentum, which is the partial differential equation for the
displacement velocity v, is easily transformed into multiple dimensions. Usage of the
divergence operator replaces the partial space derivatives.

Below, the three dimensional morphoelastic system corresponding to the x-directional
pulling bar problem discussed later on are given. For this, the domain Q C R? is
used. It will have a fixed plane (0Q)4) on x = 0 m, and on the opposite side, x = x;
(0Q)y), an external force will be applied. The bar will have a thickness of 0.2 x 0.2 m.

The three dimensional morphoelastic differential equations are given by [10, 11]:

p(Br+vV V) =V .0 =F, x€Q, te(0T]
E v
o = 1 sym(L) + potr(sym(L))I + Tiv € + = thr(e)ﬂ) , xeQ, te (0, 7]
] (P2)
L =Yy, xeQ, te(0,7T)
Be 4+ (tr(e) — 1)sym(L) = —G, xeQ, te(0,7)
| 26 = 25 + e skw(l) — skw(l)e, xeQ, te(7)




subject to

v(x,0) =0 x € Q;

u(x,0) =0 x € ()

Jux, =0 xedQ, te(0,T] (BC2)
JAnz(F 0 o) x €0, te(0T1]

g n=0 x €90\ (0Q; UdQ,), te (T1,7).

In these equations, the skew-symmetric and the symmetric part of the velocity gradient
[ are used. These are given by:

sym(L) = 5 (L + L)

skw(l) = =(L — L"),

N =N —

Note that now, the displacement velocity v and the displacement v are vectors in R?,
and so are the body force f,, and external force / (given as F = (F 0 0)). For
the Cauchy stress (tensor) o and the infinitesimal strain (tensor) € the Voigt notation
is used. This can be done since we assume to have a symmetric growth tensor,
and thus symmetry in the infinitesimal strain (tensor) and the Cauchy stress (tensor).
Both are casted in a six dimensional vector instead of a tensor notation. This saves
computational time and memory.

As in the one dimensional model, the material derivative is used. Next to that,
the Jaumann derivative, which takes into account the rotation of the body, is used
to describe the infinitesimal strain (tensor) ¢ differential equation. This formula is
already given as the last equation in (/72).

System Setup

0.2 m

pd
02 m '\
’ ‘

Figure 2.2: The pulling rod problem expanded into its 3D version: the pulling bar problem.
The block has a length of 1 meter and its thickness is 0.2x0.2 m. One side (gray) is fixed by
a zero constraint and on the opposite side an external force /- is applied.

I\

First, the three dimensional version of the pulling and the growing rod problem (the
pulling and the growing bar problem) will be investigated. This is mainly for verifi-
cation. Therefore, the bar will be small in height and width. There has been chosen
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to examine a bar of T m and a height and width of 0.2 m. One squared side is fixed
and on the other side an external force /- is applied (see Figure 2.2). For the growing
bar problem, both with and without an external force have been examined.

Further, a growing cube and sphere will be examined, as shown in Figure 2.3, to
look at the impact of using different kinds of meshes (quadrilaterals vs tetrahedrals).
Further, growth in multiple directions is implemented. These bodies are starting
off as symmetric geometries. The growth tensor used here will also be symmetric.
Therefore, and to reduce computation time and safe memory, only 1/8-th of the body
will be considered. For this, zero-constraints on v in the normal directions are used
on the three symmetry boundaries. This means that the body is forced not to move in
those normal directions. The visualisations of the final results of the body shape are
then given by using the laws of symmetry.

In the end, cell properties are added to the system to stimulate growth. In order to
be able to verify these results, a bar with a smaller size, which is more representative
of an embryo, will be investigated. The same length as for the one dimensional case
is used for this; 2 mm. The thickness is then said to be 0.1 mm. This stimulant is
also tried on a sphere shaped body for a more embryo-like result.

o

(a) Cube (b) Sphere

Figure 23: Three dimensional setup of growing bodies made with comsoL multiphysics®
geometry.

2.3 Adding Cell Properties to the Systems

As a last model, a growing rod or bar, without any external forces, but with a body
(or internal) force /-, is used. This allows the system to grow by an internal stimulus.
It will be stimulated by cellular phenomena, like the cell concentration, proliferation,
apoptosis, and so on. These stimuli are used in wound healing models by, eg,
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Koppenol [11], but modelled separately. Due to time constraints it has been chosen
to use a general formula for this. This PDE then shows the general normalised cell
concentration: the normalised amount of cells per unit area. It is added to the system
of equations by adding the PDE (F,) shown below.

% +cV-v—=V-(Dx, t)Vc)=Bc(1—c), xeQ, te(0,T),
(Dix, )Vec) -n =0, x € 00 (Pe)
c(x(0), 0) = co(x(0)). xe€Q

This equation describes the mass conservation for the cell concentration. It is based on
[24], where the diffusion term in its limits can be approximated by the Fisher equation:
D = v?/4B, with B the proliferation rate. This kind of conservation formula has been
used among others in [10, 11, 25]. The difference between (/) and the one described
in [24] is the source term, which is written as Bc(c — 1) and Bc respectively. This is
used since in this thesis we deal with a growing body, an embryo, which can and will
reach a maximum size. However, a tumour can grow aggressively without boundaries.

Swanson et al. [24], have added chemotherapy to their system, by subtracting kc,
with k a constant measure of the effectiveness of the treatment. For this, k must be
greater than proliferation rate £, in order to reduce the size of the tumour. In our
formula, (~.), this works similarly. Whenever the cell concentration ¢ reaches the
value one, the embryo stops growing. This is a stable asymptotic solution, as can be
seen in Figure 24

Phase Portrait Cell Concentration
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Figure 2.4: Phase portrait of (/.), where D(xt)=0. Various phase lines are plotted; c(0) <
0,0 < ¢(0) > 10, and ¢(0) > 1. One sees that ¢ = 0 is an unstable solution and ¢ = 1 stable.
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The results of this PDE will be implemented as a body force F;, for the dis-
placement velocity v PDE in (1), as in Koppenol [11]. For this the negative spatial
derivative of the cell concentration is multiplied by a force constant k , that is:

Fb=—kVc. (2.1)

According to [23] the internal forces are given by cytoskeletal contraction, actin poly-
merisation, microtube elongation and shortening, adhesion, differential growth, and
swelling of the ECM (extracellular matrix). They also note that cells migrate through
the embryo and exchange neighbours to change tissue shape, which motivates the
usage of a diffusion equation for the cell concentration.

In order to let the body grow, there need to be a stimulant in the system. Therefore,
the cell concentration PDE needs to have non-zero initial conditions. The diffusion
equation (/.) has a Gaussian as homogeneous solution [26]. Therefore a normal
distribution, with mean zero and standard deviation s, is used as an initial condition.
Hence, the rod, or the three dimensional body, is centred at zero. This point in space
will be fixed with a zero constraint for the displacement velocity v. The Gaussian is
suppressed by the value of ¢ in order to let the cell concentration be less than one.
A schematic one dimensional overview has been given in Figure 25,

X0 = —%XL x=0 %XL
Figure 25: The schematic one dimensional growing rod. The rod is stimulated by cell
phenomena to grow in both positive and negative x-direction from the centre. Therefore, the
centre, x = 0, is fixed with a zero constraint. The ends of the rod have a zero-flux bound.
This makes it possible for the rod to grow freely, while the centre, and therefore its position,
is fixed. The blue curve presents the initial cell concentration, which is implemented as a
Gaussian.

2.4 Alternative ldea for the Cell Properties PDE

While solving the growing body problem with the use of internal forces stimulated
by cell properties, some problems, which were not solvable in an easy way, were
encountered. It is known that the solution to (/.), is a Gaussian, which depends on
the ratio of 5 and DD [24] Here D is the diffusion rate of cells and tells us how fast the
inittal Gaussian will be spread out over the domain, or physically how fast the cells
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will be equally divided over the domain. Further, the proliferation rate S describes
how fast the maximum amount of cells at a point or in an area will be reached. So,
how fast c(x, t) will be equal to one at the point x.

The growth depends on the spatial derivative of the cell concentration ¢, as de-
scribed before. To have a larger growth, this derivative should be larger too. In order
to achieve this, the ratio between £ and D should give a Gaussian with a large
derivative, thus has a small standard deviation.

Since we would like to have a slow growth, it should take about 40 weeks before
the embryo reaches a length of 52 cm, the diffusion rate of cells D should be small
compared to what is expected physically. Whenever the cells are equally divided
over the domain, the spatial derivative gets equal to zero, which results in no further
growth, only in cell concentration which will then reach one everywhere at the same
time.

On the other hand, the proliferation rate £ should not be big either. If this number is
too big, the spatial derivative is too large at the beginning of the run time. However,
the cells will also be spread faster. The reason for this is that if they reach the
maximum for that point, the cells will still divide, but diffuse instantaneously to the
sides and push the cells there away, until the existing body is fully filled with cells.

The last difficulty that needs to be dealt with is the Péclet number. This is a
ratio of the advection and the diffusion in a differential equation. When the number
gets too big, the results start to oscillate. In the PDE (/,), this ratio consists of the

terms £ and v, and is given by: Pe = h x 5 with h the node distance. This ratio

should be below one in order to get a smoovth non oscillating result if a standard
Galerkin discretisation is used. However, one could play with this number by adding
an artificial diffusion term [27]

So, a good balance between the diffusion rate of cells and proliferation rate is
needed in order to get a curve lasting for at least forty weeks, for a specific choice
of /. Although, a large rate is needed to achieve this, it does not look like reality (a
very thick stomach, but almost no head and toes, see Figure 2.6).

Then, two more parameters are involved: force constant k and constant growth
factor C,. Those parameters affect value of the maximum displacement v. Increasing
these values gives a larger displacement and thus a larger growth of the body. With
this a more realistic starting state could be used to get the same valued curve.

The down side of (/) is that it also depends on the displacement velocity v,
because of the total derivative. This unfortunately pushes the results down, causing
the force constant k£ and constant growth factor , to have less effect. In the end it
resulted into a curve shape similar to the desired shape (Figure 1.2a) over time, but
a very moderate displacement v of 0.24 cm, which is one hundred times smaller than
desired.
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Xy = —lk,: x=0 %x;
Figure 2.6: The embryonic body together with a tight Gaussian curve. This shows schemati-
cally how the cell concentration is presented in the model, which is far from realistic as can
be seen in this figure.

Because of this, it is decided to use a different approach with the same idea.
Instead of using a PDE for the cell concentration ¢, one could use a prescribed body
force. it is known that (/) results in a Gaussian which evolves over time t. Therefore
it is chosen to use a standard Gaussian here. This is given as

¢ [2757] 9

“exp (—M) % (1 — exp(—BH)) (22)
2s?

where ¢y suppresses the Gaussian such that it does not exceed the value one, s the

standard deviation, d the dimension, and /5 represents here the proliferation rate as

well. This rate will cause a delay, starting off with no cells at all. This Gaussian

only grows in height, but not in length over time. It therefore does not adjust to the

current state. For that, the standard deviation should also be time dependent.

Again the negative spatial derivative of this function will be implemented as the
body force F, together with the force constant k. In order to verify the results in three
dimensions, the following setup has been tested: The body force is described in the
length direction of the rod by the negative spatial derivative of the Gaussian. For the
other directions, the body force is set to zero.
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3 Numerical Method

As shown in the previous chapter, a system of non-linear partial differential equations
(PDEs) needs to be solved. To approximate the solution of the problem, a numerical
method is used. Theoretical aspects on the numerical methods that are used can be
found in [28, 29, 30].

The three classical options for the discretisation of PDEs are: Finite Difference
(FDM), Finite Volume (FVM) and Finite Elements methods (FEM). All use finite
shaped elements, but all in a different manner. The FDM is an efficient solving
method for regular grids. Because of this, rectangular or block shaped elements are
used when working with FDM. However, FEM and FVM both use geometrically
simple shaped elements instead. Since an embryo is not reqularly shaped, FEM and
FVM are preferred and the FDM is not considered currently as an option.

A main difference between FVM and FEM, is that FVM is based on local conser-
vation, whereas the FEM only guarantees global conservation. In case of the FVM,
this means that whatever goes into a cell or an element on one boundary, should
leave this element on another boundary.

For FEM all equations are weighted by a test function (/ and averaged by in-
tegrating over the domain. The finally obtained weak form should hold for all test
functions ¢y = . In general, FVM s just a special case of FEM, where the test
function ¢y = 1 is chosen and no integration by parts is performed to enlarge the class
of possible weak solutions regarding the integrability requirements. Next to that, this
corresponding weak form should then hold for all control volumes Q = Q).

In the end, it is chosen to work with FEM. This method will shortly be explained
in the next paragraph. Furthermore, the application of FEM to the problem de-
scribed in Section 2 will be described. Afterwards, the engineering platform comsoL
Multiphysics®, which will be used for solving the multidimensional problem, is ex-
plained. This platform is created for solving multiphysics problems with the finite
element method. This leads to an extra motivation to use FEM, since this allows
comparing the results with the certainty that the choice of the numerical method does
not contribute to any potential differences.

A property of a multiphysics problem is the existence of coupled partial differential
systems in your problem. Accordingly, comsoL multiphysics® could be used for the
problem stated in this thesis.

3.1 Finite Element Approach

Working with the finite element method gives the user a broad range of choices for
modifying the solver. First, a finite element mesh with geometrically simple finite
shaped elements is created. Generally, it uses tetrahedral and brick-shaped elements
in three dimensions, or triangles and quadrilateral elements in two dimensions. An
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advantage of FEM is the use of a finer mesh at specific areas of the geometry, such
that at, e.g, geometric transitions the solution can accurately be approximated and
gradients too.

The next step is to choose what type of basis functions will be needed. For
a simple approach one could use linear elements, while for tracking stress over an
element, parabolic elements could be more appropriate.

