Acceleration of Turbomachinery Steady
Simulations on GPU

Mohamed Hassanine Aissa!®), Lasse Miiller!,
Tom Verstraete!, and Cornelis Vuik?

! Von Karman Institute for Fluid Dynamics,
Waterloosesteenweg 72, 1640 Sint-Genesius-Rode, Belgium
aissa@vki.ac.be
2 Delft University of Technology, 2628 CD Delft, The Netherlands
http://wuw.vki.ac.be

Abstract. Steady state simulations in Computational Fluid Dynam-
ics (CFD), which rely on implicit time integration, are not experiencing
great accelerations on GPUs. Moreover, most of the reported acceleration
effort concerns solving the linear system of equations while neglecting the
acceleration potential of running the entire simulation on the GPU. In
this paper, we present the software implementation of an implicit RANS
CFD solver, which is fully running on GPU. We use the GMRES linear
solver of the Paralution package combined with the incomplete LU fac-
torization for the preconditioning. We propose also a control mechanism -
on-demand factorization - capable of reducing the number of times an
incomplete LU factorization is performed. The on-demand factorization
accelerates the linear solver without altering the flow convergence. The
GPU implementation achieved a speedups of 9.2x compared to a single-
core CPU and 3.5x compared to a 4-cores CPU for 3-D flow predictions
in turbine applications.

Keywords: Steady CFD - Linear systems + GPU - ILU - Krylov sub-
space - GMRES

1 Introduction

1.1 Sparse Linear Systems in Turbomachinery

Turbomachinery components are nowadays designed by using optimization algo-
rithms, which scan the design space guided by CFD simulations [1]. These algo-
rithms require therefore a large number of simulations making any time gain
on the CFD level very beneficial for the overall optimization procedure. These
steady CFD simulations advance an initial flow solution based on an explicit
or implicit numerical time integration scheme. Implicit schemes are more stable
and faster to converge due to a larger allowed time step. This property comes
however at a high cost of assembling and solving a linear system of equations

© Springer International Publishing AG 2017
F. Desprez et al. (Eds.): Euro-Par 2016 Workshops, LNCS 10104, pp. 814-825, 2017.
DOI: 10.1007/978-3-319-58943-5_65

Acceleration of Turbomachinery Steady Simulations on GPU 815

Az = b at every flow iteration. The system assembly comprises the computa-
tion of the system matrix A and the right-hand side b. The linear solver, due to
the sparsity character, uses an iterative solver such as the Generalized Minimal
Residual Algorithm for Solving Non-symmetric Linear Systems (GMRES) [6].

For CFD problems in turbomachinery, this system of equations is large but
sparse. With the growth of the problem size and complexity, the use of High Per-
formance Computing (HPC) becomes inevitable. In this field, Graphics Process-
ing Units (GPUs) are gaining in importance through the reported speedups of
many CFD applications [2,4]. While dense matrix vector operations are very
efficient on GPUs [5], solving a sparse linear system of equations is more chal-
lenging, since there are less independent operations for the large GPU com-
putational power. Moreover, most linear systems require a factorization-based
preconditioner to converge, which enhances the serial aspect of the algorithm
and thus reduces drastically the GPU performance gain.

1.2 Related Work

In some GPU-accelerated applications [9,20] with a major part of the execution
time for the linear solver, the CPU is used for the system assembly, for which
the high porting effort is not worth the performance gain. A linear solver is in
general implemented on a GPU using a low-level programming language. The
flexibility of the low-level approach makes it possible to adapt the data storage
and the algorithm to the sparsity pattern (non-zero elements distribution) of
the system matrix in order to enhance the performance. In this context, the
effort is concentrated on accelerating the sparse matrix-vector product (SpMV),
which constitutes the core of many linear solvers. Bell and Garland [20] exam-
ined the optimization possibilities for SpMV on GPU without reordering the
system matrix. He identified the diagonal format (DIA) as suitable for struc-
tured meshes and the Hybrid matrix format (HYB) for unstructured ones. The
optimization is part of the CUSP library. Cecka et al. [10] did similar work for
problems based on Finite Element Methods (FEM). He examined the effect of
the memory optimization on the overall performance comparing local, global and
shared memory. Istvan and Giles [11] reviewed relevant research for SpMV on
GPU and concentrated on GPU tuning of SpMV operations for the Compressed
Sparse Row (CSR) matrix format making use of the Ll-cache locality, shared
memory, and thread cooperation. The author presented a speedup of 1.4x over
cuSparse and suggested that cache hit maximization was the key method behind
the observed performance gain.

