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a b s t r a c t

A computational Fluid Dynamics (CFD) code for steady simulations solves a set of non-
linear partial differential equations using an iterative time stepping process, which could
follow an explicit or an implicit scheme. On the CPU, the difference between both time
stepping methods with respect to stability and performance has been well covered in
the literature. However, it has not been extended to consider modern high-performance
computing systems such as Graphics Processing Units (GPU). In this work, we first present
an implementation of the two time-stepping methods on the GPU, highlighting the
different challenges on the programming approach. Then we introduce a classification
of basic CFD operations, found on the degree of parallelism they expose, and study the
potential of GPU acceleration for every class. The classification provides local speedups
of basic operations, which are finally used to compare the performance of both methods
on the GPU. The target of this work is to enable an informed-decision on the most
efficient combination of hardware andmethodwhen facing a new application. Our findings
prove, that the choice between explicit and implicit time integration relies mainly on the
convergence of explicit solvers and the efficiency of preconditioners on the GPU.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

CFD is commonplace in engineering activities, as many products are nowadays designed by relying heavily on numerical
preconditions with reduced wind tunnel testing in order to cut down the product development cost. Computations are,
nevertheless, still expensive and a trade-off is continuously sought between fast turn around time and high accuracy. New
hardwarewith high computational power, such as the GPU, can be effectively employed to target fast computationswithout
compromising the accuracy. The GPU, originally developed from graphics pipelines, excels on processing a large amount of
independent data with a very regular and simple memory access pattern.

The basic task of CFD solvers is to advance iteratively an initial solution by performing a space and a time integration of
the governing equations. In order to update the solution, the solver requiresmemory access to neighboring cells. For explicit
time integration, the update depends only on few neighbor cells, while for implicit time integration, the update depends on
all cells and could be formulated as a solution of a linear system of equations.

∗ Corresponding author.
E-mail address: aissa@vki.ac.be (M. Aissa).

http://dx.doi.org/10.1016/j.camwa.2017.03.003
0898-1221/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2017.03.003
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2017.03.003&domain=pdf
mailto:aissa@vki.ac.be
http://dx.doi.org/10.1016/j.camwa.2017.03.003


202 M. Aissa et al. / Computers and Mathematics with Applications 74 (2017) 201–217

Fig. 1. Saturation of the iterations number with the increase of CFL number (case: turbine t106c [8]).

The locality of explicit solvers reflects on the memory usage, which is very low compared to the implicit solver memory
footprint (apart from special cases of matrix-free implicit solvers [1]). The computations performed within this scheme
have a stencil-based character, for which neighbor cells are used to update a central cell following a regular pattern. As the
operations are repeated for all mesh cells, it generates a large number of independent operations. Due to this simple regular
workflow, explicit solvers are suited to the GPUmassive parallel architecture and can benefit largely from its computational
power. Interesting speedups have been reported in the literature of 1 and 2 orders of magnitudes [2–6]. In general, explicit
solvers are stable onlywhen a small time step is used, as the latter is controlled by a relatively low Courant–Friedrichs–Lewy
(CFL) conditions (e.g. CFL = 0.92 [7]). Thismethod requires, thus, a large number of iterations to converge.When combining
the GPU acceleration with convergence acceleration techniques, such as residual smoothing or multigrid and local time
stepping, the explicit method can be very efficient.

Implicit solvers have less stringent stability limits, allowing to speed up the transient processwith an increased CFL num-
ber. The reduction reaches, however, asymptotically a limit, due to the inherent non-linearity of the equations, as depicted
in Fig. 1. Implicit solvers benefit less from the GPU acceleration especially when factorization based preconditioners that
rely on Gaussian elimination are used such as the incomplete LU factorization (ILU). New algorithms are, however, trying to
expose more parallelism and improve the performance of linear solvers on the GPU by accelerating the incomplete factor-
ization [9] and its use in the linear solver [10,11]. Reported speedups for implicit solver are of 1 order of magnitude [12–14].

In this paper, we examine the choice between explicit and implicit time stepping both on CPU and GPU, which results
in four different approaches. Few authors compared explicit to implicit performance. Niemeyer [15] implemented a Finite
Volume flow solver for chemical reactions on a GPU with explicit time stepping. He compared the performance on a CPU
and a GPU of the explicit time integration to a commercial implicit solver on a CPU. He showed, however, no results on the
GPU version of the implicit solver. Brock [3] developed an explicit solver for an astrophysics application and compared the
execution time of one iteration with estimations of the implicit performance on CPU as the memory requirement for the
solved case where prohibitive for the implicit integration. He showed a peak speedup of 2.5× for the GPU explicit over the
CPU explicit and expected a speedup of 15× for the GPU explicit over the CPU implicit. He has not considered the possible
faster convergence of the implicit method.

To bring the comparison forward we introduce a classification of basic CFD operations following their suitability to the
GPU architecture and study their speedups. The classification of different CFD operations is inspired by themajor differences
of both hardware. The CPU is a general purpose processor able to handle different type of tasks. The large cache for a reduced
number of CPU cores (e.g. Xeon E5-2640 has 15MB of cachememory for 8 cores) is an efficient cure to the irregular data flow
of some algorithms. In fact, it minimizes the cachemisses defined as calls to variables relocated from the cachememory due
to overuse [16]. The processor high clock rate of the CPU is an indicator for the speed, at which computations are executed
and the memory is accessed. The GPU, on the other hand, is very specialized with a large computational power coming
from the high number of GPU cores. The clock rate and cache capacities are in general lower than what CPUs offer. Time-
consuming cache misses cannot be avoided for a dispersed memory accesses. Under these circumstances, a regular data
flow pattern is essential in order to achieve good performance. As the computation power exceeds by far the GPU memory
bandwidth, algorithms need to balance the slowmemory access with a large number of computations. The large number of
cores with a reduced power for each core are efficiently used, when a large number of independent data is available with a
relatively simple and regular calculation for every piece of data. These specificities of the GPU motivated us to classify the
CFD operations regarding 3 criteria: (1) the amount of data to process, (2) the data dependency level and (3) the regularity
of the access pattern. The amount of data is used to maximize the possibilities for the GPU to hide slowmemory access with
computations. A low data dependency provides a large number of independent instructions ideal for the large number of
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GPU cores. For a regular access pattern, the GPU can combine multiple expensive memory loads into one single load. The
only condition is that consecutive threads of half a warp access consecutive memory positions. The entire explicit/implicit
comparison is based on the proportion in execution time of each class in every scheme, which is used to estimate the GPU
speedup. A similar classification has been introduced by Elsen [5] for vehicle aerodynamics. He classified kernels based only
on memory access pattern.