Then, the PDE is mathematically rewritten in a weak form and further elaborated
with the use of the basis functions. This results in the so called Galerkin weak form.
This can be solved element-wisely.

This will result in a typical sparse matrix for numerical problems, which can be
solved with a direct or iterative method.

Below it is described how the finite element method is used for the one dimensional
problem given in Section 2.1.

Moving Mesh

The first thing to do when using a numerical method is to define the grid. In one
dimension, one can choose between an equidistant grid and a non-equidistant grid.
For ease, the first one is chosen as initial mesh for this research. The mesh then looks
as in Figure 3.1.

l | | | l
[ N N N \

xo=10 Xi—1  Xi X Xn+1 = X1

Figure 3.1: One dimensional equidistant mesh

This mesh has a constant node distance h which is defined as h = x; — x;_1.

This type of mesh is easy in use, although the non linearity in the PDEs will be
hard to calculate. For this, there is simple modification to the mesh to deal with the
non linearity, which is a moving mesh.

A moving mesh is, as it says, a mesh which moves along the results over time.
Every time step a new mesh corresponding to the new solution is created. This also
means that it is possible that the grid will not be equidistant over time. This type of
mesh is often used in fluid dynamics, but also in solids which deform largely. Since
the embryo will grow largely as well, this is a second reason to use a moving mesh.
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Figure 3.2: An illustration of how a mesh evolves over time when the amount of nodes is
preserved. For this, the distance between two nodes also depends on which nodes you are
looking at and thus the node distance varies over the mesh by h;(t) = x;(t) — xi—1(¢).

The idea of a moving mesh is schematically given in Figure 3.2. Every time step
the node distance is updated by

hi(te) = hi(te_r) + Atvilte) — vioa(t)- (3.1)

with v; the displacement velocity at node . This value is available since it is the
solution to the velocity PDE (given in (F1)). It is important to realise that the node
distance h; is given over an area [x;_1, x;] where the displacement velocity v; is given
at a certain node i. Hence, the first node velocity needs to be subtracted from the
second node velocity (vi(tx) — vi1(t)).

Basis Functions

Basis functions are functions used within an element to describe the behaviour of the
solution. The simplest option is to use piecewise linear basis functions. The solution
at both ends of the element are calculated. A linear line is then plotted in between
those points to describe the solution behaviour within the element.

For the sake of simplicity it is chosen to use linear basis functions. In this case,
the mathematical form of the basis function ¢; is given by

~

X — Xj—1
h—i X € [Xj,1,Xj],
(X)) = < X'+’| — X
('0/( ) jh— X € [Xj,XjJr*]],
J+1
0 elsewhere.

C

Here, the node distance h; is given as in (3.1). For a visualisation, we refer to
Figure 3.3.
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xo=0 Xi—1 X Xip x =L

Figure 3.3: Linear basis function ¢; drawn in red.

Galerkin Weak Form

For solving the system of coupled differential equations, given in (1), the Galerkin
finite element approach is used. In this thesis the derivation is based on the approach
of Boon et al. [31]. Therefore the PDEs are first multiplied by a test function (/. The
method is shown only for the displacement velocity PDE, the balance of momentum:

StV |~ =F xEbox] te(0T]

Dv av) oo

The e-PDE, the evolution equation for the infinitesimal strain (tensor), is treated anal-
ogously. When deriving the velocity PDE into its Galerkin weak form, we assume that
the infinitesimal strain (tensor) € is known and vice versa. This means, a segregated
approach in solving the system will be used.

The test function will be taken from a standard Sobolev space; s € H'(/;), where
I = [x0, x(t)] is the domain interval. Subsequently, the equation is integrated over
this domain, which gices

¢(va%)w—/w—W—hwﬂW

Next, the Cauchy stress (tensor) o is partially integrated over the domain. With the
knowledge that ¢(0) = 0 and from the second boundary condition that o(x;) = F, the
external force, one gets

v d
lJJ,O(—+v—X) dx+/u——dx-/thFb—Eea—fderw(xL(t))F

As a next step, the product rule for the total derivative,

Dyv Dv Dy

ot Yoi T D"

ts used to obtain
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The first total derivative is written out now.
Applying Gauss theorem (that is the fundamental theorem of calculus in one di-
mension), results into

dv Dy ay
/p T thVdX—I—,OVL//Va/[ /Ity——dx-/thb—Eeadx—i—gL/(xL(t))F

with [vipv]y, the boundary integral in one dimension.
As last, the transport theorem of Reynold (or Leibniz’ Rule in one dimension) is
aplied to the first term on the left hand side.

0
P //[ Yvdx — —v dx / — —dx = /h YFp — Eeaf dx 4+ Yx(t)F

I;

With this, the Galerkin weak form, which is the element-wise form of the above, can
be formulated as follows:

Find vy € H'(}) such that Yy, € H'(1)

QL/h aLﬂhth
vhdx — p d I g =
pdt/wlvhx Pl DT /,{“ax ax

/ tnFp — ES# dx + ¢l (t)F. (Gy)

Similarly, we obtain the Galerkin weak form for the evolution equation for the in-
finitesimal strain (tensor):

Find e, € H'(/;) such that Yy, € H'(1;)

d D,
- nghsh dx—//{ L ¢h(——c)d (G.)

where /), the test fLIHCUOH, is from the same test space as described above. In this
case, the displacement velocity v is set to be known.

For the cell concentration PDE, the cell concentration ¢ on the right hand side
will be taken from the last time step. In this way, the cell concentration ¢ is known
for that part of the equation. No extra iterations because of non-linearity are then
needed. The Galerkin weak form for the cell concentration ¢ is given below.

Find ¢, € H'(l;) such that V¢, € H'(/,)

¢’h aL/Jh 6ch

N i) G i1
7 g[/hchdx : Dtcth /Da i dx = /whﬁc (1—rc, ) dx (G)
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Linear system

We continue with the Galerkin weak form for the displacement velocity v, (G,). The
finite element variables are rewritten with the basis function ¢;.

) vy, = Z?j <i(t)g;(x(t)), with & the approximation of v, and v(t, 0) = 0.

W) gy = @x(1), =12 .n+1

These are filled in into the Galerkin weak form ((,,). Then the transport property of

the basis functions (% = 0)[32] is applied.
d n+1 n+1
EZ qip/ Qg dx + ) Efu/q)ﬁp} dx = /(pin — Eeqi dx + ¢l (t)F
j=1 Iy = I A
M, A by

With this we get the time dependent system for the displacement velocity

d

7;M5) +AS =b,
which can be solved in MATLAB with a time integration method. In this thesis, the Euler
Backwards method is used. This method has been chosen because of its stability.

A similar system can be found for the infinitesimal strain (tensor) € and the cell
concentration c¢. The Galerkin Weak form of all the PDEs and the composition of the
matrices can be found in Appendix . In this appendix, there is also a brief elaboration
on the idea of time integration in this setting.

Remark: One can note that in both cases, solving the displacement velocity v and
solving the infinitesimal strain (tensor) €, one needs a mass matrix (M) of the new
time step, i.e. tey1, while one only knows the results of ty, t;, ..., t. This means
that the node distance hi(ty.1), at the new time step is also unknown (see Equation
(3.1) for its construction). To solve this problem, an additional iteration step has been
applied to first solve the displacement velocity v PDE. This means that there will first
be iterated over solving this part of the problem, to find an acceptable value for the
node distance vector h. For this, the [,-norm Hgﬂ’z*1 — &l||, with &p the approximation
for v, at time t, at iteration step n to find hy_, should not be greater than 1012,

3.2 comsoL Multiphysics®

According to the official comsoL multiphysics® website [33]: “‘comsoL multiphysics® is
a general-purpose simulation software for modelling designs, devices, and processes
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in all fields of engineering, manufacturing, and scientific research’. At the core, comsoL
Multiphysics® is able to setup and solve arbitrary coupled second order PDEs. These
can be in a combined coefficient form, general form or weak form.

For each of the built-in physics, a dedicated set of (weak form) PDEs is ready
for use. After building or loading the geometry, the end user just has to provide the
required material coefficients and has to choose from a set of predefined boundary
conditions. This implicates that the software can be used off the shelf for engineering
problems where there is no need for mathematical intervention.

For scientific research, the full potential of comsoL multiphysics® becomes clear
because all predefined PDEs are accessible and can be expanded by the end user.
Furthermore, there are dedicated mathematics interfaces to setup user defined PDEs,
ODEs, functions, variables and coupling operators.

As a typical example in scope of this research, comsot Multiphysics® has built-in
viscoelastic models in the Structural Mechanics interface, such as the Maxwell model.
After filling in the Prony series coefficients, an engineer can compute the relaxation
behaviour for an arbitrary structure subject to stresses.

Since viscoelasticity is a special case of a morphoelastic model (see also Ap-
pendix C), and since the underlying equations are accessible, the software allows us
to expand the viscoelastic equations to account for morphoelasticity by adding terms
to the PDE. Instead, it is also possible to start from scratch and setup our own set of
morphoelastic PDEs.

The built-in viscoelastic equations in this version of comsoL Multiphysics® are
displacement based. However, the equations used in this research are worked out for
the displacement velocity instead. Therefore, it was not possible to adjust the built-in
viscoelastic equations to the given morphoelastic equations given in Equation (/1)
and (F2). Therefore, a user defined set of (displacement velocity based) PDEs has
been used. Nonetheless, this gave more flexibility with the domain. More on this user
defined set of PDEs can be found in the next paragraph.

Adding a PDE to comsoL multiphysics®

First of all, comsoL Multiphysics® does have a lot of in-built physics. The easiest,
and safest option is to use one of those when they exist for your problem.

The equations in this thesis are not implemented as a predefined physics interface.
Fortunately, comsoL multiphysics® offers the possibilities to set up your own PDEs
via, e.g., the Coefficient Form PDE of the mathematical environment

This physics gives a general equation,

UL 0% ey BV _f
eaWnL anr (—cVu—oau+y)+ u+au="f,

which can be modified to the preferred PDE by modifying the coefficients.
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coefficient | v-PDE  ¢-PDE u-PDE
€4 0 0 0
d, o) 1 1
c L 0 0
a 0 0 0
Y —Exe 0 0
B pxl2xv Vv %
a 0 0 0
f Fp MT—g)*xv,—G v

Table 3.1: list of coefficient values in the one dimensional Coefficient Form PDE of comsoL
multiphysics® corresponding to the one dimensional PDEs (F1).

To fill in the coefficients, it is important to realise that comsoL multiphysics® would
like to get everything written out. For example, every matrix multiplication (e.q. A-B)
will have to be done by hand before it can be put in the coefficients. In other words,
the coefficients of the PDE only except scalars, e.g. a1 - by + a2 b1+ aq3-byy .. ..

In the one dimensional case the coefficients are set as in Table 3.1. When work-
ing in three dimensions the formulas and with that the coefficients of the comsoL
Multiphysics® Coeffiecient Form PDE get more complex. To get a better view on
the correctness of the coefficients, the comsoL Multiphysics® LiveLink™ for maTLAB has
been used. More about this can be found in Appendix C.

To specify what happens on the boundaries, one needs boundary conditions. Those
exist of two main types: Dirichlet and Neumann. Further, there are mixtures of those
two. Nonetheless, comsoL multiphysics® has some more frequently used boundary
conditions implemented. They are all derived from those two main types.

In comsoL multiphysics®, by default a zero flux boundary condition is added to
all the boundaries of a physics. This means that the bounds are free to move and a
solution to these boundaries should be found by the use of the PDE, which is basically
a zero Neumann condition.

In the problem statement, two boundary conditions are given: a Dirichlet bound
on the fixed side and a Neumann bound on the pulling side. In comsoL multiphysics®
it is chosen to use a constraint to fix one boundary and a flux/source to apply the
external force F on the other, pulling, boundary. These two are both implemented
under the Coefficient Form PDE for the displacement velocity v. For the other four
boundaries and all other PDEs it is sufficient to just use the zero flux condition.

Note that in the three dimensional case, more boundaries (surfaces) are available.
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Figure 3.4: Visualisation of a swept mesh with bricks located entirely over the smallest surface.

The mesh is made in comsoL multiphysics®.

For the remaining surfaces in the v-PDE (in (F2)), it is sufficient to keep the zero
flux bound there. Although, it might give a solution in which the bar will move
in the y- and|or z-direction instead of only grow into the x-direction. It seems to
happen only when the mesh is not chosen properly. Therefore, a recommendation
for when working with the bar problem, is to use brick-shaped elements instead
of tetrahedrals. Preferably, use bricks which are located entirely over the smallest
surface (see Figure 3.4).

Next to boundary conditions, the problem also needs to be initialised to be well
defined. The comsoL Multiphysics® Coefficient Form PDE is given in its standard
form, with a second time derivative term. Therefore two initial conditions (its real
value and the value for the first time derivative when t = 0) are asked for. The
PDEs are initialised according to the default by comsoL multiphysics® by setting
both equal to zero. Looking at our problem statement (in Section 2), this is exactly
what is wanted. Unless the cell properties are added to the system. This PDE needs
a stimulus from the start. Otherwise no growth will enter the system. Therefore, the
first initial condition (c(., 0)) for this PDE should be modified.

Adding a (Moving) Mesh in comsoL multiphysics®

Creating a mesh in comsoL Multiphysics® is easy at first sight. You get a standard

tetrahedral mesh when nothing is changed to the mesh settings. An important option
is that one can choose how fine the mesh should be. In general, a finer mesh would
give a more accurate result, while it takes longer to solve.

Another nice feature in the mesh settings is that one can tell comsoL multiphysics
that you would like to have a finer mesh at some area and broader it somewhere else.

®
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For the one dimensional rod problem, a coarse mesh works fine and fast. In three
dimensions this works too, although you need to be careful in selecting the right kind
of mesh. Based on experiments, longitudinal swept quadrilaterals are recommended,
since the movement of the rod should only be in one direction.