GPU iterative solver performance has been gradually increasing but the bot-
tleneck remains the serial preconditioners such as the Incomplete LU factoriza-
tion (ILU). These functions have been the subject of extended research [15]. In
order improve the performance, the system matrix has to be reordered. This
expose more fine-grained parallelism and thus provide the GPU with more inde-
pendent instructions. Level-scheduling is one established alternative to elevate
the parallelism of the factorization, where independent rows of the system matrix
are implicitly grouped in the same level. Graph-coloring is another method

816 M.H. Aissa et al.

where an explicit reordering is performed giving independent matrix elements the
same color, then every color is thread-safe for a massively parallel linear solver.
Naumov et al. [12] showed a parallel graph coloring method reaching a higher
parallelism than in level scheduling. His work is included in the cuSparse Nvidia
library. Another method to extract more parallelism, introduced by Chow and
Patel [19], is to transform the ILU factorization in a minimization problem of a
set of equations that could be computed in groups independently. Groups can
be so small to contain only one equation making it possible for every non-zero
element of the incomplete L and U matrices to be computed asynchronously and
in parallel. This ILU version can be found in ViennaCL'.

1.3 Contributions

In this work, the reference CFD simulation is performed on CPU using PETSc [§]
and 70% of the execution time is spend on the system assembly, while the rest
is for the system linear solver. The same balance is also found in some FEM
applications, e.g. Darve et al. [13] ported a CPU application based on PETSc
with 80% of execution time for the system assembly. This observation motivated
us to port the assembly part to the GPU to avoid any data transfer to the CPU
during the simulation. The linear solver is the preconditioned GMRES solver
of the Paralution library?, which uses building blocks of the efficient cuSparse
library. This library has been reported [18] to allow a speedup of factor 5x for
a neutron diffusion problem. Paralution performs, however, the assembly of the
system matrix on the host, which implies a data transfer from GPU to the host
CPU. To address this issue we developed an interface to connect the system of
equations, which is assembled on the GPU, to the linear solver. We propose an
algorithm - on-demand LU factorization- to optimize the frequent use of linear
solvers in steady simulations. The algorithm is capable of reducing the number
of times an ILU preconditioner matrix is built for the linear solver without
altering the flow accuracy. This new technique enables the linear solver to use
previously computed LU matrix as preconditioner instead of computing a new
one in every iteration. We combine this technique with standard ILU to deliver
the best speedups for coarse and fine meshes.
Our contributions are:

— A GPU solver based on implicit time stepping with no CPU-GPU data trans-
fer.

— An on-demand ILU preconditioner build to reduce the computational time.

— Analysis of the advantages and drawbacks of the GPU for implicit solvers.

— An interface to Paralution and ViennaCL linear solvers.

— A sorting algorithm to transform unordered matrix entries to COO then CSR.

The rest of the paper is structured as follow: Sect.2 introduces the numerical
scheme used by the CFD solver while Sect.3 describes the implementation of

! Rupp, K. “ViennaCL.” http://viennacl.sourceforge.net.
2 PARALUTION Labs “PARALUTION v1.0.0”, 2015, http://www.paralution.com.

http://viennacl.sourceforge.net
http://www.paralution.com

Acceleration of Turbomachinery Steady Simulations on GPU 817

the solver on the GPU. Results are shown in Sect. 4 and main findings are sum-
marized in Sect. 5.

2 Numerical Scheme

The flow solver uses a cell-centered finite volume discretization on multiblock
structured grids. It solves the Reynolds-Averaged Navier Stokes (RANS) equa-
tions in time-dependent integral form [16]:

gt/nwcz9+1{m(pc_pv)dsz/nczdn, (1)

with W = {p, pVs, pVy;, pVs, pE} the vector of conservative variables, {2 the cell
volume and S the cell surface. The convective fluxes F,. are computed using
a Roe upwind approximation of a Riemann Solver while second order accu-
racy is achieved through the MUSCL approach (Monotone Upstream-Centered
Schemes for Conservation Law). The viscous fluxes F, are approximated using
a central discretization scheme. The source term @ contains contributions from
the Spalart-Allmaras (SA) one-equation turbulence model.

