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ABSTRACT: For historical reasons computer simulations (e.g. Delft3D∗) are still computed in single precision,
while at the same time the size and the complexity of the problems have increased. (Differences appear between
results calculated on different computer platforms.) The aim of this research is to determine the influence of
finite machine precision and problem size on the accuracy of the results. Therefore, proposals for possible im-
provements, like increasing the machine precision and row scaling, are tested. Furthermore, unstable behaviour
appeared in some cases. Investigation led to the conclusion that the 3D model is conditionally stable in contrary
to the 2D model, which is unconditionally stable.

1 INTRODUCTION
1.1 Modelling Cycle
The modelling cycle is the complete process of mod-
elling a natural phenomenon. We will describe the
modelling cycle for shallow flows. The modelling cy-
cle can be divided into four steps, see Fig. 1.

In the first step the natural water flow for shallow
waters (Natural System) is derived from the Navier-
Stokes equations and the continuity equation through
application of various assumptions and approxima-
tions. This leads to a Conceptual Model, in our case
the 3D shallow-water equations (SWE).

Figure 1:Modelling Cycle

Discretisations of these equations, during which
truncation errors are made, leads to an Algorithmic
Implementation. The solution is calculated with a cer-
tain method and a certain machine precision (Soft-
ware Implementation). The final step in the modelling
cycle is the validation of the solution in an application
by comparison with measured data.

1.2 Discretisation of the shallow-water equations
The 3D SWE comprise two momentum equations in
the horizontal directions and the continuity equation.
In the vertical direction theσ-transformation has been
applied (Phillips 1957).

The (barotropic) pressure terms, the eddy viscos-
ity terms and the vertical advective terms are discre-
tised with second order accurate central difference
schemes. The horizontal advective terms are approx-
imated with second order accurate upwind schemes.
For the time integration an ADI scheme is chosen
(Mitchell and Griffiths 1980).

1.3 Solution Procedure
During every iteration three linear systems of the form
Ax = b, have to be solved; two of them with Gaussian
elimination (continuity and momentum equation) and
one with a Gauss-Jacobi iteration scheme (momen-
tum equation). During the computation of the solution
vectorx̂ rounding errors are made.

1.4 Stability
It has been proved that application of the ADI scheme
results in an unconditionally stable numerical scheme
(Algorithmic Implementation) for the 2D SWE, i.e.
with oneσ-layer (Stelling 1983). However, from our
research it appears that extension to a 3D model leads
to a conditionally stable scheme, even though the
vertical direction is implicitly embedded in the 2D
model. Some test cases in this paper show unstable

1



behaviour.

1.5 Problems
Results from different computer platforms show
slightly different results (e.g. in the order of millime-
tres for computed water levels). This is one of the mo-
tivations to do this study.

Furthermore, truncation errors made during the dis-
cretisation must be smaller than the errors due to
model assumptions and the cumulative rounding er-
rors must again be smaller than the truncation errors.
If, for instance, the latter is not true, refinement of the
grid and the subsequent reduction of the truncation er-
ror does not lead to more accurate results, because the
rounding errors are still larger.

Finally, it would be very attractive to have some
quantitative information on the influence of the
rounding errors on the computed results in order to
obtain reliable predictions of water levels.

In this article we focus on the (the consequences
of) these rounding errors, which are introduced in the
solution procedures.

2 ROUNDING ERRORS
Finite machine precisionµ causes rounding errors
when performing floating operations. Cumulating
rounding errors can cause loss of numerical accuracy.

2.1 Analysed quantities
The cumulative rounding error can be analysed by
calculation of the absolute error‖x− x̂‖ and the rela-
tive error‖x− x̂‖/‖x‖, wherex̂ is the computed solu-
tion vector. Furthermore, we will also use the relative
residue‖Ax̂− b‖/‖b‖ as a measure for the accuracy.

2.2 Error dependence
The magnitude of the errors mainly depends on the
condition number of matrixA, computational ma-
chine precision and the size of the model. In lesser de-
gree the computer architecture (rounding procedures)
and compilers (not analysed) play a role.

2.3 Upper bounds on the relative error
The exact solutionx is of course not available. How-
ever, upper bounds on the relative error are. One of
the most general upper bounds states:

‖x− x̂‖
‖x̂‖

≤ κ(A)
‖Ax̂− b‖

‖b‖
, (1)

whereκ(A) is the condition number of matrixA. Two
of the equations are solved with Gaussian elimination.
Furthermore, the matrices of those equations are diag-
onally dominant and tridiagonal. For these matrices

another upper bound can now be constructed.

