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SUMMARY

Melting and solidification processes are encountered in a variety of industrial applications. Examples
include the steel industry, food processing and the recording of data in optical data storage. The phase
transition, induced by a heat source, can be described by a two-phase Stefan formulation. To solve
such highly non-linear moving boundary problems within industrially relevant domains, we propose an
extension to 3D space of the temperature-based method described by Fachinotti et al. (Int. J. Numer
Meth. Engng 1999; 44(12):1863—1884). By the use of discontinuous spatial integration accurate solutions
can be efficiently obtained for isothermal problems that are driven by the boundary conditions. However,
the temperature approach can fail for isothermal problems that are driven by an (external) source. This
is remedied by introducing an artificial mushy region around the melting temperature. The developed
method has been applied to 3D optical rewritable recording simulations. Copyright © 2008 John Wiley
& Sons, Ltd.

Received 1 February 2008; Revised 24 June 2008; Accepted 24 June 2008

KEY WORDS: solid-liquid transition; enthalpy; finite element method

1. INTRODUCTION

Processes involving solid-liquid phase-change phenomena are commonly encountered in industrial
applications [1, 2]. Depending on the composition of the material, melting occurs either at a melting
point Ty, or along a melting frajectory. In case the phase change occurs at a melting point, the
interface between the solid and the liquid phase is sharp. These so-called isothermal problems
can be described as a two-phase Stefan problem. For a non-isothermal problem, a so-called mushy
region, which can be characterized by solids suspended in a liquid region, separates the solid and
the liquid phase.
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An important characteristic of phase-change problems arising from industrial applications is
that the domain of interest consists of a complex 3D geometry, which in addition can be composed
of various subdomains containing different materials. A typical application in which phase-change
phenomena occur within a complex composite structure is the writing process in optical rewritable
recording. Optical rewritable discs contain one or more so-called recording stacks. These stacks
consist of various grooved layers. At least one of these layers consists of a so-called phase-change
material. In this layer, amorphous regions (marks) are formed on a crystalline background by
means of high-power laser pulses. During read-out, differences in reflectivity of the amorphous
and crystalline material can be detected and converted into a binary data string. The final shape
and size of an amorphous mark are determined by the region that melts due to the absorbed laser
light and recrystallization at the melting front.

The often complex composition of the computational domain makes that the choice of a
numerical method for solving general solid-liquid transition problems inside these domains is
limited. A suitable method should also be capable of dealing with multiple separate fronts and
has to allow for merging and breaking of these fronts. Finally, in order to be feasible for indus-
trial applications, the method is preferably simple (implementation/comprehension) and efficient
(memory/computational time).

In the literature on solving phase-change problems, various fixed-grid methods have been
proposed for isothermal as well as mushy problems. These methods consider either an enthalpy [3]
or a temperature formulation [4] of the energy conservation equation. In the enthalpy formulation,
in which the enthalpy and temperature are the unknowns, the change of enthalpy is described by a
single energy balance equation. This equation holds across the whole domain of interest. Because
the latent heat is implicitly accounted for in the enthalpy, the phase-change front is not actively
tracked, but can be derived later from the calculated temperatures. In the temperature formulation,
the temperature is the single dependent variable. The inclusion of latent heat is accounted for by
an additional non-linear term that is included into the classical heat diffusion equation.

In general, the enthalpy-based methods perform best in the case of non-isothermal problems.
For isothermal problems, the enthalpy approach suffers from an inherent drawback: the computed
temperatures at a given point in the domain show a step-like behavior (staircasing) [3,5]. A
smoothing of the enthalpy function [6], a relaxed linearization of the enthalpy [7], or a refinement
of the mesh [5] can be employed. These approaches can only reduce the staircasing to some
extent. Numerical schemes have been proposed to remove these oscillations, see, for instance,
Chun and Park [8] or Date [9]. However, these techniques require either temperature constraints or
suitable time integration schemes to keep track of the moving front, thus undermining the inherent
advantage of the enthalpy formulation. Moreover, these methods are cumbersome to implement in
higher dimensions with multiple phase fronts.