The implicit time integration on steady simulations follows the equation

below: {(Zﬁ) + (;I?/ﬂ AW"™ = —R". (2)

with R the residual containing the fluxes and the source term, AW = W —
W™ the solution change, I the identity matrix and (?TI?/ an approximate Jacobian
matrix. When Eq. 2 is applied to the entire mesh a large linear system is build
with the form Az = b. Residuals and Jacobian are first evaluated on cell surfaces
and then summed in a local assembly procedure (see Eq.1). The global assem-
bly concatenates the local items to a large global matrix and right-hand side
containing all the problem unknowns. A multistage time stepping method such
as implicit Runge-Kutta [17] solves multiple successive linear systems for every
flow iteration, in which only the right-hand side is updated then multiplied by a
different stage coefficient .. The nature of the flow solved in this work and the
mesh complexity leads to a stiff system matrix that requires further treatment,
e.g. preconditioning, to enhance the linear system convergence. A preconditioner
is any form of modification to the original linear system, which accelerates the
convergence of an iterative method [7]. The linear system of equations is modified
as follow:

M~ Az = M1, (3)

with M the preconditioning matrix. M can be filled by an incomplete factor-
ization of the original system matrix: A = LU — R, where L and U are upper
and lower matrices respectively while R is the residual of the factorization. The
general algorithm of the incomplete LU factorization can be found in [7]. This
factorization - involving a Gaussian elimination process - is inherently serial with
recursive computations, in which every value of the L and U matrices depends
on the computation of several values of previous rows and columns. This depen-
dency makes any parallelization difficult.

818 M.H. Aissa et al.

3 Flow Solver Implementation

The reference CPU-based implicit solver, written in C++, solves the linear sys-
tem of equations using the PETSc package. The residual and flux Jacobians
are computed serially in a loop over all mesh faces. Profiling has revealed that
the ILU preconditioner is not the bottleneck in the CPU implementation taking
a small portion of the execution time. Three libraries have been considered for
solving the linear system of equations on GPU: PETSc (GPU version), viennaCL
and Paralution. While PETSc requires only a small change on the data type of
the system matrix and right-hand side to run the linear solver on GPU, the
library does not provide a GPU implementation of incomplete LU factorization.
Moreover, it does not accept external data computed on GPU, which reduces the
scope of the parallelization to the linear solver minimizing the expected global
speedup. A second alternative is to use ViennaCL. While this OpenCL-based
library can process data residing on the GPU, it performs a costly data copy
from CUDA type of data to OpenCL. The third alternative is Paralution, which
can process data residing on the GPU and is at the same time based on CUDA
cuSparse library. The latter library has been chosen for the linear solver. To
describe the flow solver implementation, we first introduce briefly some GPU
computing techniques used in this work before we present the two main parts
of the GPU flow solver (see Fig. 1) namely the system assembly and the linear
solver.

GPU

Flow Iterations CcPU

post
processing

CPU

assembly solve
A&b Ax=b

T RK cycles

Fig. 1. Flow solver algorithm with an outer loop for the flow iteration: W™ = W™ 4+
AW, and an inner loop of Runge-Kutta cycles for the computation of AW

Update
Solution

low
converged
?

3.1 GPU Computing

The GPU is a co-processor featuring a large number of cores organized in stream-
ing multiprocessors, which access directly a global memory. Every multiproces-
sor is a set of scalar processors with access to a shared memory local to the
multiprocessor. Each of these processors has its own local and register mem-
ory. Programs running on GPU are called kernels. When calling a kernel the
GPU starts a large number of threads (unit of execution) grouped in blocks of
threads. Threads among the same block are grouped in warps of 32 threads with
consecutive thread ID that execute the same instructions. When threads of the
same warp execute different operations, they are executed serially and this per-
formance decreasing situation is called thread divergence. The GPU acceleration

Acceleration of Turbomachinery Steady Simulations on GPU 819

is based on overlapping the memory access time (latency) with computations.
When a warp is blocked waiting for data the GPU schedules another warp to
take over with no overhead for the scheduling. This technique is more effective,
if a kernel with a large number of blocks is executed, as more warps are likely
to be available for the scheduler. An accurate measure of code performance on
GPU is the throughput as floating operations per second which combines arith-
metical and memory performance. A first hint to optimize a GPU code then is
through increasing the number of active warps, which can run simultaneously
(occupancy). At the same time occupancy should not be the only key of per-
formance assessment, as it can be misleading for some cases [3]. In the second
place, the algorithm should ensure that neighboring threads, which run together
in one warp, access neighbor memory positions in order to avoid long wait times
for variables load. This access is called a coalesced access.