‖x− x̂‖
‖x̂‖

≤ 2‖E‖κ(A)

‖A‖ − ‖E‖κ(A)
, (2)

where ‖E‖ ≤ 2(n − 1)µ‖A‖ + (2n + 2)µ‖Û‖ +

O(µ2). The matrixÛ is the computed upper matrix
of theLU factorisation of matrixA.

2.4 Condition number
The condition numberκ(A) is defined as‖A‖ ·
‖A−1‖. The condition number can be interpreted as
a measure of the loss of accuracy during the compu-
tation of a matrix equation due to large differences of
the matrix entries. Thus small condition numbers are
preferred, because the guarantee small relative errors,
see Eq. (1).

For regular problems the condition number of the
discretised continuity equation is of order104 to 105

and of the discretised momentum equations of order
10. This is fairly large.

2.5 Row-scaling
A well-known method to decrease the condition num-
ber is preconditioning (Golub and Van Loan 1996).
This method prescribes that the matrix equationAx =
b is multiplied with a matrixP , resulting inP−1Ax =
P−1b. The objective is to choose/computeP such
that the entries in matrixA are of the same order and
the condition number is as small as possible.

One of the most time-efficient preconditioning
methods is row-scaling. With row-scaling every ele-
ment on the same row, including the right-hand side,
is divided by a certain value. The largest element on
the row would be a suitable choice, because then the
largest element on every row would be one. Practi-
cally, the matrices are always diagonally dominant.
Thus the main diagonal element is the largest element
on the row. The precondition matrix is then defined
by P = diag(A).

Table 1: Order of the condition
number for the continuity equa-
tion.

test case
Row-scaling 2 3 4
no 104 105 105

yes 101 101 102

3 STABILITY
Early tests have shown unstable behaviour for some
test cases in the sense that results might increase
in one time step and diminish in the next (possibly
due to variable/dependent matrices). Also, some test
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cases react disproportionally to small changes in ini-
tial and/or boundary conditions.

In this section we will discuss the stability analy-
sis for the 2D SWE, which we use as a basis for the
stability analysis for the 3D SWE.

3.1 Two-dimensional shallow-water equations
A Fourier analysis (or Von Neumann stability anal-
ysis) has been performed for the 2D SWE (Stelling
1983). In our research we have repeated this analy-
sis for the discretisations as they are presently imple-
mented in Delft3D-FLOW. The analysis can also be
found in other literature (Wesseling 2001).

A Fourier analysis (verwijzing naar een boek oid)
shows whether small perturbations in initial or bound-
ary conditions grow or diminish within a linear
system. The analysis focuses on one of the inner
points with the general coordinates(m,n). Hence, the
boundary conditions themselves are not taken into ac-
count in the stability analysis.

As the SWE are non-linear (advective terms in the
momentum equations and the terms in the continu-
ity equation), approximations are needed in order to
perform the stability analysis. For the advective terms
this is done by assuming a constant advective current.
For the terms in the continuity similar assumptions
are made.

This leads to the desired linear system of the
form Mwmn = b at the horizontal coordinates(m,n),
where M is now a constant3×3-matrix. For the
Fourier analysis we will look at the solutions of the
form

w̃p
mn = ŵp ei(α1m∆x+α2n∆y), (3)

where∆x and∆y are the grid sizes in respectively the
x- andy-direction;p denotes the time iterate;α1, α2 ∈
R.

Substituting the range of solutions 3 into the linear
system accurately, distinguishing implicit and explicit
terms and taking into account the ADI scheme, gives

Aŵp+ 1
2 = Bŵp,

Cŵp+1 = Dŵp+ 1
2 .

(4)

The solutionŵp+1 can be written aŝwp+1 = Gŵp,
with G = C−1DA−1B, the amplification matrix. It
can be shown that the largest eigenvalue ofG is not
larger than1, proving unconditional stability of the
discretised system.

3.2 Three-dimensional shallow-water equations
In the three-dimensional case it appears that small
perturbations may lead to differences between the per-
turbed and the unperturbed system, which are several
order larger than the perturbations (Fig. 2).

Figure 2:Absolute difference between an unperturbed and
a perturbed system. Perturbation of 1mm on the initial
water level.

In contrary to the stability analysis for the 2D SWE,
all points at the horizontal coordinates(m,n) are
taken into account. As done before, now the 3D SWE
are linearised. The advective currents are again taken
constant, but assuming different values for the various
σ-layers (vertical coordinates).