In the case of composite domains containing different materials, the enthalpy-based methods
suffer from a second drawback: the enthalpy will jump at the interface between adjacent layers.
Alexiades and Solomon [10] illustrate how the enthalpy method can be applied in the case of a 1D
slab consisting of two layers. Their strategy is to consider the interface between the two different
layers as an interface that moves at zero speed. The solution can then efficiently be found using,
for instance, the Elliot-Ockendon SOR method [11]. In higher spatial dimensions, however, it
becomes increasingly more challenging in case the fixed interfaces are non-planar.

A distinctive feature of the temperature-based methods for fixed grids is the application of
discontinuous spatial integration. The key idea behind discontinuous integration [4] is that for each
element of the finite element mesh that is occupied by more than one phase of the phase-change
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material, all the integrals over the element are computed as the combination of the integral
contributions over the subdomains separately.

We extended the temperature method of Fachinotti et al. [12] to 3D problems. In addition, the
developed numerical method is modified such that it can be used to solve phase transition problems
for complex composite domains that are driven by a heat source. The method has been developed
to accurately model the melting component of the mark formation process in optical rewritable
recording. However, the presented method can be easily used to model phase transition problems
arising from various other industrial applications.

In contrast to Fachinotti et al. and other authors, instead of Gauss quadratures or integral
evaluation in closed analytical form, we prefer the use of simple Newton—Cotes integration. Euler
backward time integration is employed, so that the only restriction on the time step size is enforced
based on the change in the position of the advancing front during a time step, which may not skip
elements. This can be interpreted as a Courant-Friedrichs—Lewy-type condition. The Newton—
Raphson iteration procedure is used to solve the non-linear system in an efficient way. To improve
global convergence, in particular in the case of larger values of the latent heat, a line search
algorithm is added. The (eventual) quadratic convergence rate makes that the temperature approach
can be very cost efficient.

The structure of this paper is as follows. In Section 2 a moving boundary formulation of
the melting problem is given. The temperature method and its extension to 3D are described in
Section 3. The discontinuous spatial integration technique, the time discretization and the solution
of the non-linear discrete system of equations are discussed. In particular, the numerical challenges
that arise in the case of isothermal problems that are driven by a heat source are addressed. As a
remedy to overcome these difficulties, the introduction of an artificial mushy region is proposed
in Section 4. In the Section 5, several results are presented for Blu-ray recording simulations.
Conclusions are drawn in Section 6.

2. PROBLEM DEFINITION

Let Q be a prescribed subdomain of R" with a fixed outer boundary 0Q, see Figure 1. The
domain  consists of one or more disjunct, possibly composite, subdomains, each containing a
different material. At least one of these subdomains, Qpc, consists of a material that will undergo
a change of phase due to a heat source Q(x,?). At any given time ¢, the temperature 7 (X, ?) in
the computational domain € satisfies the following governing equation:

oT ofi
pe(T) =+ p L =2 —V-((T)VT)=Q (1)

Ot ot
where c is the heat capacity, £ the latent heat, and x the thermal conductivity. The density p is
assumed to be the same constant in the liquid and the solid phase. Because of the composition of Q,
except for p, each of these coefficients depends on position and time. In €, the change of phase
is described by the liquid volume fraction f; (f is assumed to be zero in Q\€,.). From a certain
time fy, 1<t <fend, Qpe is composed of two disjunct, possibly composite, subdomains €)(¢) and
Qi(t), occupied by the solid and liquid phases of the phase-change material, respectively. For pure
materials, the phase change occurs at a melting point Tp,. In this case, the subdomains Qg (¢) and
Q(¢) are separated by a sharp moving boundary I'(#) and fj is taken equal to the Heavyside step
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Figure 1. The computational domain €, the phase-change layer €, and the solid and liquid
subdomains Qq(#) and Q(¢), respectively.

function (T — Tp,). In the case of a mushy phase transition, fj is given as

0, T<T;
fA=10<f(D)<1, T<T<T (2)
1, T>T

where the mushy region is bounded by the solidification temperature 7 and liquification tempera-

ture 71, and f*(T) is a continuous function that represents the transition trajectory. Note that in the

above temperature formulation no explicit Stefan conditions are imposed at the phase boundaries.
The governing equation (1) is supplemented by the initial condition

T(x,t0)=T(x) forall xeQ 3)
and appropriate boundary conditions on the fixed outer boundary 6Q. It is assumed that at r =t,
the whole domain Q is solid.