The number of active warps defining the occupancy is proportional to the
number of started threads and the memory consumption per thread in terms
of registers and shared-memory. The variables declared in a kernel are locally
saved in fast access registers until there are no registers anymore and the rest
of the data is stored in global memory. Since all threads share a certain amount
of registers the kernel consumption on registers limits the number of blocks of
threads that could run simultaneously. In case the kernel needs to start few
threads, a technique called multi-streaming can be used to increase the number
of active warps by starting multiple independent kernels at the same time. Every
kernel contributes to the occupancy by providing active warps. This is different
from the standard one-stream approach, in which kernels are executed one after
the other. As this section is intended to provide a short overview of techniques
used in this work, further details to the GPU architecture and the programming
model along with some applications can be found in: [20,24].

3.2 System Assembly

The global system matrix is a concatenation of local block matrices, which are
divided in diagonal and off-diagonal blocks. The dominance of the diagonal
blocks, which contain the inverse of the time step, improves the convergence of
the linear solver. Therefore, when small time steps are used (see Eq.2) GMRES
converges with fast Jacobi preconditioner without the need for factorization.
However, large time steps decrease the diagonal dominance and with it the con-
dition number requiring thus the incomplete LU factorization to accelerate the
linear solver convergence. The off-diagonal blocks contain mainly the flux Jaco-
bians defining the bandwidth of the matrix.

Within the finite volume scheme, the global assembly of the linear system is
made by looping over the cell faces in the mesh. On every cell face a contribution
to the cell local system matrix is computed along with a residual. Since every
cell receives the contributions of six faces, a risk of race condition is eminent, in
which up to six threads simultaneously update the system matrix of the same
cell. To avoid race conditions atomic add or graph-coloring are generally used.
These techniques are known for deteriorating the coalesced access.

820 M.H. Aissa et al.

In this work another alternative that conserves the data coalescence has been
chosen, in which the contributions are stored along with their positions in the sys-
tem matrix (row, column). The face contribution belonging to two neighbor-cells
is stored twice with the belonging cell index and sign. Computing and storing
all face contributions leads to three large arrays: two for indices (column array,
row array) and a third array for the contribution’s value. Contributions belong-
ing to the same cell are identified over identical index in column and row arrays
then summed up using sort and reduce functions of the THRUST library [14]. This
library generates 3 arrays free of repetition hosting the positions and values of all
non-zero elements (nnz) of the system matrix. This data arrangement is known
under Coordinate format (COO). The COO format stores nnz values in double
precision and 2*xnnz integers. To reduce the storage size while keeping the same
information content, the row array can be transformed in row offset array, in
which the column offset of the first non-zero element in every row is stored. This
operation is performed by the CUSP library, which provides the CSR arrays
that constitute the input for the iterative solver of Paralution. A similar but less
complicated algorithm allows to sort and scan the right-hand side for duplicated
entries. Finally, all Kernels in this work are based on the same global memory
access pattern and the coalesced access is assured by using the thread index as
an offset for the array index.

3.3 Linear Solver with on-demand Factorization

The flow solver has a modular design with an interface to PETSc, Paralution
and ViennaCL libraries. We use the GMRES linear solver of Paralution library
along with the incomplete LU preconditioner (ILU). To accelerate the linear
solver while preserving the accuracy of the solution, the LU matrix should be
provided for a lower cost. As reported by many authors [7,19], the accuracy of
the Lower Upper matrices affects the conditioning of the system leading to a
larger number of linear system iterations to convergence. Since iterations of the
linear solver are faster on the GPU than the incomplete LU factorization, the
additional inner iterations cost generally less time than performing the incom-
plete LU factorization. The accuracy of the factorization is here traded against
performance.