When adding the cell properties, one changes the setting of the problem. The
initial length will be much shorter (approximately only a few millimetres) and the
final displacement should be quite large compared to its initial state (approximately
fifty centimetres). For this reason a finer mesh is chosen. Further, it is chosen to have
an even finer mesh near x = 0, since there you will have something like a source of
cells, because of the chosen initial condition and PDE solution which are Gaussians.
With this mesh, the necessary spatial derivative will be presented better.

As explained in the previous subsection, a moving mesh will be used. This is done,
because the object, which is a representation of an embryo, should grow (enormously)
over time. In comsoL Multiphysics® there is an option to use a moving mesh. In the
one dimensional setting, one can find this in the Physics. Otherwise, one can right
click on Definitions.

It is necessary to define how the mesh moves. The given problem exists of two
main equations: one for the displacement velocity v and one for the infinitesimal strain
(tensor) . Next to those, there is a DE for the displacement u. The first two need
to be solved together, since they are coupled. The third one stands on its own and
can be determined by their results. This last PDE, however, gives the displacement
u over time t. This can be used in the moving mesh settings, resulting that this PDE
should also be solved in the same iteration loop as the two coupled PDEs. For this,
a Prescribed Deformation with, uq, u>, us in X, Y, and Z direction respectively is used.

When a mesh moves, its quality could deteriorate. This mostly happens when (a
part of) one element moves faster then another. To keep the quality of the mesh, one
could chose to remesh once in a while. When working with the cell properties, it is
chosen to use this option in comsoL multiphysics®, because the total growth is quite
large. This option can be chosen in the Time-Dependent Solver of the Study. As
remesh criterion the distortion criterion is used. Different values of this criterion has
been tried. When working with the Gaussian to represent the cell concentration of
the embryo, comsoL Multiphysics® will remesh when the distortion criterion exceeds
0.5. The amount of mesh elements after remeshing is the same as before.

Next to the distortion criteria to remesh, comsoL multiphysics® also contains a

quality criteria for the remeshing. Although this works fine for the tetrahedral meshes,
it does not for the swept brick meshes.
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4  Results

In this section the results of this research are shown. First, the results of the one
dimensional pulling rod problem, described in Section 2.1, are given. These results
from the morphoelastic model are verified by using the viscoelastic model and by
setting the growth tensor to zero (G= 0 in (/1)) in the morphoelastic model. This one
dimensional model is implemented in MATLAB and filled in into comsoL Multiphysics®.
Therefore, both models are also verified by comparing the results of both programs.

To see if the growth tensor is implemented correctly, the model is also verified by
a manufactured solution.

Secondly, the results of the three dimensional cases are given. For this, the pulling
bar problem (Section 2.2) will be compared to its one dimensional counterpart, the
pulling rod problem. Furthermore, the growing rod will be compared to the growing
bar. In this setting, there is a non-zero growth tensor and an external force.

Finally, the results of the growing body, with an internal stimulus, will be briefly
discussed, in both the one and the three dimensional setting. All equations can be
found in Appendix C.

4.1 One-Dimensional Problem

In the one dimensional setting, the pulling rod problem is examined first. This problem
is given in Section 2.1, and its schematic view in Figure 2.1.

For most of the one dimensional calculations the parameter values given in [a-
ble 4.1 are used, unless stated otherwise. When an external force F is used in the
setting, the force is applied during the time interval of t € (0, 7/2). Then,at T = T/2,
the rod is loosened at once. However, this could give a non-differentiable point. It
would be more realistic to loosen the rod smoothly, by for example using an S-shape
function around that time.

The value of the Young's modulus has been chosen to be one GPa, as it is a
standard unit for this. The shear modulus and mass density have been chosen such
that their effects are visible, so they are of the same order as the Young's modulus.
The viscosity gives a damping to the system, while the mass density adds a delay.
This results into a new equilibrium (while pulling continues) that gets reached after a
while instead of immediately, as is the case for linear elasticity. This may result into
a little overshoot while reaching this equilibrium. The behaviour starts to resemble
linear elasticity more when the shear modulus approaches zero, see also Appendix H.
In this same appendix, the effect of the mass density is shown too.

In the first problems, only the situations without any growth and body force are
examined. For these situations, a stability check has been performed. This check
can be found in Appendix E. It turns out that in the situations of zero displacement
velocity and constant infinitesimal strain (tensor), the system is stable. This is when
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the maximum displacement has been reached while continuing pulling the rod. The
rod will not change size.

symbol | value | unit
X0 0 m
X| 1 m
node distance h 0.1 m
time step At 0.001 S
end time T 20 S
Young's modulus E 1e9 Pa
shear modulus U 1e9 Pa-s
mass density p 19 | kg/m?
body force Fp 0 N/m
external force F Teb N/m
growth tensor G 0 1/s
u(0, t) 0 m
u(x, 0) 0 m
v(0, t) 0 m/s
v(x, 0) 0 m/s

Table 4.1: List of values used in the one dimensional problems, unless stated different. The
variable h, is the initial equidistant node distance.

4.1.1 Pulling Rod Problem

In Figure 4.1, the schematic visualisation of the pulling rod problem is given.

1 | F
Xo = 0 X1

Figure 4.1: The pulling rod problem. In one dimension, the rod is hold on the left side, where
x = 0m. On the other side, x = x;, an external force - is applied.

The coefficients of the PDE corresponding to this problem (/1), are given in
Table 41, The results to this problem are given in Figure 4.2. This figure shows
the displacement v of x; over time t. For this, three solutions are plotted together:
viscoelasticity (Visco), morphoelasticity by mMATLAB (Morpho), and morphoelasticity by
comsoL Multiphysics® (COMSOL). Those three curves are plotted together to show
that they give similar results. For this the growth tensor (i is set equal to zero in
the morphoelastic models. It can be seen that the morphoelastic result reproduces the
viscoelastic behaviour if the growth tensor is zero.
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Figure 4.2: Morphoelastic results with a zero growth tensor (G= 0) of both maTLAB (dark blue)
and comsoL multiphysics® (yellow) compared to viscoelastic results (light blue). The lines are
drawn for x = x;.
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The viscoelastic result (Visco) is used as verification, and verified by comparing it
to the linear elastic results, see Appendix H through variation of the damping term 1.
It is used as a verification to verify the results of the morphoelastic results of both the
MATLAB script (Morpho) and the comsoL multiphysics® simulation (COMSOL). Both
make use of a moving mesh.

In addition, the comsoL multiphysics® program is modified such that the calculation
will most likely be the same. To this extent, the time steps taken are fixed on 0.001 s,
as in Table 4.1. This can be done in the Time-dependent solver by setting the steps
taken by solver to manual. The inter node distance has been set to 0.1 m by putting
this as the maximum element size. Importantly, the Euler Backwards method has been
used to deal with the time derivatives. Therefore, comsoL Multiphysics® is forced to
use this method too. This is done by using the BDF time stepping method with
exactly the order 1.

All three results are basically on the same line, with a little deviation at the corner
where the force equilibrium gets reached. A zoomed figure is given around this time,
Figure 4.2b.

In Appendix H, these same results are shown for two different values for the time
step. To see the positions of the curves better, one result is added in every subsequent
subfigure.

This shows us that the results are reliable, especially when taking a small time
step or when you work in comsoL multiphysics® with a moving mesh. This motivates
us to use the moving mesh in comsoL Multiphysics® in the next settings.

4.1.2 Verification by the Use of a Manufactured Solution

0.12 __Manuf ed ion (v) g><10'4 _Manuf | Solution (ep)

|
@

0.08

0.04 1

Displacement Velocity v [m/s]
P
3

0.02 /

0 5 10
time t [s]

15

(a) Displacement velocity v

20

Strainep [1]
e (5] (=] ~

w

01t P i . \ 1 B _ -

5

10
time t [s]

15

(b) Infinitesimal strain (tensor) €

20

Figure 4.3: Manufactured solutions of the morphoelastic problem. The functions of equation
(4.1) are plotted over time, for x = 1m.
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The second method of verification used is the method of a manufactured solution.
For this method, a solution for the displacement velocity v and the infinitesimal strain
(tensor) ¢ is formulated and by using this solution, the parameters for the growth
tensor G, body force Fj, and the external force /- are constructed. Those parameter
functions are then implemented in the model (/1) to determine v and ¢ again. This
should match the created solutions.

It is chosen to use the functions

v(x, t) = (6™ — 1)sin Bt; (4.1)

with the values

a = 01
g = 0057
y = 01
g = 0.001.

This gives the curves shown in Figure 4.3.

These functions are implemented in the PDE (/1) to determine a function for C,
F, and F. This is done by using the symbolic environment of MATLAB, together with
the derivative function diff(.). The functions v and ¢, (4.1), are created with the

4
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Figure 4.4: The manufactured solution (blue) and the comsoL multiphysics® generated solution
(red dashed) of the morphoelastic problem. The results and functions are plotted over a time
interval of 20 seconds, and at the end point of the rod x = 1m.
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symbols x, t. Then the parameters are determined as follows:

F av , 0%v 66_
N TR
C— de de 1(3\/ .
= — E‘FV&‘F((‘:— )a X
dv
F=p—+E- ¢
ox

The mATLAB-output is thereafter plugged in for the corresponding variable in comsoL
Multiphysics®.

For this, only the model in comsoL multiphysics® has been used. This is since in
the previous subsection, the results of MATLAB and comsoL multiphysics® were close
to each other. Also, comsoL multiphysics® will be used in three dimensional setting,
where MATLAB will not.

Figure 4.4 shows the comsoL multiphysics® results together with the formulation of
v or €. In this figure one can see that the lines are close to, or even on each other.

With this we conclude that the model has been implemented correctly.

4.1.3 The Effect of Two Different Growth Terms

In the end, we would like to have an autonomously growing body. This means that its
starting point will never be reached again, since the body will grow, instead of (only)
get stretched.

To first see the effect of the growth tensor (i, a constant growth tensor has been
chosen. A second choice is a growth tensor depending on the infinitesimal strain
(tensor) €. This has been chosen since it is also used by Koppenol [11] to describe
the growth tensor.

Note that an external force is still applied on the system to stimulate the growth,
which is especially needed in the second case.

Linear Growth Finally, a growth tensor will be added to the system. To this end,
first a constant growth tensor has been chosen of 107> s~'. With a constant growth
tensor, one would expect a linear increase in displacement v. In Figure 45 one can
see that this indeed happens.

Strain Dependent Growth Another case is to look at a strain dependent growth
tensor. This has also been done by Koppenol [11]. Here, it is chosen to use G = ae,
with @ = 1072 s~ as the morphoelastic change (i.e., the rate at which the effective
strain changes actively over time)[11]. With this, one would expect to reach a new
equilibrium after a while. This will briefly be explained.
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Figure 4.5: Morphoelastic results of the pulling rod problem with a constant growth tensor in
the rod. The line is drawn for x = x;.

From the problem statement (/1) one can note that the infinitesimal strain (tensor)
€ is linked to the Cauchy stress (tensor) o, and therefore the external force /. When
one loosens the rod, this force is equal to zero, and so there should be no stress
after this point. This results into a displacement velocity v with an opposite sign
of the infinitesimal strain (tensor). Logically, the infinitesimal strain (tensor) and
displacement velocity should both get equal to zero. Then the growth rate is given by
10~2¢, as stated before. As a result, there is no current growth and an equilibrium
has been reached.

The obtained results are shown in Figure 4.6. In this case the results of the MATLAB
model agree with the results of the comsoL Multiphysics® model. In both results, one
can see that indeed a new equilibrium is found after about 15 seconds.

Interesting to remark is the fact that the rod keeps on growing between 5 —
10 s. This is explainable in the same way the new equilibrium is explained. In
this interval, an external force is applied on the rod. This provides stress in the end
node, x;. This means that the Cauchy stress (tensor) o is non-zero. The displacement
velocity v together with the infinitesimal strain (tensor) € are therefore still present.
Subsequently, the growth tensor G is non-zero. Thus, the infinitesimal strain (tensor)
¢ is still varying over time. This results into a small increase in displacement velocity
and thus in the displacement, which shows the total growth of the system relative to
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Figure 4.6: Results of the morphoelastic model of the pulling rod problem with an strain
dependent growth tensor in the rod. The line is drawn for x = x;
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over time for the growing rod problem with an infinitesimal strain (tensor) dependent growth
tensor. For both variables, the end point of the rod, x = x;, is plotted.
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its initial state.

This added growth during the time interval that was mentioned earlier does not
influence the Cauchy stress (tensor) and therefore it could reach a new equilibrium
after switching off the applied external force /. The growth effect, while pulling
and the maximum force has not been reached yet, is undone by the time the final
equilibrium (after loosening the rod) is reached, because it has the same effect after
releasing the rod.

The explanations above can also be illustrated by plotting the infinitesimal strain
(tensor) and displacement velocity in one figure, see Figure 4.7.

4.1.4 Results with Added Cell Properties

A more realistic setting is to stimulate growth from the inside. For this reason an
extra PDE (F.) is added to the system. This PDE describes the behaviour of the
cells, but can be seen as a description of the cell concentration.

For the results given in Figure 4.8, the physical parameter values given in Sec-
tion 1.4 are used. The other four parameters are found by trial and error. The values
are given in lable 4.2 and 4.3.