The CPU and GPU solvers are used in this work to accumulate enough benchmark data of basic operations to correlate
it with the global performance of CFD simulations on the GPU. Performance estimation for the GPU is an active domain.
Some authors analyze the GPU code [17,18] to build an estimate of the GPU performance. Li [19] predicts the performance
of Sparse Matrix-Vector operations (SpMV) using a trained probabilistic model. Baghsorhi [18] interprets a GPU kernel as
a workflow graph and estimates its execution time. We cover steady CFD simulation on turbomachinery with structured
meshes. The knowledge over the underlying CFD operations enabled us to match the performance bottlenecks on GPU with
their sources from the basic CFD operations. We avoid in that way the use of automated methods to analyze program’s code
or executable.

The classification is used also to empower readers for a better appreciation of reported speedups in the literature. As it is
discussed by Lee et al. [20], reported GPU speedups are not to be taken as raw numbers. The reference CPU code optimization
is important along with the used GPU. At the same time, some reported accelerations are only local and specific to a certain
operationwith sometimes little influence on the global speedup. Our approach is rather qualitative focusing on transmitting
key know-how on CFD operations on the GPU. The aim is to help the developer to estimate the expected speedup of steady
CFD simulations on GPU using only the profiling results of the CFD application on a single CPU.

The remainder of the paper is organized as follows. Section 2 introduces the GPU device and governing equations
as a prerequisite for the classification and the qualitative performance model in Section 3. Section 4 presents the 2
GPU-accelerated RANS solvers, which are used for the benchmark. Numerical results are presented in Section 5 for the
explicit/implicit comparison and a discussion is in Section 6.

2. Background

2.1. GPU computation

The GPU is a massively parallel device with a large number of cores organized in multi-streaming processors with access
to a relatively large but slow global memory. Every multiprocessor hosts a set of processors and provides a small and fast
shared memory along with a reduced set of fast registers. A GPU program is based on kernels, which launch a large number
of lightweight threads grouped in blocks. Inside a block, threads are grouped in warps, for which CUDA uses the SIMTmodel
(single instruction multiple threads). The same instruction is broadcasted to all threads of a warp for execution. Unlike
the SIMD model (Single Instruction Multiple Data), threads in a warp are able to execute different instructions since every
thread is provided with an individual register set and instruction counter. Although thread divergence is tolerated it is very
damaging to the performance and a fully diverged warp can run 32 times slower than a divergence-free warp.

The GPU memory hierarchy proposes different levels of speed and capacity. The data residing in the global memory has
higher latency for the access than the data residing in a cache or a register. Moreover, the access itself to the global memory
should follow certain patterns to guarantee the best memory bandwidth. The GPU loads, indeed, an entire word1 when a
thread accesses a memory position and the loaded word is broadcasted to all threads of the warp. Memory transactions of
threads within a warp accessing the same word are then fused or coalesced into one transaction.

The overuse of registers by a kernel limits its theoretical occupancy, defined as the ratio between concurrentwarps versus
maximum warps per multiprocessor.2 The more demanding a kernel the lower is its theoretical occupancy. The achieved
occupancy, on the other hand, depends on the number of started threads. Therefore, a kernel should start a large number of
warps so the warp scheduler can dispatch an idling warp (e.g. waiting for a memory transaction) and switch to an eligible
warp ready for execution. This context switch is used to hide the latency of operations on the GPU. Volkov [21] proposes an
extensive analysis and a new performance model for latency hiding in the GPU.

While an efficient use of the available memories is the principle source to leverage the performance of a program, the
GPU offers also a coarse-grained parallelism. It allows indeed multiple kernels with grids of threads to run concurrently,
which increases the number of active warps and consequently the GPU utilization. Multi-streaming is, however, limited by
the hardware resources of the GPU.

An extensive and detailed treatment of the subject of GPU programming can be found in the CUDA user manual3 and
some valuable textbooks [22–24].

1 A word is a piece of data with a fixed-size managed as a unit by processor.
2 https://docs.nvidia.com/cuda/cuda-c-programming-guide.
3 https://docs.nvidia.com/cuda/cuda-c-programming-guide, retrieved February 2017.

https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
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2.2. CFD RANS solver with finite volume discretization on GPU

The integral form of the Reynolds Averaged Navier–Stokes equations (RANS) in terms of conservative variables is listed
below [25]:

∂

∂t


Ω

W⃗dΩ +


∂Ω

(F⃗c − F⃗v)dS =


Ω

Q⃗ dΩ, (1)

where Ω is the cell volume, δΩ is the cell surface and W⃗ is the conservative variable vector : W⃗ = [ρ, ρu, ρv, ρw, ρE].
Convective and viscous fluxes along with the source term are defined as follows:

F⃗c =
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F⃗v =


0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxΘx + nyΘy + nzΘz

 (3)
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0

ρfe,x
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ρfe,z

ρ f⃗e · v⃗ + q̇h

 . (4)

The Roe scheme [26] is used to compute the convective fluxes, which are evaluated at the face of a cell as follows:

(F⃗c)I+1/2 =
1
2
[F⃗c(W⃗R) + F⃗c(W⃗L) − |ĀRoe|I+1/2(W⃗R − W⃗L)], (5)

with ĀRoe the Roe matrix defined as a combination of the conservative variables W⃗R and W⃗L [26]. The subscripts L and R refer
to the left and right state of the considered face. F⃗c(W⃗R) and F⃗c(W⃗L) are evaluated following Eq. (2). The evaluation of the
right and left conservative variables determines the degree of the space integration. Second-order accuracy is achieved in
this work through theMonotone Upstream-Centered Schemes for Conservation Law (MUSCL [27]) with the Venkatakrishnan
slope limiter function [28], which enlarges the stencil from 2 to 4 cells in every space dimension. The central scheme is used
for the viscous flux and turbulence is modeled with Spalart–Allmaras model [29].