3. METHOD DESCRIPTION
Without the presence of a moving phase front, Equation (1) reduces to the classic heat diffusion

equation. Therefore, a finite element discretization [13] of Equation (1) is straightforward, except for
elements that are occupied by more than one phase. In Q the temperature field is approximated by

T(x,1)~T(x,1)= Zl d: ()T (1) )

where ¢; is a basis function and 7; the nodal temperature. The application of the general Galerkin
procedure, in which the weighting functions are taken to be equal to the basis functions, leads to
the following semi-discrete weak formulation:

M—t—}———l-ST:Q 5)
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The entries of the mass matrix M, stiffness matrix S, latent heat vector L, and heat source vector
Q are given as (boundary conditions have been omitted)

My = [ pegio;a0 ©)
sij=/§2v¢,.-(xv¢j)d9 )
L= /Q pZLd; f1dQ (8)
Qi= /Q $; QdQ ©)

The distinctive feature of the temperature-based approach is the use of discontinuous integration
in space. The key idea behind discontinuous integration, as, for instance, described by Fachinotti
et al. [12] and references therein, is that for elements intersected by a phase boundary, the integrals
(6)—(9) are not computed over an element as a whole, using, for instance, averaged values for the
physical parameters, but are instead computed over the one-phase subdomains separately. That is,
in, for example, the isothermal case as illustrated in Figure 2, the (i, j)th entry of the element
mass matrix of the intersected element e with volume Q¢ is computed as

Mij:\/;zepcqsid)jdg:‘/s;epscsd)iqudg—’—\/gepqusid)jdg (10)
s 1

3.1. Spatial integration

In Reference [12], discontinuous integration is applied to solve 2D heat diffusion problems
involving a phase transition. Fachinotti and coauthors propose the use of analytical integration and
linear triangular elements. They claim that in this way the efficiency of the integration process
considerably improves when compared with the use of Gaussian quadrature, see, for instance,
Crivelli et al. [4], because their analytical approach requires neither extra mappings nor a summa-
tion over sample points.

liguid ° solid

Figure 2. For isothermal phase change the intersection of simplices in 1D and 2D is almost trivial.
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However, despite of what is stated by Fachinotti et al., we consider the use of a Newton—Cotes
numerical integration rule to be a more practical choice. Firstly, only a (weighted) summation
over sample points is required. Secondly, the proposed analytical method by Fachinotti er al.
does require several matrix—vector/matrix—matrix products and matrix inversions. Although the
dimensions of these matrices and vectors are small, the mappings are more costly than a simple
summation over sample points. Lastly, when Newton—Cotes integration is applied, there is no
restriction on the coefficients of being constants for each phase.

Because the solution to Equation (1), in presence of a melting front, will in general not be
smooth near this front, linear elements are used. The points at which the edges of the simplex
are intersected by an isosurface, along which the temperature is either equal to Ty, (in case of
isothermal phase change), or 7 or 7j (in case of isothermal phase change), are found by means of
linear interpolation. These intersection points are connected by straight line segments, which result
in a linear approximation of the boundary surface segment inside the element. This approximation
is another motivation for choosing linear basis functions.

As a result of these choices, in 2D at least one of the one-phase subdomains of an intersected
element is once again a linear subtriangle, see Figure 2. Thus, the computation of, for example,
M;;, cf. (10), comes down to the evaluation of an integral over a triangular subelement and a
remainder. Let us assume that the triangular subdomain is occupied by the liquid phase and the
remainder by the solid phase. The integral over the triangular subdomain is computed using a
Newton—Cotes rule. The integral contribution for the remainder can be computed in two ways, see
Figure 3.

(I) The remainder is subdivided into triangular subelements and the contributions are coherently
summed up.

(IT) The integral over the remainder is obtained by first evaluating the integral over the whole
element as if it was fully occupied by the solid phase and then subtracting the contribution
over the triangular subdomain for the same phase.

solid

B - liquid

Figure 3. Two ways of computing the integrals over the one-phase subdomains
of a 2D linear triangular element.
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Figure 4. In the case of mushy phase transition, six geometrically different intersections with the 7y and
T isosurfaces are possible in 3D.