A Gaussian Pulse is used as initial condition. It has been given a standard devia-

Displacement through time in COMSOL

0.241 ! ] ] ! ! ) /I R

0.14r-
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0.08-

0.06 | /
004r
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Figure 4.8: Results of the model of morphoelasticity with a cell concentration PDE growth
stimulus. The curve shows the displacement of the end node of an initially 2mm long rod.
Therefore, the results should be multiplied by 2 to get the total growth of the one dimensional
embryo representation. To get the total length, the initial length should be added too.
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Parameter | Value start (d) | end (d) | Function (1/day)
k 10 42 100 0.000013

D 0.0000123 [cm?/day] 100 150 0.013

Cy 1[1/s] 150 300 0.00013

Table 4.2: Parameter values used for solving Table 4.3: The variation of the proliferation
the problem with the morphoelastic model and rate /5 over time
cell concentration.

tion of 5- 1077 and is divided by a factor 10° to keep the maximum cell concentration
within the domain [0,1].

4.1.5 Results on the Alternative Idea for the Cell Concentration

60 Size of Embryo over Time

50 /
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30

Size [cm]

20

model | |
C-R
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5 10 15 20 25 30 35 40 45
Time [week]

Figure 4.9: Total size over time of the initial Zmm long rod, representing the embryo in one

dimension. It has a fixed end for symmetry, and a zero flux end. The growth is stimulated by

the spatial derivative of a Gaussian which represents the cell concentration. The time ¢ axis
is in weeks.

As it was discussed in Section 2.3, an alternative idea will be investigated too. For
this Equation (2.2) is used as stimulus. It has been shrunk by a factor 10 000 to get
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a curve below one, which can grow. The disadvantage of using this Gaussian is that
its standard deviation does not change in time. With a chosen standard deviation of
5-10~* m, it starts as a nice curve on the initial length. This results into the behaviour
that new cells will be created at the midpoint of the (symmetric) rod. Those cells will
be pushed to the side and this will result in growth. However, it never reaches the
maximum amount of cells in grown parts (x > 2 mm). The physical parameters have
the value given in Section 1.4

The cell proliferation rate S changes discretely over time. This has been done to
be able to represent the lengths based on both the measurements methods that are
used for measuring the length of an embryo (crown-to-rump and crown-to-heel). In
this way, the curve will look more like the one in literature (Figure 1.2a). For the
proliferation rate a piecewise function is used and filled in as in Table 4.4.

Secondly, the force constant k, see (2.1), changes over time in a similar manner

as the proliferation rate. A piecewise function has been used as well for this with the
values in lable 45.
Solving this system of PDEs resulted in the blue graph plotted in Figure 4.9. The
figure shows two other lines. The red and yellow lines are the ones from literature
and show the crown-to-rump length of the first weeks and the crown-to-heel length
of the last twenty five weeks, respectively.

The discrete changes in proliferation rate S and force constant k result in a nod
around week 15-16. This is about the time where the method of measurement is
switched from crown-to-rump to crown-to-heel. At that moment it looks like the
embryo has gained in size enormously in Figure 4.9, which just represents the change
of measurement method.

In order to analyse the the accuracy of the model, the relative error is calculated.
In the first fifteen weeks the model has a relative error of 0.2316. The next 25 weeks
give a relative error of 0.0507.

4.2 Three-Dimensional Problem

A more realistic setting for a growing embryo is to work in three dimensions. To
check the formula’s and their implementation in comsoL multiphysics®, the results are
compared to the one dimensional results. This can only be done on a similar situation.

Table 4.4: The variation of the proliferation rate

B over time.

start (d) | end (d) | Function (1/day) start (d) | end (d) | Function
6%/ 110 0.013%0.005 6%/ 110 500
110 300 0.013*3 110 300 50

Table 4.5: The variation of the force con-

stant k over time.




Method

absolute error

relative error

C-R
C-H

3.9026
9.6499

0.2316
0.0507

Table 4.6: The absolute and relative error of the model results. The errors are given for the
weeks 6 — 15, where the crown-to-rump measurement is used and the second period, weeks
16 — 40, when the measurements are done between crown-to-heel.

Therefore, a pulling bar and growing bar setting have been examined.

After this has been verified, the geometry will be changed into a unit block and
sphere. For those, the mesh type has been investigated.

Lastly, some words are given on the growing body without an external force, but
a stimulus from inside the body, by using cell division phenomena.

For the comparison between the one and the three dimensional case the parameter
values given in Table 4./ and 4.8 are used.

It is chosen to use a mass density which is closer to reality, while working with
the given Young's modulus. As it can be seen, the bulk viscosity 11, and Poisson ratio
v are both set to zero. This is chosen since in the pulling rod or bar problem, there
should be no influence from the other directions than the pulling direction.

4.2.1 Verification by the Use of the One-Dimensional Results

As a first check on the generalised formulas of (/2), the results will be compared to
their one dimensional counterpart.

For this, the pulling and growing rod problems are transformed into three di-
mensional pulling and growing bar problems. The schematic drawing is repeated in
Figure 4.10.

The bar is placed with one edge on the x-axis, such that a fixed corner is on (0 O
0). The other edges are in the positive y-, and z-direction.

Name | Expression | Value Description

u 1e9 [Pa’s| 1E9 Pa's shear modulus

E 1e9 [Pa] 1E9 Pa Young's modulus

p 8e3 [kg/m"3] | 8000 kg/m* | mass density

Gy 0 [1/s] 01/s constant growth factor
F 0 [Pa/m] 0 N/m? body force

T 20 [s] 20 s end time

At 0.1 s 0.1s time step

Table 4.7: Parameter list of the one dimensional pulling rod problem, for comparison to the
three dimensional case.
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Name | Expression | Value Description

1 1e9 [Pa’s] 1E9 Pas | shear viscosity

1> 0 [Pa™s] 0 Pas bulk viscosity

E 1e9 [Pa] 1E9 Pa Young's modulus

v 0[1] 0 Poisson ratio

p 8e3 [kg/m"3] | 8000 kg/m* | mass density

Gy 0[1/s] 01/s constant growth factor
1 0 [Pa/m] 0 N/m? body force, x direction
Fp,2 0 [Pa/m| 0 N/m? body force, y direction
F.3 0 [Pa/m| 0 N/m? body force, z direction
T 20 [s] 20 s end time

At 0.1 [s] 01s time step

Table 4.8: Parameter list of the three dimensional pulling bar problem.

In Figure 411, the results are presented. The red striped line shows the displace-
ment-curve of the outermost upper right corner of the bar; (1 0.2 0.2)m. The curve is
close on the one dimensional result (at x = x;).

A three dimensional visualisation of the result is illustrated in Figure 412, The
coloured slice shows how much that point x-directionally is moved from its starting
point, blue meaning the least and red the most. The result is scaled by a factor of 100
to get a visible displacement. In Figure 4.11 one sees that the displacement v would
otherwise be 1T mm, which is barely visible. From Figure 4.12, the one dimensional
nature is clearly visible.

The bar has eventually also been rotated. It is placed on the y- and z-axis and
also hovering in the space. For this scenario, the bar was rotated 45° around the
z-axis, and 45° around the (1 —1 0) line. Results for these rotations are given in
Appendix .

0.2 m

]
02 m '\‘
E .

Figure 410: The pulling rod problem expanded into its 3D version: the pulling bar problem.
The block has a length of 1 meter and its thickness is 0.2x0.2 m. One side (gray) is fixed by
a zero constraint and on the opposite side an external force F is applied.

A
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Figure 411: The displacement-curve of the one dimensional pulling rod problem (blue) com-
pared to the one resulting from the three dimensional pulling bar problem (red, striped). The
one dimensional result is drawn for x = x; and the three dimensional results for x = (1 0.2 0.2).
The bar is placed with one edge on the x-axis.

Time=6.4 s Slice: Dependent variable ul (m)

x107*

Figure 4.12: Visualisation of the pulled bar, created with comsoL multiphysics®. The coloured
bar shows the displacement uq (x-directional displacement) of that point. The colour blue
represents the least movement, while the colour red represents the most movement. It is
plotted at t = 6.4 s in order to plot the maximum displacement. The scale is 100x.
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4.2.2 Added Growth

In the section before, it is shown that the three dimensional problem is implemented
correctly by comparing the results to the one dimensional case. Therefore, the effect
of different kinds of growth factors and the influence of a mesh can be examined.

Growing Bar Again, a bar of which one edge is situated on the x-axis, with a corner
of the fixed plane on (0 0 0), is examined. It is said to grow in x-direction only.
Therefore, only (/41 has been given a value. Also, the Poisson ratio and bulk viscosity
are set equal to zero.

The setup has been tested in multiple directions as was done for the pulling bar
situation. For this, both the linear growth as the strain dependent growth results in
one dimension (Section 4.1.3) has been used for verification. About this, no further
details are given.

Constant growth in the x-direction, Gy1 =C,, is added to the system. Three cases
are investigated:

1.C,=0011/s
2. C,=011/s
3. C,=11/s

For all cases no external force has been put in the system. The results of these
problems are given in Figure 4.13. One can notice that the growth and the displace-
ment are mainly in the x-direction (uq). However, in Appendix | one can note that
for the extreme constant growth factor of 1 s' the bar eventually will bend. Though,
in this time frame of 20 s the bending is negligible compared to the x-directional
displacement.

The system of equations (F°2), described in Section 2, is tested by extreme growth
factors, e.q. C,= 1 s~'. The geometry of the bent solution used a swept mesh in
the longitudinal direction. The mesh does not influence the results much. Whenever
a tetrahedral mesh is used or when the mesh is swept over its width or height, the
bending is much greater in the results. By using an appropriate scaling on the
unknowns, this effect disappears. These bendings, however, could also be explained
by the fact that the formulas are only defined for small displacements u. In this
scenario, the bar grows 6 km.

Further is observed that the fully coupled solver is not able to solve for all these big
constant growth factors. It automatically took extremely small time steps of about
10~ and smaller. A segregated solver is therefore used instead.
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Point Graph: Displacement trough time in the three main directions
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Figure 4.13: Displacement v through time for various values of ,, the constant growth factor
in x-direction. The displacement in the main directions is plotted in each figure.
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Figure 4.14: A visualisation of the three dimensional growing unit cube. In (a) it is grown by
a constant growth factor of 0.1/s. In (b) the constant growth factor is given by the norm of x,
in other words, the distance from a point in space to the origin.

Growing Block GCradually, a more realistic shape will be used. A unit cube (Fig-
ure 2.3a) will be grown symmetrically in all directions, stimulated by an external force.
For this, the cube is centred at (0 0 0). This point is fixed with a zero-constraint on
the displacement velocity in all directions. This keeps the block from moving instead
of growing.

The outer boundaries get an equal flux source, which is the external force. Because
of symmetry, the inner boundaries get a zero-constraint on the displacement velocity
in the outward directed normal.

For this geometry, two growth tensors have been tried on to see their effects.

1. Constant growth: a constant growth tensor, with C,= 0.1 s7".
2. Growth by norm: a growth tensor depending on the distance to its centre:
01 - (x> +y>+2°) s 'm™2

This gives the entries of the main diagonal of the growth tensor. The off-diagonals
are set to zero.

Note that the growth and displacement will now be in all directions. Therefore,
a longitudinal, vertically and horizontally swept mesh is used (a combination of a
mapped and swept mesh).

In Figure 4.14 the results of both growth tensors are given. Figure 4.14a shows
the results for the constant growth factor. In all directions, the block grows evenly to
more than two meters. This corresponds to the results in Figure 4.13b.
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The second figure, 4.14b, shows a distance dependent growth factor. The growth
factor is given by the norm of x, which is the distance between a point x and the
origin. One can see that the corners grows the fastest, while the midpoints of the
edges do not move much. When running for a longer time, the spikes, which can be
seen in the solution (Figure 4.14b), will go through each other, which indicates that
the model is not functioning correctly.

Growing Sphere To make an even more realistic shape, a sphere with a radius of
0.5 m has been examined. In this way, the results could be compared to the results
of the block. For this problem, the same constant growth factors as for the growing
block are used. Tetrahedral elements are used for the sphere.

Next to that, the behaviour is examined when the bulk viscosity » and Poisson
ratio v are taken into account. It is chosen to use a bulk viscosity of the same value
as the shear viscosity, 10° Pa - s, and a Poisson ratio of about rubber, 0.49.

In Figure 4.15 the displacement of both the growing sphere and the growing block
are given. For this the end points of the three main axis are used. The displacement
of the corresponding axis is then plotted. One can see that the growth is similar for
both objects.

Figure 4.16 shows the results of the two different growth tensors, both with and
without interdependence of the growth directions. One can see that without the
interdependence, the sphere grows faster in all directions. Both methods keep the
sphere shape regardless of the choice of including the interdependency. Although, in
Figure 4.16d the sphere has gotten wobbly, due to the coarser mesh.

Point Graph: Displacement through time in the three main directions Point Graph: Displacement through time in the three main directions o

Displacement (m)
Displacement (m)

0 5 10 15 20 0 5 10 15 20
Time (s) Time (s)

(a) Growing block. (b) Growing Sphere

Figure 4.15: Displacement of both the growing block and the growing sphere without interde-
pendence of the growth directions are given. The displacement of the end nodes of the three
main axis are plotted. The displacement direction of the corresponding axis is plotted.
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Figure 4.16: Results of the growing sphere with different kinds of growth tensors, existing
of a constant (, of 0.1/s and given by the norm of x. Both have been examined with and
without the interdependence of the growth directions, by using either a positive or a zero bulk
viscosity 1 and the Poisson ratio v. For all these calculations a coarser mesh is used.
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4.2.3 Results with Added Cell Properties

The idea is to verify the three dimensional problem containing the cell concentration
and without any external force by the one dimensional results on this topic. Where-
after the situation can be extended to a sphere-like object which grows in multiple
directions. Since the results while using the cell concentration PDE in the system
were not realistic, this has not been looked at in multiple dimensions. Therefore, only
the alternative idea of implementing a Gaussian to represent the cell concentration
has been considered.