The ‘‘method of lines’’ is used and thus space and time integration are treated separately. After the space integration,
which consists of summing the fluxes and source term in a residual R, a time integration advances the flow toward a
stationary state. Eq. (1) can be reformulated to highlight the time integration as follows:

(Ω Ī)I
1tI

1W⃗ n
I = −βR⃗(n+1)

I − (1 − β)R⃗n
I , (6)

with 1W⃗ = W⃗ n+1
− W⃗ n the solution update, which depends on a combination of residuals of time point n and n+1. While

the residual Rn at time point n is available right after the space integration, the residual Rn+1 depends on the solution at time
point n + 1, which is not available before the time integration. For β = 0, the right-hand side (RHS) of Eq. (6) is known and
updates can be computed explicitly. If however β ≠ 0, the residual is linearized to allow to formulate Rn+1 as a function of
Rn and the Jacobian δR⃗

δW⃗
to first order accuracy:

R⃗n+1
I ≈ R⃗n

I +


δR⃗

δW⃗


I

1W⃗ n. (7)

Substituting the linearization into the initial equation gives a linear system of equations of the form Ax = b:
(Ω Ī)I
1tI

+


δR⃗

δW⃗


1W⃗ n

= R⃗n
I . (8)

The implicit time integration requires the same residual, as for the explicit solver, and additionally the Jacobians, which
are combined to form the global system matrix (depicted in Fig. 2). Therefore, the building of the linear system costs extra
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Fig. 2. Structure of the system matrix showing 7 diagonals filled with block matrix of Nv ∗ Nv with Nv the number of flow variables. I, J and K are the
number of cells in the first, second and third directions respectively.

memory and computation, due to the large number of entries to be first calculated then inserted into the global matrix.
Every cell face has 7 contributions for 3D problems: one Diagonal, one upper and one lower for every direction. The number
of elements per row is not constant and varies depending on the number of diagonals crossing the row. Jacobians of cell
faces in the interior of the computational domain have neighbors in all directions (corresponding row has 7 diagonals for
3D problems). On the other hand, a Jacobian of a face on the block boundary has fewer neighbors depending on how many
boundaries are attached to this face. The number of elements per rowplays a role on the performance of sparsematrix-vector
operations on the GPU. A large spectrum of storage formats exists for the system matrix. While they all store the values in
the same way, the columns and rows indices are handled differently. The compressed row format (CSR) for instance stores
the offset of every row along with the column indices.

In the system matrix of Eq. (8), the diagonal has the Jacobian δR⃗
δW⃗

added to a term inversely proportional to the time
step. This implies that an increase of the time step, which depends on the CFL number, the mesh refinement and the flow
properties [25], increases the condition number (Cond = ∥A∥ ∗ ∥A−1

∥) and makes the system matrix harder to invert.
Solving such a linear system requires, in general, more involved computations. The condition number has to be lowered to
accelerate the convergence. This is performed by the preconditioner, a matrix M ≈ A approximating the original system
matrix while being easily inverted.

M−1Ax = M−1b. (9)

The matrixM can be filled by an incomplete factorization, which is a process able to reformulate the systemmatrix into:

A = CD − E, (10)

with C andD twomatrices easy to invert and E a residual matrix. The ILU factorization, for instance, produces two triangular
matrices L and U and can be used as a preconditioner. Some computationally lighter preconditioners, such as Jacobi,
approximates the inverse of the system matrix. These preconditioners expose better parallelism for the GPU, since they
are based on SpMV [30], but are not suitable for matrices with a large condition number.

3. Methodology: the classification

In computer science, problems easily run in parallel, are called embarrassingly parallel. For those type of problems, it is
clear how to divide the algorithm into small independent pieces of calculations, which are performed on different data. The
algorithm shows a low level of data dependency peculiar to this type of operations. An inherently sequential problem, on
the other hand, has highly interdependent operations, which have to be executed in a given order to get accurate results. A
practical approach to classify CFD operations as embarrassingly parallel or inherently sequential is to follow theGPUutilization
of the operation given by the GPU profiler. The NVidia Visual Profiler (NVVP) can deliver information about the utilization
of the memory and the computation units of the GPU for every kernel. If both unit utilizations are high the kernel is then
very efficiently written and executed and the underlying algorithm is suited to the GPU architecture. Fig. 3 depicts this
ideal case in addition to 3 realistic cases of performance limitations for GPU kernels: a latency-limited, a compute-limited
and a memory-limited kernel. Kernels with low memory and low computation utilizations are latency-limited. Such a low
utilization can be caused by a non efficient code (memory non coalesced, important thread divergence) but for carefully
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Fig. 3. Four cases of utilization of the memory and compute unit of a GPU delivered by the NVida Visual Profiler.

designed code the major cause is the use of a low number of threads. Indeed, when a kernel starts only few threads, these
are unable to hide thememory latency.Whenwarps of threads arewaiting formemory loads, not enoughwarps are available
to use the waiting time for computations. Kernels with a high compute utilization and a poor memory utilization are said
to be compute-bound. For such a kernel the performance optimization should first target the reduction of the number
of computations per memory load. Kernels with a high memory utilization and a low compute utilization are said to be
bandwidth-bound. For such a kernel few computations are performed permemory load. In that case, improving thememory
coalescence and using the shared-memory could improve the performance of the kernel.