To decrease the time spent in the factorization, the linear solver uses the
LU matrix of previous flow iteration. As a result, the linear solver skips the
factorization for some flow iterations. The factorization is performed only on-
demand, when the LU quality is so decreased that the linear solver needs more
iterations to converge than a user defined threshold:

Pseudo-code of the on-demand LU factorization

if (itr> MAX_ITR) M <-LU_Factorization (A)
(x, itr) <- GMRES (A,M,b)

where A, M and b are defined in Eq.3. The maximum number of iterations
MAX _ITR depends on the condition number and thus on the time step. As

Acceleration of Turbomachinery Steady Simulations on GPU 821

the time step depends on the CFL and the mesh cell size a relation between
MAX_ITR and CFL number can be found for a given mesh:

MAX_ITR=a+bxCFL, (4)

with a and b two tuning parameters. Parameter a plays an important role for
applications with a low CFL number and b increases with the mesh refinement.
The on-demand factorization changes only the entries of L and U matrices not
the ordering of the non-zero elements, therefore it does not affect the flow solver
convergence and accuracy.

4 Results

The numerical results were obtained using a Tesla K40 GPU with a theoreti-
cal peak performance of 1,682 Gflops in double precision and 12 GB of global
memory. The GPU implementation is realized with CUDA 7.0. The host CPU
(double quad-core) is an Intel(R) Xeon(R) CPU E5-2640 with a clock rate of
2.50 GHz and a 15 MB cache size. The CPU parallelization is performed on mesh
block level, as blocks are distributed to processors (1 to 4) assuring a good load
balancing. For the benchmark case with seven mesh blocks of different sizes,
using more than 4 processors deteriorates the load balancing which damage the
CPU performance. Therefore a maximum of 4 CPU cores is used.

The test case is a transonic flow over the LS89 inlet guide vane cascade [21],
which experiences a turning of 74° through the NGV geometry and a passage
shock with a peak Mach number of 1.15. The validation of the flow solver against
experimental data can be found in [23]. The stopping criterion for the linear
solver is a 10~% reduction of the relative Residual and the flow solver stops when
the minimization of the L, norm of the residual reaches 1076. The 2-stages
Runge-Kutta (RK) time stepping method has been chosen for the benchmark,
since the RK methods with more stages presented no flow convergence acceler-
ation in the treated CFD case while costing extra execution-time. Two types of
meshes are treated (coarse and fine) to explore the GPU potential (see Table 1).

Table 1. Characteristics of used meshes and underlying linear systems

Mesh | Nceus | Nrows |10z | nnz/row
Coarse | 40k 200k | 5.7M | [20 ...30]
Fine 300k | 1500k |52.6M | [20 ...35]

4.1 Assembly Acceleration

The assembly phase on the GPU experiences a 7x acceleration for the coarse
mesh compared to a single-core CPU and 12x acceleration for the fine one (see
Figs. 2 and 3). The multi-streaming contributed to the speedup by 10% improve

822 M.H. Aissa et al.

B Assembly speedup
M Linear solve speedup
Global speedup
2
0

2xcores 3xcores 4xcores |LU oD
CPU

~

o

o

IS

w

Fig. 2. Speedups of the flow solver on the coarse mesh with GPU ILU and on-demand
ILU compared to a single-core to 4-cores CPU

14

12
10
B Assembly speedup
M Linear solve speedup
Global speedup
'l . .
0

2xcores 3xcores 4xcores ILU oD
CPU

foe]

(=2}

IN

Fig. 3. Speedups of the flow solver on the fine mesh with GPU ILU and on-demand
ILU compared to a single-core to 4-cores CPU

of the performance compared to the one-stream GPU version for the coarse
mesh. The coalesced memory access has more impact on the performance with
an improve of 23% compared to a striped access for the same coarse mesh. A
multiblock mesh layout originates, in general, from the mesh generator designed
to improve the mesh quality towards accurate CFD results. For complicated
geometries it leads to multi-block meshes presenting blocks of different sizes and
many interfaces between the mesh blocks.

An analysis of the achieved acceleration is proposed by addressing possibili-
ties for further improvements considering: first large, then small mesh blocks and
finally the interface update between all kind of blocks. Large blocks provide the
GPU kernels with a high amount of independent operations for processing at the
same time, which maximizes the number of active threads. The limiting factor
in this case is the register usage. Since the kernels are starting large number of
threads and computing long algorithms, the total number of used registers is very

Acceleration of Turbomachinery Steady Simulations on GPU 823

high. The register consumption limits the achieved occupancy (see Sect.3.1). A
way to improve the occupancy for these kernels is to divide them when possible
into small, less memory demanding, sub-kernels. Blocks with few cells on the
other hand, are in fact not limited by register usage but by the small number
of started threads. The GPU is not provided with enough active threads to hide
the memory latency. In this case, the multi-streams technique (see Sect. 3.1) can
improve the occupancy by starting more than one kernel at the same time. The
mesh block interfaces require a cell update between blocks and this procedure
involves few cells proportional to the surface to volume ratio (rsiov * Noens). A
solution is to use a mesh generator that takes into account the reduction of the
number of blocks and neighboring blocks along with the increase of block size in
terms of cells (e.g. hMETIS [22]). The higher speedup of the assembly phase on
the GPU for the fine mesh is then due to the larger blocks and lower surface to
volume ratio.