The boundary conditions at the bottom and the free
surface are also not taken into account. However, the
adapted discretisations near these boundaries are pro-
cessed.

The analysis in the previous section holds also for the
3D SWE up to the equation 4. Due to the addition
of the vertical direction the matricesA, B, C andD
loose their advantageous form and size, making it im-
possible to proceed analytically.

Hence, we decided to let Matlab calculate largest
eigenvalues for various test cases. Therefore, the var-
ious constants in the matrices are approximated with
computed results from Delft3D-FLOW. The parame-
tersα1 andα2 can assume every real value. However,
they only appear in trigonometric functions, so varia-
tions within intervals (depending on∆x and∆y) will
suffice. Figure 3 shows an example of the output.

It must be stated that boundary conditions, such as
tidal conditions, enforce a solution on the discretised
field, preventing exponential growth from occurring.

4 RESULTS
The application of double precision and row-scaling
has been tested for Delft3D-FLOW on several test
cases.

4.1 Test Cases
We have used three sets of test cases.

Test case 1 is a 5m deep closed reservoir (8 by 8
km) with a wind-driven flow. The horizontal grid size
is either 1000m or 100m. Five equidistantσ-layers
are defined.

Test case 2 is a 10m deep reservoir (8 by 8km)
with only one open boundary on which a tidal con-
dition with an amplitude of 1m is imposed. In the
middle of the reservoir a square island (2 by 2km)
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Figure 3:Stability field of an unstable test case. The dark
areas represent possible instabilities.

is situated with 8 thin dams, see Fig. 4.1. Different
horizontal grid sizes are used for this test case: 1000
m, 333m, 200m, 143m and 111m. Ten equidistant
σ-layers are defined.

Figure 4:Layout of test case 2.

Test case 3 is a 10m deep, open ended channel (5
by 19km). Along one of the open boundaries a tidal
condition with an amplitude of 0.5m is imposed, and
on the other one a homogeneous water level condition
is imposed. A varying number ofσ-layers is used: 1,
5, 10, 20 and 50σ-layers.

Test case 4, referred to in Table 2.5, is a 2D model
of the eastern section of the Westerschelde.

4.2 Absolute error
In addition to the absolute and relative error (see sec-
tion 2.1) of the separate equations, we can also calcu-
late the absolute difference between single precision
and double precision results on whole time steps. We
will refer to this as the absolute error for the single
precision results.

4.3 Computer architecture
A quick error analysis for test case 1 showed com-
parable results for three different computer platforms,

excluding it as cause for differences in the computed
flow data. (plaatje?)

4.4 Condition number and row-scaling
As seen in Table 2.5 the condition number for the con-
tinuity equation is large. Applying row-scaling leads
to a significant improvement of the condition number
(Fig. 5). Subsequently, taking Equation 1 into consid-
eration, this leads to a similar reduction in the upper
bound for the relative error.

Figure 5:Improvement of the condition number for test
case 2 due to row scaling for various problem sizes.

Furthermore, note that without row-scaling the
condition number is not dependent in the size of the
matrix, while when row-scaling is applied it is.

The extra computation time needed for row-scaling
is negligible.

4.5 Size of the model application
Naturally, a larger model implies that more calcula-
tions need to be carried out in order to acquire the
computed results. It is expected that with increasing
model sizes, the errors in the result also increase.
Fig. 6 shows that upper bound increases with the num-
ber of horizontal grid points.

The number ofσ-layers appears to be a significant
quantity with respect to the relative error of the mo-
mentum equation inx-direction (Fig. 7). The main
flow in this test case is inx-direction. In theory the
flow velocity in the transverse direction (y-direction)
is zero, leading consequently to largerelativeerrors.
The upper bound on the relative error for the continu-
ity equation is constant with respect to the number of
σ-layers.

However, when calculating the absolute error
(through comparison with double precision results),
the error in the water level does depend on the num-
ber ofσ-layers (Fig. 8). This is most likely due to the
large errors in the main flow velocity.
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Figure 6:Upper bound for the relative error of the water
level against the problem size for test case 2.

Figure 7:Upper bound for the relative error against the
number ofσ-layers for test case 3.

4.6 Machine precision
Presently, Delft3D-FLOW is implemented in single
precision (6-7 digits accurate for a single operation).
However, since the first releases the application have
grown considerably in size (up to 100,000 horizontal
grid points and 20σ-layers).

At this moment the absolute error (at whole time
steps) of most of the large applications are of the or-
der 10−3, which is just acceptable. In several cases
the computed upper bound of the relative error is too
high to guarantee sufficiently accurate results. In the
future even larger applications might/will show unac-
ceptable results (is dit te sterk?).