3.1. Classification of basic operations

In this section, elementary functions used by explicit or implicit CFD solvers are first classified into three classes:
Compute-bound, Memory-bound and Latency-bound kernels. The classification reflects the differentiation between
embarrassingly parallel and inherently sequential algorithms using the GPU utilization as a measure of the GPU suitability
of studied CFD operations. Every class is analyzed regarding solely its performance on the GPU.

Compute-Bound Embarrassingly Parallel operations are suited to the GPU architecture and make an intensive use of
arithmetic operations boosting the compute utilization of the GPU (see Fig. 3). In this class, we list explicit Runge–Kutta
time stepping, convective and viscous flux calculation, turbulence calculation and Jacobian calculation. These operations
are stencil-based, they involve few neighbor cells for the computations related to a central cell. This class of functions is able
to provide a large amount of independent data, which increases with the mesh size. The data dependency is relatively low,
as only a first-order scheme is used for the Jacobian (requiring access to the 6 neighbor cells) and a second-order scheme
for the space integration (requiring access to 8 neighbors). Most of these functions involve an intensive use of arithmetic for
a reduced stencil leading to a set of compute bound functions. As the access pattern is regular on all data it is very rare to
have a thread divergence. Even though some algorithms can still impose divergence through a conditional statement. The
Roe scheme, for instance, performs an entropy correction to better capture flow shocks as the original formulation does not
recognize the sonic point [31]. This could lead to different execution paths within a warp. These kernels can have a high
performance in terms of updated cells per second, which leads to a relatively high speedup of 2 orders of magnitude (see
Figs. 4 and 5).

The convective flux calculation is a compute-bound kernel, as the roe scheme (see Eq. (5)) has to be evaluated at the
cell face involving a lengthily computation with a large amount of arithmetic operations. The flux calculation is based on
a summation of surface contributions and thus not thread-safe as two or more faces could add face contributions at the
same time to the same cell. One possibility to avoid this race condition is to compute the flux cell-wise which is thread-safe
but requires a redundant calculation of the flux. Recalling that the kernel is compute-bound, redundant computation has
to be avoided. The second approach is the multi-coloring, which consists of creating groups (colors) of faces, which do not
share cells in common. For every color, the computation is thread-safe at the expense of less coalesced access. The second
approach is proven to be more efficient (see Fig. 4).

Memory-Bound Embarrassingly Parallel operations providewelldefined independentwork units for the GPU butmake
few computations per loaded byte of memory. This class includes sparse matrix-vector operations (SpMV), as a dot product
has to be performed for every row of the matrix. In CFD time integration, the rows correspond to mesh cells, even though
they can be reordered to favor a better performance. SpMV operations are known for being memory bound [32] and benefit
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Fig. 4. Performance in terms of updated cells per second for one inviscid flux calculation on a single CPU compared to multi-coloring based kernel and
redundant calculation on GeForce 780 for a RANS simulation of 2D flow on a supersonic compressor cascade. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Performance in terms of updated cells per second for one Runge–Kutta stage on aGeforce 780 compared to 3 other single CPUs for a RANS simulation
of 2D flow on a supersonic compressor cascade.

averagely from the GPU. It is very important here to specify the data storage layout, as it can improve the data dependency
and the memory access. Linear solvers, such as GMRES, are based on SpMV operations and belong thus to the same class.

Latency-Bound Inherently Sequential operations provide a very limited fine-grained parallelism, insufficient to run the
GPU in a profitable regime. This third class deals with functions operating on a small amount of datawith a high dependency
and a non-regular memory access. Classical factorization algorithms, used for instance in implicit solvers as preconditioner,
belong to this class since they are based on Gaussian elimination [33,34,9] and handle sparsely populated matrices. The
peculiar aspect of factorization is that the algorithm, in general, is recursive and the entries are computed serially. Some
linear solvers, such as the GPU version of PETSc [35], perform the ILU factorization on the CPU as a response to its difficult
adaptation to massively parallel hardware. In this case, the entire system matrix needs to be transferred to the host and
back. The communication through the PCI bus between host andGPU is not encouraged for optimized performance. For large
systems, this alternative has no benefits as the fast CPU ILU factorization is not compensating the expensive communication.

The other approach is to optimize the ILU factorization on the GPU. In order to expose more parallelism during the
assembly of the ILUmatrices, it is possible to identify independent rows that can be updated concurrently [33]. Few options
are available to improve the performance of the ILU factorization on the GPU among them multi-coloring [36,37,34] and
level-scheduling [38].

While the methods cited above increase slightly the parallelism of the factorization other methods such as the iterative
ILU [39] propose a novel algorithm. The factorization is replaced by aminimization problem able to provide an approximate
L and U with more fine-grained parallelism. The method relies on a fixed point iteration xn+1

= G(xn) which is guaranteed
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to converge [39,40] after a set of sweeps.4 The GPU implementation of this method, presented in [9, p. 5], evokes a trade-off
between convergence and parallelism as the fixed point iteration tends to use less frequently updated values when more
threads are used.

3.2. Qualitative analysis of time integration methods on CPU and GPU

In this section, we present a qualitative model able to give some insights into the performance of the two integration
methods on the GPU and on the CPU. It is based on the performance of all methods for one flow iteration which can be then
extrapolated to cover realistic cases. For that purpose, this section will introduce a set of ratios, which will be used to link
the performance of different methods.

The explicit time integration is not different from the space integration in terms of the underlying type of computations.
Both are embarrassingly parallel and only fewmemory loads and few arithmetic operations are done per cell for the explicit
time integration compared to the space integration. The execution time of this operation (tExpT ) can be thus neglected for the
definition of the ratio of execution time of implicit to explicit solver for a flow iteration on CPU:

RITR
CPU ≈

tS + t Imp
T

ts
= 1 +

t Imp
T

tS
, (11)

with tS the space integration for both solvers. The approximation (see Eq. (11)) guarantees a faster explicit flow iteration
on the CPU (RITR

CPU > 1) as it assumes the explicit time stepping is less time consuming than the implicit time stepping.
Theoretically, very high values of RITR

CPU are possible, but in practice researchers [41,14] report a 30%–80% of global execution
time for the time integration. Consequently, RITR

CPU could reach values of 5 and possibly one order ofmagnitude for a dominant
implicit time integration of 90%. The study of the different execution times of both methods on the CPU revealed the well-
known fact: Explicit solvers cannot compete with implicit solvers unless the convergence rates are similar which is rather
unusual.