4.2 Linear Solver Acceleration

The linear solver on the coarse mesh is 40% slower than on the single-core CPU.
This is mainly caused by: (1) the ILU preconditioner, (2) the total number of
linear solver calls and (3) the size of the system matrix. The ILU preconditioner
contains low fine-grained parallelism and is more efficient on CPU. Moreover, the
CPU implementation of ILU factorization has a set of techniques to improve the
linear solver convergence, which decreases dramatically the GPU performance
once ported to the GPU. This results on the flow solver using GPU ILU to
perform 32% more linear solver iterations. The flow convergence is on the other
hand exactly the same for CPU and GPU implementation in terms of number
of flow iterations, this for the sake of a fair comparison.

For 2-stages RK, the flow requires 827 flow iterations to converge. The stan-
dard ILU performs one factorization per flow iteration, while the on-demand
ILU (ILU-OD) reduces the total number of factorization to only 113. This corre-
sponds to a decrease of 86%, which explains the improved speedup for the linear
solver when ILU-OD is used. The on-demand ILU is only as fast as a 2-cores
CPU, because the size of the system matrix is not enough to observe the advan-
tage of GPUs for sparse matrix-vector products (SpMV). The fine mesh presents,
on the other hand, a larger system matrix with more non-zero elements. While
the standard ILU implementation is 1.8x faster than the single-core ILU, the
ILU-OD is 5.5x faster than single-core ILU and 2.05x faster than a 4-cores CPU.
The on-demand mechanism decreased here also the number of factorization by
86%. In addition to that the size of the matrix showed the advantage of GPU
for SpMV.

4.3 Global Acceleration of the Flow Solver

The global speedup depends heavily on the mesh size. For the fine mesh the
GPU performance reaches a speedup of 4.8 and 9.43 for the flow solver using
ILU and ILU-OD respectively compared to a single-core CPU. ILU and ILU-OD

824 M.H. Aissa et al.

are 1.8x and 3.4x faster than 4-cores CPU. On the coarse mesh, the acceleration
is 2.07x and 3.35x for ILU and ILU-OD respectively compared to a single-core
CPU. This correspond to a speedup of 1.15x and 1.5x compared to a 4-cores
CPU. The larger contribution of the speedup is done in the assembly phase.

GPUs are rather adapted for system assembly as a stencil-based operation
and for solving very large sparse linear systems not exceeding the storage capac-
ity of GPUs. Small linear systems are solved more efficiently on cache-based
machines. Moreover GPUs are inherently co-processor and cannot replace a
CPU for the entire simulation including pre- and post-processing. Therefore,
the cooperation between the two architectures is more of interest rather than
the competition for speedups as the latter can be misleading [25].

5 Conclusion

In this paper, we presented a flow solver with one order of magnitude accelera-
tion on GPU compared to an optimized serial CPU version. We demonstrated
that implicit time stepping in CFD applications can profit from the GPU com-
putational power, provided an appropriate GPU occupancy is reached and a
good mesh in terms of surface to volume ratio is used. As the bottleneck of the
GPU flow solver is the incomplete LU factorization, the on-demand ILU factor-
ization presented in this work improved the overall speedup by 60% to 80%. The
on-demand ILU can be applied as well on cache-based processors (x86) but it is
expected to have a very limited effect since factorization is not a bottleneck for
serial execution. On the other hand it is expected to improve the performance of
other SIMD machines (e.g. Xeon Phi). This once again shows that acceleration
techniques can be very different on various architectures.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013), Marie Curie
Initial Training Networks (ITN) action, under grant agreement no. 316394, AMEDEO.
We are also grateful to NVIDIA for the hardware donation.