Alternative Idea The pulling bar model, that has been verified before, is modified by
removing the external force and adding a body force generated by a cell concentration.
Unfortunately, this final model gives an error of no convergence after a few time steps
of which the amount varies per setting. Various settings in comsoL multiphysics® have
been tried to solve this problem, however, no setting without this problem has been
found yet. It can be seen that before the time step at which the program runs into a
non convergence error, the results already start to deviate in the first time step from
the results in one dimension. More on this can be found in the discussion: Section 5.1.

o o

Size through time in COMSOL

Point Graph: Dependent variable ul (cm)
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Figure 4.17: (a) shows the one dimensional displacement results when using a Gaussian to
represent the cell concentration of the embryo. (b) shows a three dimensional result, seen
from all four corners of the outermost plane (end plane of the rod). Both figures are given in
a time frame of 8 days, starting from week 6 (day 42) till day 50.
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4.3 Summary of the Results

Dim. | Geometry EA?JA&?SFEUSLCS@ MATLAB | [ | G | Fy Ig_DE Correct
1D | Rod (1m) v v VoIx o[ x| x v

1D | Rod (1m) v v VoIV x | x v

1D | Rod 2mm) | v X x |V |V |V 7

1D | Rod 2mm) | v/ X X |V |V |X v

3D | Bar (1m) v X Vo x| x| x v

3D | Bar (1m) v X VoIV x| x Ve

3D | Cube v X VoI Vo x| x v

3D | Sphere v X VoIV x| x v

3D | Bar (Z2mm) | vV X X | v |V |x X

Table 4.9: List of experiments, their properties and whether their results are verified to be
correct.

Since the end size of the embryo was not close to the values in literature, it has been
decided not to put effort in verifying this method.

Although not given in the results section, it has been verified by using the same constant
growth factor C; as in one dimension.
** Deviation in first time step and a no convergence error is encountered.
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5 Conclusion

A morphoelastic model is simply a mathematical description of the elasticity combined
with growth. The generalised model is given in (F2).

This model is used to describe the growth of an embryo, mainly in one dimension.
According to literature, the embryo size is first measured from crown-to-rump and
after a couple of weeks this measurement method is switched to crown-to-heel. The
resulting curves from the observations are shown in Figure 1.2a. Figure 1.3 shows
the two lines ot the measurement methods over the embryonic body.

To get this type of curve, a PDE for the cell concentration ¢ is used in this thesis.
This worked partly in one dimension; the size of the embryo only got 100 times
too small. Instead a Gaussian has been used as a replacement. In one dimension
this showed a comparable curve with a relative error of 0.2316 and 0.0507 for the
crown-to-rump and crown-to-heel measurement periods respectively.

These results are obtained by using a finite element approach. The resulting
system of linear equations is given in Section 3.

To conclude, a morphoelastic model approximating the embryo growth in one di-
mension has been constructed in this thesis. However, the current results of the three
dimensional model indicate that some modifications have to be made to improve the
model. Suggestions for further research on modifications that have to be taken into
account to improve this model in three dimensions are given in Section 5.1.

5.1 Discussion

During this research some observations were encountered which lead to proposals for
improvement. Those observations and proposals are discussed below. First, the one
dimensional model containing the cell concentration is discussed. Then the corre-
sponding three dimensional model. And lastly, some general remarks on this research
are given together with different theories that could be applied on this topic as well.

One Dimensional Model with the Cell Concentration By adding a PDE, describing
the cell concentration (F), to the system, the mathematical model obtained a more
realistic approach to capture the growth of an embryo. With this the model also
incorporated the cell concentration, which is a biological phenomenon. With the
cell concentration a body force is described in order to have an internal stimulus.
Therefore, the external force was removed from the system. Since | was unable to fit
the parameters of the cell concentration PDE in order to get a growth curve of the
order of magnitude as in literature (Figure 1.2a), it raises the question whether adding
just a single PDE, describing the phenomena of the cells, is sufficient to model the
growth curve of an embryo.
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In one dimension, this PDE (see Equation (F,) in Section 2.3) gives a final growth
which s too small (around 0.24 cm instead of 26 cm, since only half of the body is
considered). The difficulty was to fit the parameters correctly. By this observation, it
might be that other factors should be taken into account as well.

In the mathematical section, Section 2, it is already explained what effect all
parameters in the equation have. A short recap on which restrictions on parameter
choices we have to deal with is given next: the relation between the proliferation rate
£ and diffusion rate of cells D give the standard deviation of the resulting Gaussian.
Both quantities cannot be too low or too high in magnitude, since this effects the time
interval in which the body grows. Furthermore, the ratio of the proliferation rate f and
the displacement velocity v (Péclet number) must be taken into account in order to get
a stable, non oscillating, result. The displacement velocity is present in the equation
since we work with a moving mesh. However, this results in a smaller impact of the
force constant k and the constant growth factor C,, which both effect the maximum
growth. Removing this dependency on the displacement velocity in this PDE results
in a larger growth.

This interplay of the parameters seems to have the unpleasant effect of not being
able to get the growth curve from literature. Therefore, the model used in this thesis
might be missing indispensable (cellular) phenomena for describing embryonic growth
in a mathematical way. Koppenol successfully used this additional equation (/) for
constructing a wound healing model [11]. However, he added four equations with this
structure instead of one. Each of those describe one cell type, such as: fibroblasts,
myofibroblasts, a generic signalling molecule, and collagen molecules. Because of his
results, it is believed that it should be possible to use this type of PDE in order to
describe the cell concentration.

This contributes to a second question: is the time interval of 40 weeks too long, or
is the maximum displacement of 52 cm too much for this model? Koppenol [11] looked
at a situation of a wound of about 4 cm in diameter within a two dimensional frame,
representing the skin and the wound, of [-4:4, -4:4] cm. The total growth is, compared
to the starting situation of the amount of skin, many times smaller then needed to
model the growth of an embryo. This question is also motivated by the fact that the
current, Hookean based morphoelastic model can only be used for small displacements
[10]. However, it is not said what small displacements are. In Section 4, the model
has been tested for extreme valued constant growth factors. The model results still
looked stable, although the displacement was very large: 6 km. With this, it seems
that the maximum displacement does not play a role in this. Therefore, it is still an
unanswered question why using the c-PDE (/) does not work properly.

One could try to fit the Gaussian used as an alternative idea to represent the cell
concentration by modifying the parameters of the PDE. Another idea is to put this
model in MATLAB as well and see if the same problems occur. A last recommendation
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for this problem is to try to look at it from a different angle. An example is to look
at adding a formula for the chemicals present in the uterus. One of the chemicals
involved in embryonic growth is BMP4. This affects the way of growing, In the sense
that it tells cells to which part of the body they belong, such as: arms, legs and organs
[34].

Another idea for a follow-up research, is to fit two curves instead of one to represent
both embryo measurement methods separately. It would be nice to see if the same
biological and/or physical parameter values can be used for both curves, while both
curves have a different initial length and start time.

Lastly, a comment on the alternative idea of adding cell properties to the system.
In this thesis it is chosen to use (2.2), a Gaussian which grows over time. However, the
standard deviation is not time dependent, and thus the Gaussian does not adjust to the
current state of the body. In order to let the Gaussian move along, one could multiply
the standard deviation s simply by the time ¢, which will also make the Gaussian
satisfy a diffusion equation. Though, it will probably not spread accordingly with the
displacement velocity. For this reason, one should try out which (time dependent)
value for the standard deviation works best.

Three Dimensional Model with the Cell Concentration Contrary to the one dimen-
sional case, the three dimensional situation containing a Gaussian representing the
cell concentration is not verified. This model setup, unfortunately, results in a 'no
convergence error. Furthermore, it can be seen that the results, before the error is
encountered, deviate from the ones in the one dimensional setting (Figure 4.17). This
indicates that already something went wrong in the first time step and that it is not a
result of accumulating (numerical) instabilities over time. Therefore, we have to con-
sider that something is going wrong with how the equations are solved at an individual
time step. This thought is because of the fact that the verified growing bar model has
been adjusted to the one with a Gaussian representing the cell concentration.
Multiple settings within comsoL multiphysics® have been tried on this problem.
First, it seemed like the mesh was not translated correctly over time. In this problem, a
moving mesh was used in combination with a remeshing tool. The mesh was remeshed
after the given distortion condition was fulfilled. At every time step, the current mesh
was plotted. After some steps, the mesh seemed not to be okay anymore. Multiple
elements were drawn through each other. Although, it seems like a big problem, it
turned out not to be. The remeshed meshes within the mesh section all looked fine, as
straight bricks. The plot however did not draw the mesh as the mesh was given. This
was repaired by turning the smoothing off in the figures. Hence, the meshes where
fine, the fact that they looked ill-shaped was caused by a post-processing error.
Together with the comsor Multiphysics® support, at least the following options
have been modified: time stepping, and the tolerance; the initial mesh size, a moving
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mesh described by the edges instead of on the full geometry, and different remeshing
properties (distortion, mesh quality, both for various values); discretisation order of
the physics, and extra constraints on the physics to specify not to bend; the update
frequency of the Jacobian, and the damping factor of the newton iterations in the fully
coupled solver; scaling of the dependent variables; and lastly, the direct solver type
(MUMPS vs PARADISO). Furthermore, the system has been tested when multiplying
the body force by zero. Then the expected zero solution is found.

After having done all these modifications in order to reach an appropriate result,
the following questions arise: Is the model implemented right? Is the chosen solver
appropriate for the mathematical description which includes the cell concentration
equation? And why does the first time step already deviate from the one dimensional
case’

That the physics are implemented right, is partly discussed in Section 4.2, The
difference to the situation described in that section is that we are now looking at the
problem containing a body force, described by a Gaussian which represents the cell
concentration, and without an external force. So the flux/source bound has been re-
placed by a zero flux bound in order to allow the bound to move outwards. Next to that,
the body force in the v-PDE/physics is changed to the negative x-directional deriva-
tive of the suppressed Gaussian, which represents the cell concentration. This is done
by a copy of the analytical formulas from the one dimensional comsoL Multiphysics®
model. Therefore, this hints at the correct implementation. As said before, when mul-
tiplying the body force by zero, the zero solution is found, which additionally sustains
the claim that the implementation is correct.

The non linear solver in comsoL multiphysics® performs Newton iterations. This
can be modified in different aspects, such as its damping factor. A Newton method
needs a starting point. It could be that the chosen starting point is too far away from
the solution, which can cause that the method will not converge. Another approach is
to first use a couple of Picard iterations and afterwards start the Newton iterations
from that point on. Picard iterations are generally slow, but computationally cheap.
Because of its slow convergence, a few steps in the beginning of the non linear
iterations can be helpful for the Newton approach in order to get a reasonable starting
point. Therefore, | suggest to try this option as well. The down side is that comsoL
Multiphysics® does not contain this type of iteration method. Next to Newton methods,
it only contains a double dogleg solver. This however, can only be used for stationary
problems.

Looking at the results again (Figure 4.1/), it seems that the curve is increasing
too quickly, so a too big displacement could have been reached at the point the solver
gives an error. In order to avoid the error, one should investigate what goes wrong in
the first time step and how this accumulates through the next steps.
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General Remarks First of all, it might have been a good idea to try the model in
two dimensions as well. Results can be interpreted easier, both with the parameters
and physics. Further, it would have been nice to see if the Gaussian representation
of the cell concentration would have worked out in two dimensions, or if it already
got stuck there.

For this research, only one mechanical physical value of the skin is used. More
research on the mechanics of the skin or of an embryo would be necessary to make a
more realistic mathematical model.

The one dimensional results have been verified by a one dimensional growth curve
found in literature. In three dimensions, it would be nice to have a(n) (exact) three
dimensional biological growth model of an embryo. For this, one could for example
consider the three dimensional model discussed in [34] This paper shows that an
embryo already in an early stage cannot be described by symmetric models, which
was a simplification adopted in this thesis because of computation time in combination
with the preferred mesh size.

As a final idea, it could be interesting to dive into the theory of tensegrity, which
provides an alternative way of modelling human tissue and its dynamics and growth.
This principle describes relations between body parts in their tension. It comes from
the idea that all body parts are connected to each other. Bones are attached to the
fascia and so they are connected to other bones through your body. In this way,
imbalances in the body can be described from places that are counter-intuitive since
they are located somewhere else in the body then where you, e.g, feel the pain. This
model describes generally how all the forces are divided over the body in order to
stay in balance. Modelling growth can also be done using this model. In light of this
research on embryonic growth, in the uterus, the embryo adapts to compressive forces,
which influence the growth. More information about (bio)tensegrity can be found in
[35] and [36].
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Appendix



A Embryonic Growth Table

Table A1: Crown-to-rump and Crown-to-heel length of an embryo in centimetres given per
week according to two studies; the weight of an embryo according to these two studies in
grams given per week; the Abdominal Circumference of an embryo in centimetres is given per
week. All are measured for the gestational age of the embryo.

