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Abstract

A general algorithm is developed that reuses available information to accelerate the iterative con-
vergence of linear systems with multiple right-hand sides A x = b i, which are commonly
encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on
the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection
preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied
to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to
provide significant improvement in computational efficiency relative to baseline approaches.
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1 Introduction

Krylov-based methods (e.g., GCR [1], GMRES [2], BI-CGSTAB [3], FGMRES [4], and GM-
RESR [5]) have emerged as popular methods for solving large, indefinite systems A x = b . We
can argue that their use is now ubiquitous throughout the majority of the mathematical, scientific,
and engineering disciplines. Indeed, the fluid mechanics community has a long history of using
Krylov methods. See, for example, references [6–13] as well as the references therein.

Krylov deflation and enrichment techniques are generalizations of the aforementioned basic
techniques, that in some instances greatly extend the efficiency and robustness of conventional
approaches. These techniques glean “important” information (e.g., problematic eigenvectors) from
past problems to enrich the current subspace. As a result, they are well suited for slowly varying,
recursive problems of the form A i x = b i.

That said, Krylov methods (both basic and generalized) have not significantly penetrated the
software used to perform large-scale aerodynamic engineering simulations. Fixed-point iterations
(e.g., basic iterative methods or multigrid methods that use basic iterative methods as smoothers)
are still used extensively for these calculations. The lack of penetration of Krylov methods into the
production aerodynamic arena is not without reason. In addition to the inevitable inertia that is
related to modification of legacy software, other impediments include

• Memory management: Large, complex simulations (e.g., adjoint, moving grid, and adaptive
grid) already require significant memory, which leaves little room to store additional Krylov
vectors.

• Algorithmic complexity: The implementation of succinctly written pseudo-code in legacy
software which involves millions of lines, is far from trivial.

• Computer science: Legacy fixed-point solvers are highly optimized (e.g., data structures and
cache); thus comparison of existing methods with new methods can be difficult.

Our goals herein are twofold. First, we assemble a general purpose “GMRES type” algorithm
that is tailored for problems of the form A i x = b i; the algorithm is simple, efficient, and robust
but flexible enough to accommodate the nuances that commonly arise in large-scale computations
(e.g., nonlinear steady and unsteady simulations). To meet these challenges, we propose an al-
gorithm that features a Krylov subspace enrichment technique that can accommodate arbitrary
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enrichment vectors to provide extreme flexibility. The algorithm is enhanced with a subelement
that permits the incorporation of solutions from past problems, a technique that is shown to com-
plement conventional eigenvector subspace enrichment. Finally, several implementation details are
addressed that enhance the usability of the algorithm (e.g., a no-cost residual estimator and a
low-cost eigenvector error estimator). Although many of the individual elements of the algorithm
are not new, the kernel algorithm and the supporting subelements result in a simple yet general
algorithm that we feel is a useful improvement over other deflation and enrichment techniques in
the literature.

Our second goal is to apply the general-purpose algorithm (using legacy software) to large-scale
fluid mechanics applications and to establish its effectiveness in routine settings that are encountered
by practitioners (e.g., ill-conditioned systems that involve > 107 unknowns). Satisfying this goal
necessarily requires testing various equation sets, problem sizes, preconditioners and termination
tolerances, all in the context of different enrichment strategies.

After we complete the preliminary testing on model three-dimensional (3D) advection-diffusion
problems, we test the newly proposed algorithm on a classical Newton-Krylov nonlinear iteration.
The testing is performed in the context of the Hexstream [14,15] software, using the 2D, unsteady
RANS (URANS) equations to solve for flow past a wind-turbine blade at a high angle of attack.
The principle focus is to establish the efficacy of enrichment on this class of unsteady problems.

The paper is organized as follows. Section II presents a literature review of deflation and
enrichment techniques. Section III presents for the purpose of reference, the conventional GMRES
algorithm. Section IV presents the generalized enrichment algorithm and related subelements.
Included are proofs of the optimality of the new algorithm, as well as its initialization step. Section
V presents the set of large-scale linear and nonlinear test problems, while section VI presents
the results for all test cases, followed by conclusions. The first Appendix provides a proof that
the proposed enrichment technique builds a Krylov subspace for the portion of the space that is
appended to the enrichment vectors. A second Appendix provides the details for approximating
eigenvectors by using conventional and harmonic Ritz approximations.