In the following the ratio of execution time of implicit to explicit solvers for a flow iteration on a GPU is considered.
Eq. (12) relates RITR

GPU to the same ratio on the CPU (RITR
CPU ) as follows:

RITR
GPU = RITR

CPU ∗
aGPUExp

aGPUImp
, (12)

with aGPUExp and aGPUImp the speedups of explicit and implicit solvers respectively on the GPU. Explicit solvers profit more from
the GPU as they have only compute-bound embarrassingly parallel operations. Implicit solvers on the GPU profit averagely
from the GPU, as they contain memory-bound embarrassingly parallel operations for the linear solver and latency-bound
inherently sequential operations when standard5 factorization-based preconditioners are used. The more an implicit solver
is dominated by the time integration the less it benefits from theGPU favoring the explicit solver on theGPU. A single explicit
flow iteration is already faster on the CPU than an implicit flow iteration (RITR

CPU > 1) and the GPU increases the ratio by 1–2
orders of magnitude (aGPUExp /aGPUImp ≫ 1). The decisive aspect in the performance comparison is the portion of the linear solver
from the total execution time of the implicit solver.

The speedup of 1 single flow iteration is, however, not determinant for the global performance as both methods have
different convergence rates. The final comparison depends more on the ratio of convergence of both methods defined as:

RC =
NExp

ITR

N Imp
ITR

, (13)

withNExp
ITR andN Imp

ITR the number of flow iterations required to reach a converged solution for an explicit and an implicit solver
respectively. This ratio is in practice large as explicit solvers are severely restricted in terms of CFL condition (see Section 2).
If results are available for the two solvers both on the CPU and on the GPU for 1 flow iteration, different conclusions can be
drawn depending on the ratio of convergence.

If we apply the above-introduced model on a case of a turbine nozzle guide vane, depicted in Fig. 6, we observe that one
flow iteration of the GPU explicit solver is the fastest followed by the CPU explicit solver, the GPU implicit solver and finally
the CPU implicit solver. When RC increases, the execution time of one flow iteration for the implicit solver is the same but
the execution time of the equivalent number of explicit iterations is linearly increasing. The explicit solver on the GPU is
the fastest alternative to a certain value of RC (RC ≈ 20). After this value, the implicit GPU is the fastest alternative. The
maximum value of RC , for which the explicit solver is still the fastest choice is equal to its acceleration for one flow iteration
compared to the direct competitor, here the GPU implicit solver. In the results section more parameters will be considered
such as the CFL number and the linear solver stopping condition, as both have an influence on the implicit solver.

4 A sweep is one full update of the L and U matrices.
5 Iterative incomplete factorization are not included.
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Fig. 6. Execution time of implicit solver for one flow iteration and explicit solver for equivalent flow iterations both on the CPU and the GPU as a function
of the convergence ratio for a turbine nozzle guide Vane (Blade definition from [42]).

Even though the current work does not provide results for the CPU parallelization nor for the effect of the convergence
acceleration (e.g. Residual smoothing and multigrid), the model shown in Fig. 6 can handle these cases. The parallelization
for both explicit and implicit solvers on both GPU and many/multi-core CPU corresponds, indeed, to a translation of the
performance curve6 to regions of shorter execution times. Depending on the degree of acceleration the fastest combination
of method and hardware can change. On the other hand, a convergence acceleration of the explicit or the implicit solver will
change the convergence ratio RC , defined in Eq. (13). A faster converging explicit solver for instance will have a lower RC and
a different value is read from the same performance curve in Fig. 6.

4. Implementation

4.1. Explicit GPU solver

In this work, we examine the GPU parallelization of explicit solvers using a CUDA implementation, which is an optimized
version of an initial GPU solver ported earlier [43] from an in-house serial CFD solver. The CPU reference solver is running
on a single core CPU and profiting from standard compiler optimization. The explicit time stepping algorithm, depicted in
Fig. 7, is based on a set of functions (space, time integration and boundary updates) which are iteratively applied until the
flow converges. The convergence is defined as a relative residual drop of six orders of magnitude. First, the space integration
is performed in all cells by gathering fluxes on the cell faces and summing them up, followed by adding the source term. The
time integration follows the Runge–Kutta scheme:

W⃗ (0)
I = W⃗ n

I

W⃗ (1)
I = W⃗ (0)

I − α1
1tI
ΩI

R⃗(W⃗ (0))

W⃗ (2)
I = W⃗ (0)

I − α2
1tI
ΩI

R⃗(W⃗ (1))

...

W⃗ n+1
I = W⃗ (m)

I = W⃗ (0)
I − αm

1tI
ΩI

R⃗(W⃗ (m−1)).

(14)

While typical Runge–Kutta scheme stores intermediate valuesW (k)
I , this formulation stores only the initial solutionW (0)

and the current solution W (k) along with the residual. The memory footprint is consequently independent of the number
of stages (m) leading to a constant memory consumption of 3 arrays of Ncells ∗ Nvar instead of 2 + m arrays. The speedup
for explicit solvers depends on the level of CUDA code optimization and on the specifications of the used GPU (mainly the
memory bandwidth and the computational power in double precision). The register consumption of every kernel in the
implementation has been kept to a minimum to boost the occupancy, which in turn produces enough blocks of threads that
hid the memory latency. Some memory-bound kernels such as the Runge–Kutta function reach 60%–70% of the memory

6 Curve relating the execution time of a simulation to its flow convergence.
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Table 1
Execution time of 100 iterations of the explicit solver with 4 Runge–Kutta stages on 2 different CPUs and 2 different GPUs (used Hardware listed in Table 3).