Week | C-R[3] C-R[6] [ C-H[3] C-H[6] | Weight[3] Weight[6] | AC[37]
[em]  [em] | [em]  [cm] 9] [g] | [em]

6 0.4 - - - - - -
7 1 - - - - - -
8 16 16 - - 1 1 -
9 23 23 - - 2 2 -
10 32 3.1 - - 35 4 -
11 42 4.1 - - 45 7 -
12 53 54 - - 58 14 -
13 6.5 74 - - 73 23 -
14 7.9 8.7 - - 93 43 -
15 - 101 | 1641 - 117 70 -
16 - 16| 183 - 146 100 | 104
17 - 13| 201 - 181 140 | 114
18 - 142 22 - 223 190 | 125
19 - 153| 237 - 273 240 | 135
20 - 164| 255 2560 331 300 | 145
21 - - 272 267 399 360 | 155
22 - -| 288 278 478 430 | 165
23 - ~| 304 289 568 501 | 175
24 - - 32 30 670 600 | 185
25 - ~| 336 346 785 660 | 195
26 - -] 351 36 913 760 | 205
27 - -] 365 366 1055 875 | 214
28 - -| 379 376 1210 1005 | 224
29 - ~| 393 386 1379 1153 | 233
30 - -1 406 399 1559 1319 | 242
31 - 49 411 1751 1502 | 251
32 - S 432 424 1953 1702 | 259
33 - - 444 437 2162 1918 | 268
34 - - 456 45 2377 2146 | 276
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Week | C-R[3] C-R[6] [ C-H[3] C-H[6] | Weight[3] Weight[6] | AC[37]
[em]  [em] | [em]  [cm] 9] [g] | [em]

35 - ~| 467 462 2595 2383 [ 284
36 - S| 478 474 2813 2622 | 292
37 - -| 489 486 3028 2859 | 299
38 - -| 499 498 3236 3083 | 306
39 - -| 509 507 3435 3288 | 313
40 - - 52 512 3619 3462 | 319
41 - - s27 517 3787 3597 | 325

Table A1: [Cont] Crown-to-rump and Crown-to-heel length of an embryo in centimetres given
per week according to two studies; the weight of an embryo according to these two studies
in grams given per week; the Abdominal Circumference of an embryo in centimetres is given
per week. All are measured for the gestational age of the embryo.
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B The Young's Modulus of an Embryo

The Young's modulus is a physical value for the elasticity of a material. For the human
skin, different measurement methods are available: tension, suction, indentation, and
torsion are the most commonly used methods. Next to this, the measurement can
take place on different locations on the skin. All these have influence on the results.

Therefore, the numbers in literature vary widely.

Reference Method Location Age Young’s modulus
Jansen (1958) Tension Abdomen 0-99 | 29-54.0 MPa
Dunn (1958) Tension Abdomen/Thorax | 47-86 | 18.8 MPa
Vogel (1987) Tension Various 0-90 | 15-150 MPa
Jacquemoud (2007) Tension Forhead/Arm 62-98 | 19.5-87.1 MPa
Agache (1980) Torsion Back 3-89 | 0.42-0.85
Diridollou (1998) Suction Forhead/Arm 20-30 | 0.12-0.25 Mpa
Khatyr (2004) Tension Tibia 22-68 | 0.13-0.66 MPa
Pailler-Mattei (2008) | Indentation Arm 30 0.0045-0.008 MPa
Zahouari (2009) Indentation/ Arm 55-70 | 0.0062-0.0021 MPa
Static Friction
Annaidh (2012) Tensile Back 81-97 | 834349 MPa
Pawlaczyk (2013) Torsion - - 0.42-0.85 MPa
Mechanical - - 4.6-20 MPa
Suction - - 0.05-0.15 MPa

Table B.1: The Young's modulus of the skin from various studies together with the age range,
method and location on the skin. The first ten are from [15], the last three values from [16].

First the data is separated into two groups: greater and less than age 40. When
given an age range, the first given modulus will be represented by the youngest age.
This since the skin get stiffer over time and therefore the Young's modulus will get

bigger.

In this thesis, we will look at an embryo, which is an unborn child. Therefore,
only the group less than 40 years old is considered. Of this group, the outliers will
be deleted. Those are having the value of 0.00035 MPa and 0.00625 MPa.

An average of the remaining values is then used as the Young's modulus of the
embryo. This value is 0.23 MPa.
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C Partial Differential Equations

In this appendix, an overview of the used PDEs is given. There are PDEs for the
displacement u, the displacement velocity v, the infinitesimal strain (tensor) € and the
cell concentration c.

C.1  One-Dimensional PDEs

Linear Elasticity

—Fuw=Fp, x € (x0,x]

U(O)ZG aeR (PL)
du
EEZF; X =X

With /- an external force applied to the system, and xp, x, € R defining the length
and position of the rod. The Cauchy stress (tensor) and infinitesimal strain (tensor)
are given by

cg=Ee
_du
5—5.

For this system an exact solution can be found. The exact solution for the displacement
is given by a linear polynomial: u(x) = F/E*x for x € [0, 1]. Next to this, the solution
for the Cauchy stress (tensor) is then given by: o(x) = F.

Viscoelasticity The full viscoelastic problem is given below. To make it quasi-static,
the second time t derivative of the displacement v is set to zero.

[ 0’y Jdo

Por " X € (xo,x] te(0,T]

O‘ZI[J%—FE(‘: x € (xo,x] te(0,7T]
du

e= X € (xo,x), t€(0,T]

ou

15— X €E (xo,x), te(0,T] (Pv)

v(x,0)=0 X € [xo, xt]

u(x,0) =0 X € [x0, X

u(0,8) =0 t€10,7]

og=F x=x, te(0,T11]

o=0 x=x, te(T17T]
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This system can be rewritten since Equations 2 — 4 can be implemented in Equation
1. As it is preferred to start in rest, u(0, x) is set to zero. A force / will then be

applied until a time 71 has been reached.

Morphoelasticity The morphoelastic problem below is subject to the boundary and

initial conditions of Equation (7).

[ [ Dv  Ov do
p E+ Vaul T = Fry x € (xo.x)] t€(0,T]
4 dv
azuaqL Ee X € (xo,x] te€(0,T]
De dv
LE—F(e—ﬂa:—G X € (xo,x te€(0,T]
This requires a post-processing step to obtain the displacement w.
Du
i =Y X € (xo,x), te(0,T]

x(t)=X+uxt) x€Elx, x| tel0,T]

Here, x(t) is the current position of a point in your body seen from the new frame, X

is the starting position in the original frame and v is the displacement.
These equations all use the material derivative, which is given by

Du_ Ju Jduox
Dt~ 9t oxot

and can be applied in a similar way to all of them.

Cell Concentration

Alternative to the Cell Concentration PDE

[X[?

o [275°] " exp (—2—52) « (1 — exp(—B1))
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dc dv 0 dc
E—F Ca—X—a D(X, t)a ZBC(1 —C) XE[XO,XL], tE(O, T],
7 dc
D(x,t)a—z , x=0,x=xte(0,T]
X
| c(x(0),0) = co - N(O, s), x €0, x/]

(Pe)



C.2 Three-Dimensional PDEs

Morphoelasticity
fp(%—i—va) — V.0 =Fy,
E v
0 = pn sym(L) + potr(sym(L))I + Ty €+ T thr(g)]l
] L=Vy,
De 4 (tr(e) — N)sym(L) = -G,
| B = B + e skw(l) — skw(l)e,
subject to
[Vix, 0) = x € Q;
u(x,0) = x e
Jux, t) = xeod), te(0,T]
gon— (F 0 o) xe o, tel(0,T1]
o-n=0 x € 00\ (90 U 9Q,),

Cell Concentration

Dc

—+cV v—=V - (Dx, t)Vc) = Bc(1 —0),

Dt
(D(x, t)Vec) - n=0

c(x(0), 0) = co(x(0))

1
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D Derivation of the One-Dimensional Evolution Equa-
tion of the Infinitesimal Strain

t=t (equilibrium)

t=t (current)

Figure D.1: Transformation of a body over time. Its original state, current state and equilibrium
state corresponding to the current state.

This section is based on the calculations made in Hall [10]. Here, only the one
dimensional case is described. The zero stress deformation gradient Y is given by

aXeq e . . . . L(t) - L(O) .
I The infinitestmal strain (tensor) € is written as € = T where L(t) is
the length of the rod at time . This can be transformed into € =1 — Y, and thus
Y=1—¢. (D.1)
| for ¥, F and Z can be described as - and 2% respectivel
n a same way as for Y, F an can be described as = and —~ respectively.
_ _ 0x 0Xeq _
In this way, F can be transformed into = Y~'Z If we look at the change in
OXeq OX
DAZ
TS g(x, t)Ax, for small values of Ax.
DAz Dz X = D(YF)AX— D(YAx) A 0o
Dt Dt = Dt - I (D2

In this equation, g = g(x, t) has units of inverse time and represents the rate of growth
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at point x. This equation can be converted to

D(YF)
Dr Y

Multiplying this by F~' and working out de total derivatives gives

oy Y OV
9t T T laxt 7Y
ay a(Yv)

& =9 (D.3)

These steps are allowed since Ax is small.
Now we substitute Equation (D.1) into (D.3) and obtain

0 0
et i) =g
0 0 d

=4 —ES—F(’I—S)aV—FVa“—S)—g

0 v oe
@ag‘i‘(nﬁ—/l)&‘i‘Va_—g

0 Ox0e ov
(:)ES—FEG—X—F( — )az—g

De ov
@E‘F(C—”a:—g

which results in the infinitesimal strain (tensor) equation used for morphoelasticity.
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E Stability

Consider the one dimensional morphoelastic problem stated in Section 2 with zero
growth and zero body force:

dv ) dv 0%v Eas_o

Par TP o ol T e T (S
de 16\/ (95_0

E—F(«S— )a—i—\/a— )

The boundary conditions are given by:

v(0, ) =0

In this appendix, the stability of (5) around the equilibrium points
(v,€) = (0, &), e €R,

is investigated. In order to do so, this system is linearised around the equilibrium
points where (v, €) = (017, €9 + 02€), 012 € R have been used as perturbations. The
linearised system is given by:

oV wo* E 9g

at pox? p ox S
98 I (52)
E"‘(go— )a— .

The following general solutions will be used next:

V(X t) _ e/\vt+ikx

6(X, t) _ e)\gt-ﬁ—ikx.
In the end, it turns out that the frequencies k do not have any influence on the stability.
Therefore, they are chosen to be equal. The system (5/) is stable if Re(4,) <0, and
Re(A:) < 0.

These general solutions are substituted into the linearised system (5.):

), ek 4 g2 H phtvike _ E phettikx _
‘ p P (53)
)\s eAEtJrakx + (80 _ 1) ik eAVtJrzkx =0

60



Division by e’**X in the first equation and by e*<!*** in the second leads to

v E
A+ k2= — ik —ele=Mt =
P p (54)

he + (0 — 1) ik et = 0,

Looking only at the real terms of those equations gives

Re(h) = —k2 2 <0
2
Re(A.) = 0.

Thus, the system (5) is stable.

Looking at the results of the pulling rod problem in this thesis, one can assume
that the real parts of the eigenvalues A, and A, are equal. In this problem, one pulls
a rod with constant force. This force is applied for a limited time. After that time,
the rod is loosened. The rod will reach a maximum displacement corresponding to
its mechanical properties and the applied force. The results show that this maximum
displacement is constant. No oscillations are found, neither with smaller time steps.
With this, one can conclude that the real part of the eigenvalues are equal, and thus
zero. This is since the last terms of both equations in (5;):

E
— ik —eWem Mt and
P
(g0 — 1) ik et

should be constant over time when no oscillations are found.
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F  Numerics of this Thesis

F.1  Velocity Displacement PDE
Galerkin Weak Form

Find v, € H'(I,) such that Yy, € H'(1;)

QZJ alph a\/h B
pdt/wh\/hdx — \ —Vh dx + /,UW ad}( =
- ES# dx + Gix (O)F. (G)

Linear System

Y vy = Z”H &j(t);(x(t)), with & the approximation of the displacement velocity vy,
and v(t, O) =0.

W) = @x(t), =12, n+1

Substitution of the above equations into the Galerkin weak form (), results into

d f7+1 n+1 )
EZ gjp/ @iy dx+) éju/qa,q;j dx = /cpl-/—_b — Eeq dx + ¢ilxi(t)F
J=1 _/I/_/ j=1 u I

M, A b,

In short notation: J

dt
The mass matrix, stiffness matrix and load vector are given by the following.
2h(t)1 + 2h(1); h(t)2

h(t); 2h(t)> + 2h(t);s  h(t)s

By 2h(8) + 2b(0he1 h(Bhes
h(t)n+ 2h(t)n+1
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h(t); (t)2 h(t)2
1 1 1 1
Th(, A0, A0 h(0s
A=y
1 1 1 1
“hit), h<t>n+¢<t>n+1 hifne
B h(t)n+1

b, = h(t)Fp — E/ e@'dx + Fepi
l;
Here e, 1 represents the unit vector, with only a one at the (n+1)th position. The
leftover integral in the load vector will be described in detail below.
For every element of the mesh, the integral will have a different result. First
we look at an inner node x;. Since the space derivative of the basis function is not
depending on the position x, we can drag this term out of the integral.

Xi+1
—E/apf dx = —E/ e dx
Iy Xi—1

Xi+1
= —E(pf/ € dx

i+1

1
= —E(pr QATM -he  (trapezoidal rule)

k=i
,€im + & ,8,’"‘8,’
= E(hl(pt% + hi+1()0[TH)

E
= §(€i+1 — &i1)

Since we only look at the segment around node x;, the sum starts at i and ends at i+1.
All others are equal to zero (see the description of the basis function in Section 3.1).

hz(f)/‘_b — (63 — 81)
bv = :
hn(t)Fb - %('En—H - <(:n—1)
hn+1(t)Fb - %(Sn + 5n+1) + F
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Time Integration For this PDE the Euler backwards method is used.

Mfﬁékﬂ _ Mfgk
At
= (M ALAST)EFT = MEEE 4 Atby

+ Ak+1 <‘[(/<+1 _ bk

v

To be able to solve the above system easily, (M**" +AtA*") should be invertible.

To show that this is true, it will be proved that this is symmetric positive definite
(SPD).

Proof of its Symmetric Positive Definiteness Symmetry of M,, A, and M, + At
follows immediately from their definitions. It remains to prove the positive definiteness.
For this, first we prove that M, is positive definite, that is: x’ M,x > 0 Vx # 0. We
get:

n+1 n+1 n+1 n+1

x M,x = Z Z Xim; jXj = Z Z Xi ,O// Pip; dX x;

=1 j=1 =1 j=1
n+1 n+1 n+1

o [ LY wowdi=p [ (3_xefdz >0

le i =1 le =
Further, we treat A similarly. It follows that

n+1 n+1 n+1 n+1

x' Ax = Z Z XiQ X = Z Z Xi u/ V- Ve dk x;
It

i=1 j=1 i=1 j=1
n+1 N n+1
=u [ VO xe)l’ ds > au/ (> x@) ds >0
I i=1 iz
Poincaré’s inequality, with a > 0.
Herewith

x" (M, + AtA)x = x" Mx + Atx’ Ax > 0Vx #+ 0.