The same principles can be used for mushy phase transitions, in which case an element can be
separated into any combination of a solid, liquid, and mushy subdomain.

In 3D, the intersection of a linear tetrahedron by a phase front is either a triangle or a quadrilateral.
In the case of mushy phase change, six geometrically different intersections are possible, as
illustrated in Figure 4. When the phase boundary segment is triangular, the integrals over the
trapezoidal subdomain can be computed using a 3D equivalent of either method I or method II.
When the phase boundary segment is a quadrilateral, of which in general the vertices do not lie
in a plane, only a subdivision into six tetrahedra is feasible. This subdivision also determines how
the quadrilateral is divided into two linear triangles. However, any error that is introduced in this
way is of the same order as that of the approximations with the linear elements.

3.2. Time discretization

In order to obtain a fully discretized system of equations, the time derivatives in (1) are approximated
by means of Euler backward discretization. That is, at time level m+1,

le-H —_qm pmtl_pm
+

x x +Sm+le+l_Qm+1=0 (11)

‘P(Tm+l) =Mm+

where the mass matrix M”*! and the stiffness matrix §”! are functions of the temperature
distribution T”*!. Although the Euler backward discretization is only first-order accurate in time
and the resulting system (11) is implicit, the main advantage is that it is unconditionally stable.
The Crank—Nicolson scheme, which is also unconditionally stable, is prone to oscillations when
the time step is not small enough. Moreover, in particular for isothermal problems, second-order
accuracy cannot be expected using Crank—Nicolson owing to the latent heat term.

Even though Euler backward discretization is unconditionally stable, the time step is to be taken
such that the moving front does not pass over a full element during a time step. This restriction
on the time step ensures that any physical phenomenon, such as the latent heat release, is properly
taken into account.
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3.3. Solving the non-linear system

In the temperature formulation, the heat diffusion equation (1) is highly nonlinear owing to the
presence of the latent heat term 0 f/0¢t and the temperature dependence of ¢ and x. The solution to
the corresponding fully discretized system of Equations (11) can be found using a Newton—Raphson
iterative procedure. The main advantage of this approach is that locally quadratic convergence
can be obtained. Starting with an initial guess T6”+1 =T"™, the subsequent approximations of the
solution Ty, k=1,2,..., of (11) are computed using

Tp=Ti_1+ATr_1 (12)
where ATy_1 is the solution of the linear system
J(Te—1)ATj—1 ==Y (Tk-1) (13)

The Jacobian J is approximated by

T VA Py EV AL o WS (14)
T A\ T o -

The partial derivative of the latent heat vector L with respect to the temperature T needs special
attention in case the phase transition is isothermal. Let L¢ be the ith component of the element
vector representing the latent heat release in an element e as defined by (8), Q° the volume of e,
and I'* the segment of the moving boundary contained in e. According to Fachinotti ef al. [12],
each entry (i, j) of the element derivative matrix JL¢/0T; can be rewritten as an integral over I'

OLi _ g/ S(F—T, )¢.¢.d96—£/ b dTe (15)
or; P S O TS =y Jp 1

where ||VT| is the Euclidean norm of the temperature gradient, which is constant on I'® due

to our choice of basis functions, and ¢ is the Dirac delta function. Note that the position of the

moving interface inside e, which is determined via linear interpolation, is updated for each iteration

level k.

In practice, divergence of the Newton—Raphson scheme is often observed in case the latent
heat is relatively large in comparison with the other physical parameters. The reason for the non-
convergence is that the computed Newton update ATy _; is too large. Therefore, the Newton update
is relaxed using a line search procedure, see, for instance, [14]:

T =Ti_1+aAT;_; (16)

where O<a<1 is determined by minimizing = ||‘I’||%.

If we define g(o0)=y(Tx—1+aAT;_1), then g’(oc):(Vz,b)TATk,l. That is, we have g(0) and
£'(0) available (the initial guess). Moreover, a line search is only needed when the full Newton
step, i.e. =1, is not acceptable. We then also have g(1) at our disposal. The idea now is to model
g as a polynomial g in o and to choose o such that it minimizes the function g. This o is found
by setting g’() =0 and then to solve for a.