NCells K40 (1 Stream) K40 (7 Streams) GTX780 E5-2640 E3-1240 Speedup Speedup
[min] [min] [min] [min] [min] TE3

TK40
TE5
TK40

116k 0.055 0.034 0.039 1.85 1.31 38.5 54.4
290k 0.105 0.089 0.102 6.22 4.41 49.5 69.9
552k 0.179 0.155 0.199 12.99 9.15 59.0 83.8
1070k 0.32 0.304 0.393 27.04 19.45 64.0 88.9

Fig. 7. The solver computes first inviscid and viscous residuals and source term. Second the time integration takes place and finally, boundaries and mesh
interfaces are updated.

bandwidth.7 Compute-bound kernels such as the convective flux evaluation have been improved by using multi-coloring.
Speedups ranging from1 to 2 orders ofmagnitude have been reached over the serial execution (see Table 1).Multi-streaming
enables every mesh block to be assigned to a different stream increasing the level of parallelism. The effect of multi-streams
fades, however, with the size of the treated meshes because of the scarce GPU resources.

4.2. Implicit GPU solver

In this work we use a GPU accelerated implicit solver [14] ported earlier from a serial C/C++ in-house code, which uses
ILU preconditioner with flexible GMRES from PETSc package [44] for the time integration. The Runge–Kutta [45] multistage
method is used for the time integration. It solves multiple successive linear systems for every flow iteration, in which only
the right-hand side is updated and then multiplied by a different stage coefficient α:

W⃗ (0)
= W⃗ n

A(0)
[W⃗ (1)

− W⃗ (0)
] = −α1R⃗(W⃗ (0))

A(0)
[W⃗ (2)

− W⃗ (0)
] = −α2R⃗(W⃗ (1))

...

A(0)
[W⃗ (m)

− W⃗ (0)
] = −αmR⃗(W⃗ (m−1))

W⃗ n+1
= W⃗ (0)

+ [W⃗ (m)
− W⃗ (0)

].

(15)

The assembly of the systemmatrix is carried out with CUDA and the sorting is performed by the efficient GPU-based library
THRUST [46]. Inserting the values in the system matrix requires more attention because a large number of cell Jacobians
are computed at the same time. There are two strategies for the assembly procedure: the first approach is to gather all the
entries and store them scattered in different arrays for row, column and values, then sort them out to the required storage
format. The second approach computes the entries and inserts them directly in their final positions in the global matrix.
While the first method has a clear pattern for the memory access during the data gathering, it requires a costly sorting

7 Both on Geforce GTX780 and Kepler K40 with 288 GB/s the vendor provided peak memory bandwidth.
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Fig. 8. Flow solver algorithm showing the full GPU assembly and linear solver with on-demand factorization.

function. The second approach avoids the sorting function but it cannot guarantee a coalesced access while inserting the
entry in the global matrix. The extra cost of the uncoalesced access depends on the algorithm used to get the global index
and the targeted storage format. In practice, the first approach is sometimes faster on a GPU and has been used in this work.
The cell Jacobians have been stored in a large array with an index based on the cell index in the mesh in order to keep
coalesced memory access for the reading/writing on the global memory. The array receives first all entries, which are next
sorted by the row index then the column index.

Before choosing the linear solver we performed a benchmark for different algorithms, which is shown in Table 2. The
tested GPU libraries are Paralution [47] and MAGMA [48]. The benchmark shows also the performance of PETSc [44] on the
CPU (XeonE3-1240) for the samemeshes. BothGPU libraries have functions that rely on the cuSparse8 implementation of the
ILU factorizationwith level scheduling. For the application of the preconditionerwithin the linear solver iteration, Paralution
relies only on the cuSparse triangular solver while MAGMA [11] proposes also an Incomplete Sparse Approximate Inverse
method (ISAI). All methods use the flexible GMRES algorithm. For small meshes on the GPU, an ILU with ISAI triangular
solver is faster while for large meshes the Paralution library provides the best GPU performance. The superiority of the
ILU CPU performance is expected (cf. Section 3.1). We should precise, however, that the CPU is fast on building the ILU
preconditioner and spends most of the execution running the linear solver. The GPU, on the other hand, dedicates more
time to the preconditioner building rather than the linear iterations. In a context of multi-stages Runge–Kutta (see Eq. (15))
the same preconditioner is reused in all stages, which improves the GPU performance. Based on the results of the benchmark
the chosen linear solver is the preconditioned GMRES of the Paralution library [47] with a restart Krylov subspace of 10 to
30 vectors.

In addition to the standard algorithm for the iterative solver, we use an on-demand factorization [14] to improve the
speedup. The on-demand feature, depicted in Fig. 8, reduces the building time of the linear system by freezing the ILU
factorization for some flow iterations.When skipping the ILU factorization, the linear solver uses an outdated preconditioner
based on the systemmatrix of previous flow iteration. This causes the linear solver to perform some extra linear iterations. A
control mechanism of the on-demand factorization, with the number of performed linear solver iterations as an input, keeps
the balance between saved factorization time and extra iterations. A threshold value is defined as a limit for the tolerated
increase of the number of iterations, after which an update of the preconditioner is performed. The limit depends on the
time step, the major contributor to the system matrix diagonal. Consequently, it is a function of the CFL number with a
dependency also on the mesh cell size:

Itrmax = a + b ∗ CFL, (16)

with a and b two tuning parameters. Parameter a plays an important role for applications with a low CFL number and b
increases with the mesh refinement. The key metric to assess the on-demand effect is the total extra iterations compared to
the nominal case of a full ILU update. The optimal case is to skip the maximum number of updates while keeping the extra
iterations as low as possible.

Speedups of 1 order of magnitude have been reached on 3D flow simulation [14]. The on-demand strategy reduced the
number of calls for the preconditioner by 86% accelerating the linear solver by a factor of 2× to 3×. As it will be detailed
in the benchmarks the on-demand feature is essential to have a competitive GPU performance for preconditioned linear
solvers.

8 http://docs.nvidia.com/cuda/cusparse/.

http://docs.nvidia.com/cuda/cusparse/
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Table 2
Execution time of the ILU preconditioned FGMRES(30) for 33 iterations using different GPU libraries.