Hence (M, 4+ AtA) is SPD. [

This together results in that M**T 4+ AtA is SPD and moreover it is invertible. So
the above system can be solved for &* by the use of the Euler backwards method
and the MATLAB backslash solver.
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F.2 Infinitesimal Strain PDE
Galerkin Weak Form

Find e, € H'(I,) such that Yy, € H'(1;)

d Dy, ov
py /r Ynep dx — /[ W‘Sh dx = /[ W& — () dx. (Ge)

Linear System

) & = Z/”:J Gj(t);(x(t)), with ¢ the approximation of the infinitesimal strain (ten-
sor) €.

W) Uy = @x(t), (=0,2...,n+1

Together with the transport property of basis functions, the system is given by

dgé-/--d _/ o
dt i / Iy (pl(p/ X= s (p aX X

Me be

In short notation, this is given by:

d
—(M.Q) = b

The mass matrix for the infinitesimal strain (tensor) equation is given by

2h(t)1 + 2h(t) h(t)2
h(t)2 2h(t)2 + 2h(t)s  h(t)s

h(t.)H 2h(t)n+ih(t)n+1 h(t)n1
h(t)n+1 Zh(t)17+1

and the load vector by

dv
be=|=——G-1]| h(t),
‘ (6)( ) (0

where 1 is a vector filled with all ones.

For implementing this load vector, one needs the spatial derivative of the dis-
placement velocity v. This, however, is not a result of the velocity system, though one
can use this result in combination with a difference scheme to approximate its spatial
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derivative. Lets say v = (O i Voo vn+1), where v; is the velocity in node i on
the mesh. Then the spatial derivative in node i at time ¢ can be approximated by

Vi(t) — Vi (t)
hi(t)

with h(t) the distance between node i and i — 1. For the first and last equation
for the load vector b, an upwind and backward scheme are respectively used. For
the infinitesimal strain (tensor) PDE there are no boundary conditions needed. How-
ever, this means that the values on the boundary aren’t known and thus need to be
determined by solving the PDE.

Time Integration

M£<+1 (k+1 _ Mﬁzk _ bk
At “

= M = MECE 4 Atb!

Because the mass matrix is SPD, this system in the spatial dimension can easily
be solved with the mMATLAB backslash solver.

F.3 Cell Concentration PDE
Galerkin Weak Form
Find ¢, € H'(/;) such that V¢, € H'(/,)

d Dy auy, dc
E \ Q[/hCh dx — /[ TthCh dx +//{D(9_Xha_xh dx = \ QthCh(1 — Ch) dx. (GC)

Further use of this equation will be in the explicit form. This means that the right
hand side will be taken from the last time step. With that the values for ¢, are known.

Linear System
) cn = Zfic] ni(t)@;(x(t)), with n the approximation of the cell concentration ¢y,
W p = @ix(t), (=02..., n+1

Together with the transport property of basis functions, the system is given by

d n+1 n+1 a(Pa(p
gt Z f?/(t)/ i dx + Z f]/(t)/ Dga_xj dx = /QO[BCt_1(1 — "N dx.
j=1 h , =1 i It
M. Ac b
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One gets the short notation system

d
—(M.n) + A.n = b,.
dt( n) + Acn

The mass matrix is exactly the same as for the infinitesimal strain (tensor) equation.
The stiffness matrix is similar to the one for the velocity equation, only this time it is
multiplied by D, instead of p. Last, the load vector by

b, = B (1 — " Nh(t).

Time Integration The Euler Backwards method is used, while considering the fact
that the right hand side will be taken from the last time step.

/\/If“ peH Mcknk

At
= (M AATT )T = MEn* + At

AR kT —

C
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G comsoL Multiphysics® LiveLink™ for MATLAB

The comsoL multiphysics® LiveLink™ for maTLAB has been used to reduce the risk of
implementation errors. It has been used for automatically filling in the components
of comsoL multiphysics® PDE Coefficient Form when working in three dimensions.
For this, the formulas given in Section 2 are implemented in MATLAB by the use of the
symbolic environment, and transformed via the comsoL multiphysics® LiveLink™ to a
comsoL Multiphysics® model.

In this subsection, it is briefly explained how the symbolic environment of MATLAB is
used, and how this is implemented in comsoL Multiphysics® by using the LivelLink™.

it is a good idea for first time users of the comsoL multiphysics® LiveLink™ for
MATLAB is to save a comsoL Multiphysics® model as an 'm’ file and open it in MAT-
LAB afterwards. In this way, the MATLAB commandos to call comsoL Multiphysics®
commandos are shown.

G.1  The MATLAB Symbolic Environment

The symbolic environment of MATLAB can do mathematical calculations with sym-
bolic variables instead of just numbers. Symbolic equations are also used in comsoL
Multiphysics®. However, every matrix equation should be written out per matrix ele-
ment. This has to be done since symbolic matrix equations are not available in the
standard interface. It can, however, be done with the physics builder interface. The
PDEs given in (F2) are very complex. For this reason, the symbolic environment of
MATLAB in combination with the comsoL multiphysics® LiveLink™ for maTLAB would be
a less error prone method to get all the formulas in a correct fashion in a comsoL
Multiphysics® model, than filling in the coefficients in comsoL Multiphysics® directly.

As an example of how the symbolic environment works and how to use the
LiveLink™ an example will be given using the symbolic expression of the Cauchy
stress (tensor) o.

E
_|_
14+ nu

0 = i sym(L) + ptr(sym(L))

Y e
6+1_2vr(5)

The equation for the Cauchy stress (tensor) o consists of four interesting parts: sym(.),
tr(.), L and ¢, which will be described in the sense of the symbolic environment below.
For tr(.), the int-built the mMATLAB function trace(.) is used to get the trace of a
squared matrix.

For the symmetric part of a matrix (sym(.)), a small function has been written:
symm = Q(L) 1/2%(L+L."'). Note that the name of this function consists of a double
'm’, since sym(.) already exists in MATLAB and constructs an object of the symbolic
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class from its input. This however has already been used (to create symbols), and
overwriting base functions is general bad practice. Further note that the transpose
of the matrix is taken with the notation .', otherwise the conjugate transpose is
taken, which is not needed in our case. Though, the conjugate transpose would not
give any troubles because only real numbers are worked with. The MATLAB symbolic
environment will write down how to get the conjugate transpose which is larger than
necessary. So the real numbers transpose is used instead. Now the symmetric part
of a function can be called by symm(.).

The values of the variables [ and ¢ are unknown (those are results of the PDE),
therefore those matrices should also be given in symbolic form. For the infinitesimal
strain (tensor) ¢ the self-made function createMatrix_sym('var',n,m) is used.
This function creates an n x m matrix of variable ‘var’. The matrix entries will be
named as follows: the entry of row i and column j will be called vari_j. This is
easily done by using the commando sym('var', [n m]). Then the underscores are
deleted by the use of sym(strrep(string(mat),'_","'')). In this way the 3x3
matrix for the infinitesimal strain (tensor) €, knowing that the symbol '€’ cannot be
implemented in both MATLAB as comsoL multiphysics®, has the form:

E11 E12 E13
E21 E22 E23
E31 E32 E33

The infinitesimal strain (tensor) € is said to be symmetric, and so the lower triangle
is replaced by the transposed upper triangle triu(A,0) + triu(A,1).' to save
memory.

E11 E12 E13
E12 E22 E23
E13 E23 E33

Finally, the symbolic formulation of the velocity gradient [ is described. One first
needs to know how to write a derivative in comsoL multiphysics®. There are two ways
to describe, e.g, a spatial derivative of u:

1. du,x);
2. ux.

The second option can only be used for dependent variables, such as the displacement
u. For other type of variables, the first must be used. Since the velocity gradient
contains spatial derivative of the dependent variable for the displacement velocity v, it
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is chosen to use the second option. To create the velocity gradient matrix, a function
has been written called grad3D_sym(A,isVar). A can be either a matrix (‘isVar’ is
false) to which only the derivative form needs to be added, or a variable (‘isVar’ is
true) of which the whole matrix including its derivatives needs to be created.

After a simple matrix (such as for the infinitesimal strain (tensor)) has been created,
the spatial derivative notation is added. For this, a matrix for the spatials has been
made via the repmat(.) function of mMATLAB. Then the two matrices are added as
characters. Consequently, the unnecessary parts are deleted and the following matrix
is created.

vix viy viz
v2x v2y v2z
v3x Vv3y v3z

In the end, this matrix needs to be transposed to get the correct form for the velocity
gradient L.

Note that the function grad3D_sym(.) only works if the variable A" is lower in
the alphabet than x, y and z, since this is how this symbolic function and char(.)
works when adding variables (B + A always becomes A + B).

To save some memory while solving in comsoL multiphysics®, the Voigt notation is
used. This can be used since the infinitesimal strain (tensor) € and so the Cauchy
stress (tensor) o are said to be symmetric. In this way, there are three fewer unknowns
to solve. For this, a function called voigtNotation_sym(.) is implemented in MATLAB.
It rewrites a symmetric matrix to a vector of only the elements of its upper triangle.
The first elements of the vector are the diagonal elements of the matrix.

With all the above knowledge, the symbolic expression of the Cauchy stress (tensor)
o can be implemented. With similar tricks, the other formulas of (/2) are written out
by the use of the symbolic environment of MATLAB.

G.2 Usage of the comsoL multiphysics®LiveLink™ for mATLAB

After all the preliminary work, such as creating the correct matrices has been done,
it is implemented in comsoL multiphysics® with the use of the LiveLink™ for MATLAB.

The order in this MATLAB file is the same as how you should create a comsoL
Multiphysics® file. First, a model is selected and created. Subsequently a geometry
is added, physics are added and a mesh is chosen. Of course more complex ideas can
be added too this way, such as a parameter and variable list, but extra functions can
also be added under definitions.

For every part, it first needs to be created before it can be adjusted. For example,
if one adds a bar to the geometry, the the following lines of code are used.
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model.component ('compl') .geom.create('block', 3);

model. component ('compl').geom('block').label('Geometry: Bar');
model . component ('compl').geom('block').create('blkl', 'Block');
model.component ('compl').geom('block') .run;

To the model component 'comp?” a three dimensional geometry called or tagged
'block’ is added in line 1. As a next step, this geometry will get the label "Geometry:
Bar', which can be handy when comsoL multiphysics® is opened. Then a standard
unit cube is created and named 'blkT. To use the geometry throughout the code, it
needs to be ran.

In a same way physics can be added to the file. When adding a PDE Coefficient
Form to comsoL Multiphysics®, a standard Poisson equation is already filled in. To
avoid this, the entries of the diffusion (c), source (f), and mass (da) terms are set equal
to zero. For instance, the mass term:

nv = length(V);
for i = 0:(nv-1)
model.component ('compl') .physics('v').feature('cfeql').
setIndex('da', 0, ix(nv+1)); /matriz da
end

Then, the values are added to the right coefficient. Again, the mass coefficient, for
the displacement velocity v PDE, is shown as example.

for i = 0:(nv-1)
model . component ('compl') .physics('v').feature('cfeql').
setIndex('da', 'rho', ix(nv+1));
end

One thing to note is that this Livelink™ commandos would like to have strings

as inputs, and thus no symbols. Therefore, all the symbolic terms are transformed to
strings, by using the function string().

As a last step, the boundary conditions are added. These conditions, however,
differ between the cases; do we work on the pulling bar problem or the growing
problem? The below example is of the pulling bar problem, where a force is applied
on one boundary.

model.component ('compl') .physics('v').create('fluxl’,
'FluxBoundary', 2);
model.component ('compl') .physics('v').feature('fluxl').
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4 setIndex('g', 'leb*(t<=t_end/2) [Pal', 0);
5 model.component ('compl') .physics('v').feature('fluxl"').
6 selection.set([6]);

First, the boundary condition of a flux/source is implemented for a two dimensional
space, a surface boundary, and named 'fluxT. Then, the value of this force is added
to this boundary condition 'fluxT. Lastly, it is set to be only applicable on boundary
number 6.

This way of working with the combination of comsoL multiphysics® and MATLAB has
shown off its merits. The implementation worked amazing and the results, compared
to the one dimensional cases, look excellent. Even after rotating the geometry into
multiple positions, the results were as they should. For this see Appendix |.
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H One Dimensional Results

H.1 Viscoelastic Results Compared to Linear Elasticity

%10 ~_ Displacement through time for various 1.

-

o
©

o
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©
~
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Figure H.1: Results of applying the viscoelastic model with different values of the viscosity p.
The end point of the rod with length one is plotted.

To see the effect of the viscosity, simulations over the first 40s have been shown. An
external force is applied for the first 20s. In this examined system, no mass density is
present. Only the effect of the shear modulus has been considered. The arrows show
the decrease in shear modulus. The outer yellow line shows when the viscosity 1/ is
near zero. This looks like linear elasticity. The maximum displacement when pulling
by a constant external force has been reached (almost) immediately.
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H.2 Viscoelasticity; Varying the Mass Density p
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Figure H.2: Results of applying the viscoelastic model with different values of the mass density
p. The end point of the rod with length one is plotted.