References

1. Shahpar, S., Caloni, S.: Aerodynamic optimization of high-pressure turbines for
lean-burn combustion system. J. Eng. Gas Turbines Power 135(5), 055001 (2013)

2. Brandvik, T., Pullan, G.: Acceleration of a two-dimensional Euler flow solver using
commodity graphics hardware. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
221(12), 1745-1748 (2007)

3. Volkov, V.: Better performance at lower occupancy. In: Proceedings of the GPU
Technology Conference, GTC, vol. 10 (2010)

4. Lin, F., et al.: A multi-block viscous flow solver based on GPU parallel methodol-
ogy. Comput. Fluids 95, 19-39 (2014)

5. Barrachina, S., Castillo, M., Igual, F.D.; Mayo, R., Quintana-Orti, E.S.: Solving
dense linear systems on graphics processors. In: Luque, E., Margalef, T., Benitez, D.
(eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 739-748. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85451-7_79

http://dx.doi.org/10.1007/978-3-540-85451-7_79

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Acceleration of Turbomachinery Steady Simulations on GPU 825

Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. STAM J. Sci. Stat. Comput. 7(3), 856-869
(1986)

Saad, Y.: Iterative Methods for Sparse Linear Systems. Siam, New Delhi (2003)
Balay, S., et al.: PETSc Users Manual Revision 3.5. No. ANL-95/11 Rev. 3.5.
Argonne National Laboratory (ANL) (2014)

Serban, G., et al.: GPU acceleration for FEM-based structural analysis. Arch.
Comput. Methods Eng. 20(2), 111-121 (2013)

Cecka, C., et al.: Assembly of finite element methods on graphics processors. Int.
J. Numer. Methods Eng. 85(5), 640-669 (2011)

Istvan, R., Giles, M.: Efficient sparse matrix-vector multiplication on cache-based
GPUs. In: Innovative Parallel Computing (InPar). IEEE (2012)

Naumov, M., et al.: Parallel Graph Coloring with Applications to the Incomplete-
LU Factorization on the GPU. NVIDIA TR NVR-2015-001, May 2015

Wong, J., Kuhl, E., Darve, E.: A new sparse matrix vector multiplication graphics
processing unit algorithm designed for finite element problems. Int. J. Numer.
Methods Eng. 102(12), 1784-1814 (2015)

Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. In: GPU
Computing Gems: Jade Edition (2012)

Saad, Y.V., der Vorst, H.A.: Iterative solution of linear systems in the 20th century.
J. Comput. Appl. Math. 123, 1-33 (2000)

Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier,
Amsterdam (2005)

Xu, S., et al.: Stabilisation of discrete steady adjoint solvers. J. Comput. Phys.
299, 175-195 (2015)

Trost, N., et al.: Accelerating COBAYA3 on multi-core CPU and GPU systems
using PARALUTION. Ann. Nucl. Energy 82, 252-259 (2014)

Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J.
Sci. Comput. 37(2), C169-C193 (2015)

Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis. ACM (2009)

Arts, T., et al.: Aero-thermal Investigation of a highly loaded transonic linear
Turbine Guide Vane Cascade von Karman Institute for Fluid Dynamics TN-174
(1990)

Karypis, G., Kumar, V.: hMETIS 1.5: a hypergraph partitioning package. Technical
report, Department of Computer Science, University of Minnesota (1998)

Aissa, M.H., Verstraete, T., Vuik, C.: Aerodynamic optimization of supersonic com-
pressor cascade using differential evolution on GPU. In: 13th International Confer-
ence of Numerical Analysis and Applied Mathematics (ICNAAM 2015) September
23-29 2015, Rhodes, Greece (2015)

Garland, M., et al.: Parallel computing experiences with CUDA. IEEE Micro 4,
13-27 (2008)

Lee, V.W., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In: ACM SIGARCH Computer Archi-
tecture News, vol. 38, no. 3. ACM (2010)

	Acceleration of Turbomachinery Steady Simulations on GPU
	1 Introduction
	1.1 Sparse Linear Systems in Turbomachinery
	1.2 Related Work
	1.3 Contributions

	2 Numerical Scheme
	3 Flow Solver Implementation
	3.1 GPU Computing
	3.2 System Assembly
	3.3 Linear Solver with on-demand Factorization

	4 Results
	4.1 Assembly Acceleration
	4.2 Linear Solver Acceleration
	4.3 Global Acceleration of the Flow Solver

	5 Conclusion
	References