NCells Ncols nnz Paralution [s] MAGMA Sparse [s] MAGMA Sparse [s] PETSc [s]
cuSparse ILU cuSparse ILU ISAI ILU ILU

116k 264640 7.8M 1.8 2.19 1.224 0.30
290k 1058560 35.2M 2.85 4.87 5.652 1.35
552k 2249440 76.3M 4.7 9.1 12.96 2.92
1070k – – – – – 6.36
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Fig. 9. Mach number contours around the t106c nozzle guide vane.

Table 3
Hardware used in the benchmark.

Reference Clock rate [GHz] Cache size [MB] Memory bandwidth [GB/s] Global memory [GB]

E3-1240 3.4 8 21 –
E5-2640 2.5 15 42.6 –
Geforce GTX 780 0.863 0.064 288.4 3
Tesla K40 0.745 0.064 288 12

5. Numerical experiments

For the benchmark two Intel Xeon CPUs are usedwith different clock rates and two different GPUs are usedwith different
localmemory capacities (see Table 3). The Geforce GTX 780with only 3GB of localmemory is running the GPU explicit solver
and the Kepler k40 card with 12 GB of local memory is running the GPU implicit solver.

5.1. Subsonic turbine cascade: T106c

T106c is a very high-lift, mid-loaded low-pressure turbine blade [8]. The blade turns an incoming flow and reduces its
pressure as depicted in Fig. 9. Different mesh sizes are used for the benchmark. In a first step, an average execution time for
one flow iteration has been calculated from 20 iterations. The explicit solver uses a four-stages Runge–Kutta scheme and
the implicit solver uses a two stages of Jacobian-Trained Krylov Implicit-Runge–Kutta scheme (JT-KIRK) with a CFL number
of 50. The execution time of one flow iteration for different mesh sizes is depicted in Fig. 10.

We first observe a difference of one to two order of magnitude between the execution time of the explicit solver on the
GPU and the implicit solver on the CPU. This is due to the combination of two facts: first explicit solvers are inherently faster
per iteration and secondly, they benefit largely from the GPU acceleration as they include mostly operation very suited to
the GPU architecture (cf. Section 3). We observe also that the performance of the implicit solver on the CPU can be improved
with a higher clock frequency, as Xeon E3 slightly outperforms the Xeon E5. The GPU is not able to run the onemillionmesh
case. The GPU solver used in this work (cf. Section 4) uses ghost cells adding 4 layers of cells for every direction of mesh
blocks which can increase the mesh size by 20% to 50%. Numerical fluxes and Jacobians are also stored explicitly in large
arrays before being sorted out for the linear solver. An optimization of the memory footprint of the solver can let the GPU
compute larger meshes.

In order to compare all alternatives from different hardware, the slowest combination is chosen as a common reference,
which is in this case the implicit solver on the CPUwith the lower clock rate (Xeon E5). This approach leads to high speedups
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Fig. 10. Execution time for one flow iteration of the implicit solver and the explicit solver both on different CPUs (dashed line) and the GPU (full line).

Table 4
Speedup of explicit and implicit solvers on the GPU and the CPU over the implicit solver on the Xeon E5-2640 CPU for 1 flow iteration.

NCells [–] Implicit Implicit Explicit Implicit Explicit
E5-2640 E3-1240 E5-2640 Tesla k40 Geforce 780

116k 1 1.37 1.87 3.41 62.0
290k 1 1.32 2.23 4.67 108.5
552k 1 1.32 2.33 6.09 123.6
1070k 1 1.32 2.42 N.A 136.4

which do not reflect a GPU acceleration only, as usual speedups do. It reflects also the fact that an explicit flow iteration is
lighter by nature while the implicit flow iteration solves a linear system of equations. Independently of how efficiently the
linear system is solved, an explicit Runge–Kutta stage is much lighter with its very few operations. Table 4 summarizes
the performance of the combinations highlighting the growing gap between the explicit solver on the GPU and the other
alternatives with the increase of the mesh size. The GPU, as a throughput-oriented device, is usedmore efficiently when the
workload increases of embarrassingly parallel operations. The CPU, on the other hand, has rather a constant performance
independently of the mesh size.

Explicit solvers are faster since they perform fewer operations and the GPU version of bothmethods is faster, even though
the explicit solver takes more advantage from the GPU. The execution times of 1 flow iteration are used to extrapolate a
performance comparison for different convergence ratios (see Fig. 11). The convergence ratio is used to cover a wider range
of applications as in some areas implicit solvers converge much faster than the explicit and in other areas the difference
is not very pronounced. The initial ranking is valid for the unrealistic convergence ratios of 1 for which explicit solver and
implicit solver converge after the same amount of flow iterations. Realistic ratios are in general between 20 to 100 for
turbomachinery simulations. A common pattern is repeated for all mesh sizes predicting the explicit GPU solver to be the
fastest alternative for low convergence ratios and the implicit GPU solver for large convergence ratios.

In the next step, the flow around t106c is solved for a relative residual drop of six order of magnitude. Depending on the
mesh size, the implicit solver required between 1328 and 1366 flow iterations for a CFL of 50. The explicit solver required
between 22900 and 23400 flow iterations, which leads to a convergence ratio9 RC = 17. For this RC value, the extrapolation
based on the execution time of one flow iteration (see Fig. 11) predicts the explicit solver on the GPU to be the fastest
solver followed by the GPU implicit solver for all mesh sizes. This approximation does not cover, however, the on-demand
factorization (cf. Section 4). This technique acts on reducing the global execution time of implicit solvers on the GPU by
skippingmost of the ILU factorization used for the preconditioner. It does not change the number of flow iterations and thus
the convergence ratio is untouched. Fig. 12(a) depicts the speedup (with reference to the explicit solver on E5-2640) of an
entire flow simulation around the t106c blade including the performance of GPU solvers with the on-demand factorization
(ODILU). The CPU delivers similar performance independently from the mesh size while the GPU has a better performance
for larger meshes.