We propose the use of a quadratic model, g(«) =ao? 4 bo+c, for all backtracking steps. Starting
with ¢y =1 and o =0, the coefficients a, b, and ¢ are found using the known values of g(oy),
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g(op), and g’(ap) given as

a=[g(n)—g()+¢ (02) (a— )]/ (2 —211)? (17)
b=g'(w)—2an (18)
c=g(m)—g ()n+aw; (19)

The minimum for this quadratic form is found at
=0 —g'(u2)/2a (20)

According to Reference [14], it is advised to require that 0.1a;<a<0.50;. Since our aim is to
improve the Newton update, in practice a maximum of only 5-10 line search iterations are used
to update o.

3.4. The addition of a source term to an isothermal problem

Most test cases found in the literature on Stefan problems consider moving fronts induced by
boundary conditions on the fixed boundaries of the computational domain. For these problems,
discontinuous integration can be applied without an explicit regularization of the enthalpy function.
However, many industrial problems are governed by a source term, and not by boundary conditions
on the fixed boundaries. For example, in optical rewritable recording, marks are formed as a result
of the absorption of the energy contained in the incident laser light. Moreover, initially there is no
moving boundary. New moving fronts appear during the simulation.

In the case of isothermal problems, the use of discontinuous integration cannot prevent that, due
to the source term and the moving boundaries that are induced by this source, poor convergence
of the Newton—Raphson scheme is observed. The moment that the temperature exceeds Ty, in one
or more points of the computational domain during the iterative process, the effect of latent heat
is taken into account, so that 0 /0t #0. As a consequence of the initial overshoot and the jump in
the enthalpy, the temperature profile in subsequent iterations exhibits overshoots and undershoots.
If the time step size is kept unchanged, the solution will alternate between different states, see
Figure 5. A reduction of the time step can prove beneficial, but for increasingly larger values
of the latent heat, a breakdown of the iterative procedure is imminent. The introduction of an
artificial mushy region can counteract this behavior. The regularization of the enthalpy allows
for the approximate solution to lie within a small band around the melting temperature Ty, see

Figure 5. The appearance of two new (source term induced) moving interfaces: evolution of the numerical
solution in time. Isothermal case.
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Figure 6. Enthalpy H as function of temperature 7. Isothermal case (left) and
Artificial mushy region (right).

t t

n+4 n+5

Figure 7. The appearance of two new (source term induced) moving interfaces: evolution of the numerical
solution in time using an artificial mushy region.

Figure 6. It suffices to approximate the enthalpy change inside the mushy region, described by
f*(T) in (2), by a linear function

T-—Ts

L —Ts

(= 2D

This choice is feasible because we use linear basis functions and the application of discontinuous
integration does not require differentiability of the enthalpy function. The width of the mushy
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region is determined by a mushy parameter 75 using
Ts=Tm—TA, Ti=Tm+Ta (22)

The effect of the introduction of an artificial mushy region on the evolution in time of the
temperature distribution is sketched in Figure 7. As can be seen from the figure, the artificial
region allows for minor oscillations of the numerical solution around the melting temperature.

4. NUMERICAL RESULTS

In the previous section it has been explained that the isothermal approach can fail in case a source
is added to the problem formulation. This drawback can be overcome by means of introducing an
artificial mushy region. A pivotal parameter in this is the width of the mushy zone T. In this section,
we will limit our study to 1D problems. The physical parameters of the test problems considered
are taken equal to those used in DVD recording simulations [15]. The values for these parameters
are Ks=1k;=0.006W/cm/°C, pc; = pcy=12.85J/cm?/°C, L =6400]/kg°C and T, =620°C. At
t=0, the interval [—1,1]cm is solid at a temperature of 0°C and the fixed outer boundaries
are taken to be isolated. Two Gaussian source functions, Q»(x)=3.5x 102 exp(—%x2 /0'2) and

04(x)=3.5x10% exp(—%x2 /a®), are considered, where the subscripts refer to the power of ¢. In

our example we choose o= 1/+/2.

In the case of isothermal problems that are driven by a non-trivial source term, the artificial mushy
parameter T is preferably chosen such that the solution to the regularized problem approximates the
non-regularized solution as precise as possible. Note that the choice of T strongly depends on the
application. It is convenient to express T in terms of a percentage of the melting temperature T,.