Experimental runs with a double precision implemen-
tation (14-15 digits) show a decrease of 8 orders in
the relative error and the relative error for the conti-
nuity and momentum equation, which are computed
with a direct method. The other momentum equation,

Figure 8: Absolute error of the water level against the
number ofσ-layers for test case 3.

computed with an iterative method, shows hardly any
progress due to the stopping criteria.

Test runs show an increase in computation time be-
tween 10% - 15%. The necessary memory is almost
doubled.

4.7 Applications for fully closed basins
While for applications with open boundaries, by far
the most, tidal conditions will at one point impose a
solution and overrun small errors. With fully closed
basins, on the other hand, no tidal or other conditions
will neutralise these errors.

Fig. 9 shows that these errors accumulate consid-
erably in time. From extrapolation of the graph we
can conclude that differences in the order of centime-
tres will occur after10,000 time steps for 6400 grid
points.

Figure 9:Increase in time of the absolute error of the water
level for test case 1. Beyond 1000 time steps the graphs are
extrapolated.

5



4.8 Spin-up time
The simulation time needed for the model to over-
come the (klap) of the initial data is called the spin-up
time. Short spin-up times are desired in order to lessen
computation time. It can be visualised by rerunning
the model with a slight perturbation in, for instance,
the initial water level and plotting the difference in
time. Fig. 10 and Fig. 11 show such a graph for test
2 (where the closed boundaries have been replaced
with open boundaries). It can be concluded that row-
scaling as well as higher machine precision decreases
the spin-up time.

Figure 10:Absolute difference in the water level between
the perturbed and the unperturbed system (perturbation: +1
mm on the initial water level) for test case 2.

Figure 11:Absolute difference in the water level between
the perturbed and the unperturbed system (perturbation: +1
mm on the initial water level) with row-scaling for test
case 2.

4.9 Truncation error
The truncation error can be calculated through com-
parison of the results of the same model run with dif-
ferent grid sizes (Verwijzing). As mentioned before,
the (effects of) rounding errors should be smaller than
the truncation errors. In Fig. 12 the mean truncation
error of test case 2 is shown for two different horizon-
tal grid sizes.

A finer grid hardly contributes to a more accurate
result. Furthermore, the order of the truncation error
is the same as the order of the absolute error on whole
time steps. This implies that grid refinement does not
lead to more accurate results.

Figure 12:Mean truncation error in the spatial directions
for test case 2. Horizontal grid size: b01 - 1000m; b21 -
333m.

4.10 Stability
The Matlab program confirms the unconditional sta-
bility of the discretised 2D SWE. The stability of the
3D SWE is influenced by several parameters. The pro-
gram, however, does not predict possible instabilities,
as the results do not correspond with the test runs.
Therefore we will only analyse the consequences that
changes to the parameters have on the stability.

First of all, we look at the flow velocity profile in ver-
tical direction. When this an uniform profile the dis-
cretisation is stable. Due to bottom and surface fric-
tion this is never the case.

An increase of the horizontal eddy viscosity log-
ically results in a more stable model. However, for
the vertical eddy viscosity the opposite appears to be
true. (Ik heb eigenlijk nog steeds geen goede verklar-
ing voor.)

Furthermore, increasing the number ofσ-layers re-
duces the stability of the model. So, it appears that the
embedding (Is dit goed Engels?) of the vertical direc-
tion is main cause of possible instabilities.
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5 CONCLUSIONS
5.1 Rounding errors
The computer architecture is not a source for differ-
ences in computed flow data. These differences are
mainly of the same order as the effects of the round-
ing errors.

The two most important quantities which influence
the accuracy of the computed results are the machine
precision the size of the model. An increase of the first
results in a corresponding increase of the accuracy.
Increasing the size of the model has a negative effect
on the accuracy, especially in the vertical direction.

The condition number for the continuity equation
(104−−105) is large in comparison with the machine
precision (10−7). Row-scaling leads to a reduction of
the condition number, depending on the size of the
model. Larger models benefit less.

Decreasing the grid size does not necessarily re-
sults in more accurate results, as the effects of round-
ing errors may be larger than the truncation error.

Higher accuracy, implementation of double pre-
cision and/or row-scaling, leads to shorter spin-up
times.

5.2 Stability
It is analytically proved that the discretised 2D SWE
(as implemented in Delft3D-FLOW) are uncondition-
ally stable. However, incorporating a third dimension,
even when done implicitly, can lead to unstable be-
haviour.
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