For a higher CFL number, every single implicit flow iteration is slower on both the GPU and CPU but the convergence ratio
(see Eq. (13)) is larger favoring the implicit solver. For a CFL = 100 the implicit solver requires between 756 and 781 flow

9 Defined in Eq. (13).
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Fig. 11. Case t106c: Execution time of implicit solver for one flow iteration and explicit solver for equivalent flow iterations both on the CPU (dashed line)
and the GPU (full line) as a function of the convergence ratio for increasing mesh resolution (a: smallest mesh, d: largest mesh).

iterations, which corresponds to a drop of 42% in the number of flow iterations comparedwith the number of flow iterations
of the implicit solver with CFL = 50. Fig. 12(b) summarizes the execution time until convergence of the used solvers scaled
by the execution time of the explicit solver on the CPU for a CFL = 100. Depending on themesh size the fastest combination
is changing. The mesh with 1 M cells was not run by the implicit solver on the GPU because of memory limitations. The
convergence ratio contributed largely to the improved GPU Implicit performance compared to the explicit CPU solver as
reflected by the increase of the speedup for the GPU implicit solver in Fig. 12(b) compared to Fig. 12(a). Higher CFL values
indeed reduce the total number of flow iterations required for the flow convergence, which entails fewer ILU builds. At the
same time the linear solver requires more linear iterations to converge, since the linear system is more ill-conditioned, but
this does not outweigh the reduction in time achieved by avoiding more ILU builds.

As a result, the increase in the CFL number improved also the acceleration of the CPU implicit solver compared to the
reference CPU explicit solver. In the next test case, we focus consequently more on the effect of the CFL change for the GPU
acceleration of the implicit solver compared to the CPU implicit solver.

5.2. LS89

The LS89 test case is described in the experimental work of Arts [42]. In this section, a benchmark is presented of the
implicit solver on the CPU and on the GPU for different parameters: First, the CFL number is varying within a stable envelop,
then the linear solver stopping criteria. Based on the observations in Section 3 about the linear solver benefiting less from
GPU than the assembly, the global GPU speedup of the implicit solver is expected to decrease as a result of the growing linear
solver portion. In Fig. 13 the profiling results on the CPU of the implicit solver are depicted for a set of 6 stable CFL numbers
(25–150) along with the GPU speedup. The figure confirms the negative effect of the CFL increase on the GPU performance
even with the on-demand factorization.
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(a) CFLImp. = 50. (b) CFLImp. = 100.

Fig. 12. Speedup of all solvers with reference to the explicit solver on E5-2640 for two different CFL numbers for the implicit solver and the same CFL
number for the explicit solvers (CFLExp. = 2.5).

Fig. 13. Plot of the effect of the CFL increase on the portion of the linear solver on CPU and the global speedup both with full ILU update and on-demand
update (OD-ILU).

The linear solver stopping criteria are also important in the benchmark as they influence directly the solving phase of
the linear systems. The GPU speedup decreases for more severe stopping criteria. Such a severe stopping condition does
not improve the flow convergence and makes every single flow iteration slower. Therefore, an adequate relative stopping
criterion of 10−3 has been chosen for all the benchmark shown in this work.

6. Discussion

Explicit solvers on a single core CPU are the slowest alternative in all studied test cases since stencil-based operations
have a great potential of parallelization that the serial implementation is not using. The GPU parallelization enables the
explicit solver to still compete with implicit solver despite their low convergence rates. An interesting point is that explicit
solver are so efficient in memory usage that very heavy meshes of millions of cells still fit in the GPU global memory.

When the mesh fits the GPU memory, the GPU implicit solver is the fastest in the two cases since it combines
the accelerated stencil operation for the residual and the Jacobian calculation while not suffering very much from the
preconditioning due to the on-demand factorization. Optimizing the preconditioner update within a large sequence of linear
systems such as in a steady CFD simulation is not a new topic. Hartmann et al. [49] assessed the impact of using a periodically
updated preconditioner on the number of linear solver iterations on the CPU. In [50] Tebbens et al. introduced a similar
performance assessment for a proposed method of approximate preconditioner update on the CPU. Anzt et al. [51] use and
iterative ILU on the GPU for which the preconditioner of one system is the first guess for the next system. He shows that
updating a previous preconditioner could be fast and effective.

Thememory usage of implicit solver limits, however, themesh size to about 1million cells for Tesla K40 and 0.25million
for GeForce 780 with the actual solver memory footprint. This number can fluctuate based on memory usage optimization
but unless no matrix storage is done it should remain in the same order of magnitude. Therefore for heavy meshes, the
implicit GPU is not available and then the explicit GPUand implicit CPUhave comparable performance. For someapplications
(e.g. the adjoint method) the flow should be resolved to machine accuracy (Residual drop of 10−16). In that case, the ratio
of convergence between the explicit and the implicit schemes is much larger. At the same time for other applications (e.g.
chemical kinetics in reactive-flow simulations) meshes are very large for actual CPUs capacities to use an implicit solver,
consequently the explicit solver is the only alternative available.
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The order of the space integration has an impact on the amount of computation for every flow iteration. This might
change the ratio between space and the time integration for the implicit solver. Nevertheless, as the same space integration
is to be found in both implicit and explicit solver, the order of the discretization scheme has no impact on the choice of the
best combination between time integration method and hardware. The finding of this work apply mostly to Finite Volume
discretized flows in turbomachinery. The convergence ratio, which is very important in the comparison depends also on
acceleration techniques of both methods.

7. Conclusion

Different combination of time integration methods and computational hardware have been presented. A classification
has been introduced based on the suitability of CFD operations to the GPU hardware. The comparison highlighted the
high possible acceleration of explicit solvers as based on embarrassingly parallel functions. Difficulties in accelerating
implicit solvers have been discussed including inherently sequential incomplete factorization used as a preconditioner for
ill-conditioned linear systems in the implicit time integration. We observed that the GPU is able to extend the range of
usability of explicit solvers to averagely good converging solvers.
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