In Table I results are listed for varying T for a fixed number of elements n and time step Az.
The stopping criterion for the Newton—Raphson iterative process is ||‘I’(T;"+])||oo<8||‘l’(Tm) loo-
In this table, as in future tables, x denotes the leftmost point at which the moving interface
intersects the melting temperature at the final time zepg = 100s. The abbreviation #iters is used to
indicate the average number of Newton iterations per time step. The CPU time is given in seconds.
Computations have been performed on an Intel Pentium 4 2.4 GHz computer running Linux. The
numerical solution is compared with a reference solution Ty¢f, which is numerically obtained on

Table I. The effect of varying the mushy parameter 7p (in % of the melting temperature Tp,).

Ta CPU time #iters Erry Erreo
05 (x) 10 7.8 2.4 1.1x1072 1.9x 1072
0.1 8.3 47 1.2x1073 32x1073
0.001 11 9.9 1.2x1073 3.4x1073
04(x) 10 7.8 2.7 7.4%1073 73x1073
0.1 8.4 3.9 2.8x1073 2.6x1073
0.001 8.5 49 2.8x1073 2.7x1073

At=1s,n=100, ¢=1079.
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Figure 8. Reference solutions Tref. (a) Q2(x)=3.5x 102 exp(—%x2 / ¢2) and
(b) Q4(x)=3.5x10? exp(—3x2/a*).

Table II. The effect of varying e.

e CPU time #iters Errp Erreo
05 (x) 1074 8.5 5.2 12x1073 32x1073
1072 8.2 42 1.2x1073 3.2x1073
10~1 8.0 3.2 20x1073 3.2x1073
04(x) 1074 8.0 3.4 2.8x1073 26x1073
1072 7.8 2.7 29x1073 2.8x 1073
10! 78 22 49%x1073 44%x1073

At=1s, n=100, Tp= 0.1% of Tp.

Table III. Fachinotti: the effect of varying the time step size Ar and number of elements 7.

At n CPU time #iters Err) Erreo
05 (x) 1 100 8.2 45 1.2x1073 3.2x1073
0.25 200 34 3.1 4.1x10™4 1.8x 1073
0.0625 400 151 25 2.1x1074 1.3x1073
04(x) 1 100 7.9 3.1 27x1073 2.6x1073
0.25 200 33 2.4 1.1x1073 1.3x1073
0.0625 400 145 2.1 3.6x1074 6.0x1074

Ta= 0.1% of Ty, 6=1073.

a very fine grid, see Figure 8. The error in the approximated solution T is measured at fepg as

where the subscript i indicates the type of norm that is used.
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Table IV. Nedjar: the effect of varying the time step size A and number of elements n.

At n CPU time #iters Err) Erreo
05 (x) 1 100 8.3 14 14x1073 3.1x1073
0.25 200 38 15 6.2x 1074 23x1073
0.0625 400 186 15 3.8x 1074 1.7x1073
04(x) 1 100 8.1 10 3.0x1073 4.0x 1073
0.25 200 35 10 1.5x1073 2.9x1073
0.0625 400 169 11 1.0x1073 25%x1073

Stopping criterion used is ||ATk||oo<10_3||AT0||oo.

U“

72.5 nm dielectric 72.5 nm

je——| | ¥
12 nm
145 nm T 12 nm
. I 3nm
phase-change 75 nm
dielectric
! Si3N4

- 120 nm
15 nm

35 nm

reflector

69°

substrate

Figure 9. Cross section of the stack as used for the Blu-ray Disc simulation.

An interesting observation that can be made from Table I is that the mushy parameter 7 can be
taken surprisingly large, without much loss of accuracy. If it is taken too small, i.e. the change in
enthalpy is almost instantaneous, the computational costs increase significantly. It can be concluded
that 7o =0.1% of Ty, is a safe choice for most problems.

In Table II results are listed on the performance for increasing values of ¢. The mushy parameter
Ty is taken to be equal to 0.1% of Ty,. From the table it follows that for values of ¢ smaller than
1072, the gain in accuracy becomes negligible. Therefore, a value of 1073 is a safe choice for
parameter &.