The effects of the mass density p are shown in the figures above. In the case of a mass
density with a higher order than the order of the Young's modulus £ and the shear
modulus 1, as in Figure H.2¢, the behaviour of the system appears to be unstable.
However, from Figure H.2d one can conclude that the oscillating effect gets damped
and the solution is stable.
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H.3 Viscoelastic Results vs. Morphoelastic Results
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Figure H.3: A comparison of the different solving methods. Visco1, ViscoByV, Comsol, Morpho,
and Comsol MM are all plotted for two time steps (dt=0.1 s and dt=0.001 s), over a time of
50 seconds. Every figure (a) — (j) one line is added, which line is mentioned in their caption.

In the figures in this appendix, the zoomed results of a MATLAB viscoelastic model are
compared to a MATLAB morphoelastic model and the morphoelastic model in comsoL
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Figure H.3: (Cont.) A comparison of the different solving methods. Visco1, ViscoByV, Comsol,
Morpho, and Comsol MM are all plotted for two time steps (dt=0.1 s and dt=0.001 s), over a
time of 50 seconds. Every figure (a) — (j) one line is added, which line is mentioned in their
captton.

Multiphysics®.

Two solving techniques are used for the viscoelastic results. Both make use of a
order reduction in the time derivative. The first method is to write the Euler Backwards
time integration method in a system and to solve for two variables (the displacement v
and the displacement velocity v). The results from this method are called Viscol. The
second approach is the same as has been done and described for the morphoelastic
problem, using a post processing step to find the displacement. This result is called
ViscoByV' in the figures above.

For the results created with comsoL multiphysics®, it is chosen to compare both
morphoelastic calculation without a moving mesh (Comsol) and with a moving mesh
(Comsol MM). Lastly, Morpho shows the results of the written MATLAB program to
solve the morphoelastic model.

A first look shows that Viscol and Comsol have a slight undershoot, while Vis-
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coByV and Morpho have a slight overshoot when using a bigger time step. Further,
it is interesting that the Comsol MM results are in between, just on the line where
all the results will be converging to when using a smaller time step.
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| Three Dimensional Results

.1 Rotations of the Pulling Bar Problem

In this appendix a verification of the three dimensional setup is given. The pulling
bar setup is compared to the pulling rod problem. For this the displacement in the
longitudinal direction of the bar is calculated for different directional states of the bar:

e placed with an edge on the x-axis (3Dx)
e placed with an edge on the y-axis (3Dy)
e placed with an edge on the z-axis (3Dz)

e placed with an edge on the x-axis, then rotated in space by 45° in the xy-plane
and thereafter rotated by 45° in the plane that the longitudinal direction of the
bar makes with the z-axis (3Drot)

All the results are plotted together in the figure below together with the one dimen-
sional result. One can see that the results overlap.

1.0 210 1D compared to 3D
1D
3Dx
11 3Dy
3Dz
3Drot
— 0.8
E
=
g
So06f
(]
©
=1
2
T o4t
0.2
0 : L )
0 5 10 15 20

time [s]

Figure 1.1: One dimensional pulling rod results (blue) compared to the three dimensional
pulling bar results.
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.2 Bar Bending

For the extreme growth trials, a bending takes place after an amount of time. This
can be seen most easily for the constant growth factor of 1 s~ To show this, the
y- and z-directional displacement is given in Figure [.2. Further, it can be seen that
the solving from approximately that point of bending in time on gets tougher. Smaller
time steps are taken (see Figure |.3).

Point Graph: Displacement through time in the three main directions

0.4F

—u2

0.35F
—u3

0.3
0.25F
0.2

0.15F

Displacement (m)

0.1

0.05F

0 5 1‘0 15 20

Time (s)
Figure 1.2: A constant growth factor of 1 s~! has been used for this result. Only the displace-
ment in the y- and z-direction are drawn. However, the growth tensor only had values in the
x-direction. One can see that the bar will eventually bend. Although the bar will bend, the
bending is minimal compared to the x-directional displacement.
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Figure 1.3: One can see that solving gets tougher, because in the end, the solver takes bigger
time steps.

79



References

[1] M. Grevinga, Y. Schonbeck, A. D. Hindori-Mohangoo, M. E. B. Reijnders, and
S. B. Detmar, ‘Aangeboren afwijkingen in nederland 2010-2016: Cebaseerd op
de landelijke perinatale registraties,” tech. rep.,, TNO, 2018.

2] J. Stone, K. Eddleman, and M. Duenwald, Pregnancy for Dummies. John Wiley
& Sons, 4th ed., 2014.

[3] F. Mark A Curran, M.D, "Fetal development” http://perinatology.com/
Reference/Fetal),20development.htm, 03 2019. Online article about the fetal
development, described per week.

[4] Maag Lever Darm Stichting, ‘Anusatresie.” https://www.mlds.nl/ziekten/
anusatresie/, 08 2019.

[5] Vereniging Anusatresie. https://www.anusatresie.nl/, 08 2019.

6] M. Hill, “Embryology” Crown-Rump Length, 08 2019.  Retrieved from
https://embryology.med.unsw.edu.au/embryology/index.php/
Crown-Rump_Length.

[7] R T. Tranquillo and J. D. Murray, “Continuum model of fibroblast-driven wound
contraction: inflammation-mediation,” Journal of theoretical biology, vol. 158,
no. 2, pp. 135-172, 1992.

[8] L. Olsen, J. A. Sherratt, and P. K. Maini, "A mechanochemical model for adult der-
mal wound contraction and the permanence of the contracted tissue displacement
profile,” Journal of theoretical biology, vol. 177, no. 2, pp. 113128, 1995.

9] M. M and S. R, “Wound geometry and the kinetics of wound contraction,” Plast
Reconstr Surg, vol. 72, pp. 66—72, 1983.

[10] C. L. Hall, Modelling of some biological materials using continuum mechanics.
PhD thesis, Queensland University of Technology, 2008.

[11] D. Koppenol, Biomedical Implications from mathematical models for the simulation
of dermal wound healing. PhD thesis, TU Delft, 2017. https://doi.org/10.
4233/uuid:cdc7392f-4ac6-404c-9615-dc425f67efae.

[12] Vivas, J., Garzén-Alvarado, D, and Cerrolaza, M., “Modeling cell adhesion and
proliferation: a cellular-automata based approach,” Advanced modeling and sim-
ulation in engineering sciences, vol. 2, no. 32, 2015.

80


http://perinatology.com/Reference/Fetal%20development.htm
http://perinatology.com/Reference/Fetal%20development.htm
https://www.mlds.nl/ziekten/anusatresie/
https://www.mlds.nl/ziekten/anusatresie/
https://www.anusatresie.nl/
https://embryology.med.unsw.edu.au/embryology/index.php/Crown-Rump_Length
https://embryology.med.unsw.edu.au/embryology/index.php/Crown-Rump_Length
https://doi.org/10.4233/uuid:cdc7392f-4ac6-404c-9615-dc425f67efae
https://doi.org/10.4233/uuid:cdc7392f-4ac6-404c-9615-dc425f67efae

[13] A. Monteagudo and J. Santos, A Cellular Automaton Model for Tumor Growth
Simulation, pp. 147-155. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[14] S. Shahmoradi, F. N. Rahatabad, and K. Maghooli, “A stochastic cellular automata
model of growth of avascular tumor with immune response and immunotherapy,”
Informatics in Medicine Unlocked, vol. 12, pp. 81-87, Elsevier.

[15] A.N. Annaidh, K. Bruyere, M. Destrade, M. D. Gilchrist, and M. Otténio, “Charac-
terization of the anisotropic mechanical properties of excised human skin,” Journal
of the mechanical behavior of biomedical materials, vol. 5, no. 1, pp. 139 — 148,
2012,

[16] M. Pawlaczyk, M. Lelonkiewicz, and M. Wieczorowski, ‘Age-dependent biome-
chanical properties of the skin,” Advances in Dermatology and Allergology/Poste
py Dermatologii i Alergologii, vol. 30, no. 5, pp. 302 — 306, 2013.

[17] P. G. Agache, C. Monneur, J. L. Leveque, and J. De Rigal, ‘Mechanical properties
and young's modulus of human skin in vivo,” Archives of dermatological research,
vol. 269, no. 3, pp. 221 — 232, 1980.

(18] M. S. Hu, M. R. Borrelli, W. X. Hong, S. Malhotra, A. T. Cheung, R. C. Ransom,
R. C. Rennert, S. D. Morrison, H. P. Lorenz, and M. T. Longaker, “Embryonic skin
development and repair,” Organogenesis, vol. 14, no. 1, pp. 46 — 63, 2018.

[19] P. Mott and C. Roland, “Limits to poisson’s ratio in isotropic materials,” Physical
review B, vol. 80, no. 13, p. 132104, 2009.

[20] L. Huber, R. A. Perkins, A. Laesecke, D. G. Friend, J. V. Sengers, M. J. Assael, |.
N. Metaxa, E. Vogel, RMares, K. Miyagaw, “New international formulation for

the viscosity of h20," Journal of Physical and Chemical Reference Data, vol. 38,
2009.

[21] J. M. Benitez and F. J. Montdns, “The mechanical behavior of skin: Structures

and models for the finite element analysis,” Computers & Structures, vol. 190,
pp. 75-107, 2017.

[22] R-W. Ogden and G. A. Holzapfel, Mechanics of biological tissue. Springer, 2006.

(23] D. Ambrosi, G. A. Ateshian, E. M. Arruda, S. Cowin, J. Dumais, A. Goriely, G. A.
Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, et al, “Perspectives on bio-

logical growth and remodeling,” Journal of the Mechanics and Physics of Solids,
vol. 59, no. 4, pp. 863-883, 2011.

81



[24] K. R Swanson, C. Bridge, J. Murray, and E. C. Alvord Jr, “Virtual and real brain
tumors: using mathematical modeling to quantify glioma growth and invasion,’
Journal of the neurological sciences, vol. 216, no. 1, pp. 1-10, 2003.

[25] D. C. Koppenol, F. J. Vermolen, F. B. Niessen, P. P. van Zuijlen, and K. Vuik,
‘A biomechanical mathematical model for the collagen bundle distribution-
dependent contraction and subsequent retraction of healing dermal wounds,”
Biomechanics and modeling in mechanobiology, vol. 16, no. 1, pp. 345-361, 2017.

[26] RHaberman, Applied Partial Differential Equations. Pearson Prentice Hall,
5th ed.,, 2013. ISBN: 9780321828972

[27] COMSOL Inc, COMSOL Multiphysics Reference Manual, 2018.  comsoL
multiphysics® version 5.4.

(28] C. Vuik, FJ. Vermolen, M.B. van Gijzen, M.J. Vuik, Numerical methods for or-
dinary differential equations. Delft Academic Press, 2nd ed, 2016. [ISBN:
9789065623737.

[29] J. van Kan, A. Segal, F.J. Vermolen, Numerical methods in scientific computing.
Delft Academic Press, 2nd ed., 2014. ISBN: 9789065623638.

[30] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential
Equations. Studentlitteratur. ISBN: 91-44-49311-8.

[31] W. Boon, D. Koppenol, and F. Vermolen, "A multi-agent cell-based model for
wound contraction,” Journal of biomechanics, vol. 49, no. 8, pp. 1388-1401, 2016.

[32] G. Dziuk and C. M. Elliott, “Finite element methods for surface pdes,” Acta Nu-
merica, vol. 22, pp. 289-396, 2013.

[33] COMSOL Inc. https://www.comsol.com/products, 10 2019.

[34] M. Simunovic, J. J. Metzger, F. Etoc, A. Yoney, A. Ruzo, I. Martyn, G. Croft, D. S.
You, A. H. Brivanlou, and E. D. Siggia, “A 3D model of a human epiblast reveals
BMP4-drive symmetry breaking,” Nature cell biology, vol. 21, no. 7, p. 900, 2019.

[35] S. Levin, Tensegrity: The New Biomechanics, pp. 69-80. 01 2006.

[36] L. van Renterghem, “Biotensegrity, a structural model for the human body as a
unity, body and mind,” 2017.

[37] N. Shinozuka, N. Akamatsu, S. Sato, T. Kanzaki, H. Takeuchi, M. Natort, Y. Chiba,
and T. Okai, “Ellipse tracing fetal growth assessment using abdominal circumfer-

ence: Jsum standardization committee for fetal measurements,” Journal of Medical
Ultrasound, vol. 8, pp. 87-94, 01 2000.

82


https://www.comsol.com/products

]
TUDelft



	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Embryonic and Fetal Growth
	Previous Research
	Purpose of this Thesis
	Physical Properties of an Embryo

	Introduction into the Mathematical Models
	One-Dimensional Morphoelastic Model
	Three-Dimensional Morphoelastic Model
	Adding Cell Properties to the Systems
	Alternative Idea for the Cell Properties PDE

	Numerical Method
	Finite Element Approach
	comsol multiphysics®

	Results
	One-Dimensional Problem
	Pulling Rod Problem
	Verification by the Use of a Manufactured Solution
	The Effect of Two Different Growth Terms
	Results with Added Cell Properties
	Results on the Alternative Idea for the Cell Concentration

	Three-Dimensional Problem
	Verification by the Use of the One-Dimensional Results
	Added Growth
	Results with Added Cell Properties

	Summary of the Results

	Conclusion
	Discussion

	Embryonic Growth Table
	The Young's Modulus of an Embryo
	Partial Differential Equations
	One-Dimensional PDEs
	Three-Dimensional PDEs

	Derivation of the One-Dimensional Evolution Equation of the Infinitesimal Strain
	Stability
	Numerics of this Thesis
	Velocity Displacement PDE
	Infinitesimal Strain PDE
	Cell Concentration PDE

	comsol multiphysics®LiveLinkTM for matlab
	The matlab Symbolic Environment
	Usage of the comsol multiphysics®LiveLinkTM for matlab

	One Dimensional Results
	Viscoelastic Results Compared to Linear Elasticity
	Viscoelasticity; Varying the Mass Density 
	Viscoelastic Results vs. Morphoelastic Results

	Three Dimensional Results
	Rotations of the Pulling Bar Problem
	Bar Bending

	References