Next, we choose =103 and Tpo=0.1% of Ty, and refine the spatial and the time grid simul-
taneously. Table III shows that the reduction in the error of the approximated solution is linear
with respect to the co-norm and superlinear with respect to the 2-norm. The average number of

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:702-718
DOI: 10.1002/nme



AN EFFICIENT NUMERICAL METHOD FOR SOLID-LIQUID TRANSITIONS 715

0.24 0.24 1 7
0.18 0.18 1
0.12 0.12 1
0.06 0.06 1
0.00 0.00 1
LEVELS LEVELS
-0.06 M1 1.074E+03 -0.06 1 M1 1.335E+03
1 D Jshiy ¢ W
2 P = D
> -0.18 13RI > -0.181 '3 27836400
2 1.204E+02 2 1.462E+02
-0.24 L1 14d4b+ 024 1\ [T 1414E+01
-0.18 -0.06 0.06 0.18 -0.18 -0.06 0.06 0.18
(@) x [um] — (b) X [um] —
Figure 10. Temperature distributions (°C) halfway in the phase-change layer for a TM
olarized spot that is incident on the center of a land and that of a groove for the
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Blu-ray stack of Figure 9: (a) Groove and (b) land.
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Figure 11. Absorbed energy distributions (10* W/um?) halfway in the PC layer for a TM polarized spot

that is incident on the grooved multilayer for the Blu-ray Disc (stack is shown in Figure 9). The NA

of the lens is 0.85, the wavelength of the light is 405 nm; (a) center of the spot is in the groove and
(b) center of the spot is on the land.

Newton iterations is small and almost constant for each source function. If we compare the results
in Table III with those obtained using an enthalpy-based method as proposed by Nedjar [7], see
Table IV; the enthalpy approach shows to be computationally more demanding and less accurate.

5. APPLICATION: BLU-RAY RECORDING SIMULATION

A typical Blu-ray recording stack is shown in Figure 9. As the name indicates, a blue laser
(A=405nm) is used. The land-groove structure is periodic in the radial direction of the disc.
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Figure 12. Evolution in time of the melting front (7}, =620°C contour) for a TM polarized spot that
is incident on the center of a groove for the Blu-ray stack of Figure 9. The latent heat L =640J/cm>.
Intersection across the grooves (left) and along the grooves (right): (a) 1=3ns; (b) t=3ns; (c) t=9ns;
(d) t=9ns; (e) t=36ns; (f) r=36ns; (g) t=100ns; and (h) t=100ns.
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These grooves are needed to accurately position the optical system. If marks are recording inside
a groove, the recording is called groove recording, and likewise for a land.

In the simulations, the groove depth of 50 nm has been exaggerated, to accentuate the differences
between the two polarizations of the incident light. The incident field is computed with the package
DIFFRACT [16] for a TE or a TM polarized Gaussian beam that is focused by a positive lens of
high numerical aperture (NA=0.85). Here, TE means that the electric field of the Gaussian beam
that is incident on the lens is parallel to the grooves, and TM means that the magnetic field is
parallel to the grooves. The EM field inside the disk is computed using a modified version of the
optical model by Brok and Urbach [17], see Brusche et al. [18]. The power level of the laser is
set to 15 mW, see, for instance, Meinders et al. [19].

Figure 10 shows the temperature distributions halfway in the phase-change layer for a TM
polarized spot that is incident on the center of a land and that of a groove in case a latent heat
of 640J/cm?> has been taken into account. The corresponding absorbed energy distributions are
shown in Figure 11.

In Figure 12 the evolution of the 7 =T, isotherm is shown for a TM polarized spot that is
incident on the center of a groove.} Inside the phase-change layer, this isotherm determines the
melting front. This example clearly illustrates that, in case data is recorded on both land and
groove, previously written marks in adjacent tracks can be (partially) erased.

6. CONCLUSIONS

A numerical method for solving solid—liquid phase transition problems inside industrially relevant
domains has been presented. The method is based on the fixed-grid temperature formulation
by Fachinotti et al. [12]. The method is found to be efficient and accurate for Isothermal and
mushy problems that are governed by boundary conditions imposed on the fixed boundaries.
However, numerical complications arise in the case of isothermal problems that are governed by
a heat source. These problems are resolved by introducing an artificial mushy region around the
melting temperature. Finally, results have been presented for Blu-ray optical rewritable recording
simulations.
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