2 The Case for Krylov Subspace Deflation/Enrichment

A simple and frequently effective remedy for slow convergence or stall is to remove: deflate the
troublesome eigenvalues (eigenvectors) from the problem. Deflation relies on the construction of
an auxiliary approximation subspace that is designed to target the problematic modes. Numerous
techniques can be used to deflate problematic eigenvectors. They differ primarily in the method
of implementation, (i.e., how the problematic eigenvectors are introduced into the base algorithm)
and the manner in which the eigenvectors or problematic modes are approximated and constructed.

Deflation techniques essentially can be implemented in one of two ways. In the first approach,
called deflation, the underlying matrix is modified to eliminate the problematic eigenvalues. For
example, a projection preconditioner P = I − A Zk

(
ZT

k AZk

)−1ZT
k is constructed from the

offending eigenvectors Zk and is used to modify the system into the form

P [ A x − b ] = 0 .

A conventional minimization algorithm (e.g., GMRES) is then used to solve the preconditioned
system.
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In the second approach, called augmentation or enrichment, the offending eigenvectors Zk are
added directly to the search space, (e.g., span {Zk,Zm−k}). The first k vectors contain impor-
tant information about the problematic eigenmodes, while the remaining vectors z1, ..., zm−k are
determined by using the standard Arnoldi procedure started from the current residual.

The literature contains a wealth of techniques that advocate some form of deflation or enrich-
ment. We begin with those deflation techniques that are similar to those originally presented in
the work of Shroff and Keller [16–22]. Shroff and Keller [16] developed a technique to stabilize
unstable procedures by dividing the iteration into an orthogonal projection step that is handled by
Newton iteration; its complement is handled with a fixed-point iteration. Similarly, Kharchenko
and Yeremin [17] form a preconditioner that modifies the matrix A with approximate eigenvectors
that are used to translate a group of small eigenvalues by means of a series of low-rank projec-
tions. Erhel, Burrage, and Pohl [18] used approximate eigenvectors to build a preconditioner that
shifts eigenvalues. This method was further modified by Burrage et al. [20] and Burrage and
Erhel [21] to include a harmonic Ritz procedure and other methods for isolating the eigenvalues.
Baglama, Calvetti, Golub, and Reichel [22] extend earlier works of Erhel et al. [18] by using an
implicit restarting approach that is similar to the implicitly restarted Arnoldi (IRA) method of
Sorensen [23].

Augmentation, or enrichment techniques were developed by Morgan [24–26] and Morgan and
Zeng [27]. Morgan developed a method for augmenting the Krylov space with eigenvectors
(GMRES-EN) [24]. This approach is a powerful method for problems with small eigenvalues and
works best when the matrix vector costs are high. Like other deflation techniques, this method
does not work as well when small eigenvalues are less separated from zero than from each other.
Morgan improved the GMRES-EN method [25] by incorporating ideas from Sorensen’s [23] IRA
algorithm, thereby allowing the implicit restarting of the GMRES algorithm. Morgan developed
implicitly restarted GMRES-DR algorithm [26] by using existing harmonic Ritz vectors that are
prepended into the space. In so doing, however, the algorithm becomes valid only for harmonic
Ritz vectors.

Over the past decade, all of these algorithms have converged in their evolution with the in-
corporation of similar ideas. Chapman and Saad [19] presented a general framework for deflation
and augmentation approaches. Their enrichment approach consists of appending the problematic
eigenvectors at the end of the Krylov space. Saad [28] derives residual norm estimates for a general
class of methods that are based on projection techniques for subspaces of the form Km +W , where
Km is the standard Krylov subspace and W is an arbitrary subspace.

Several deflation/enrichment approaches have been developed that are tailored specifically for
solving problems of the form A i x = b i. (The superscript i denotes distinct right-hand side
(RHS) vectors.) A large number of block methods are available to deal with multiple, coexisting
RHS vectors [29–34]. Our problems of interest do not have simultaneously available RHS data.
The literature on consecutive RHS acceleration is lacking. Erhel and Guyomarc’h [35] devise
a modified conjugate gradient (CG) method that uses orthogonal projections to recycle Krylov
subspace information. Golub et al. [36] combine CG with Chebyshev filtering polynomials to build
a preconditioner that is well suited for multiple RHS. Parks et al. [37] propose a new solver,
GCRO-DR, to implement Krylov subspace recycling of approximate invariant subspaces and to
provide theoretical results to analyze the convergence of GCRO-DR for a typical application that
generates a long sequence of linear systems.

The literature for nonlinear applications (e.g., A i x = b i as it arises from a Newton-type
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iteration) is also sparse. Rey and Risler [38] develop a Rayleigh-Ritz preconditioner for use with
CG in the context of nonlinear problems. The nonlinear problem is solved with a Newton-Raphson
iteration and requires the solution of a sequence of related linear problems A i x = b i. This
projection preconditioner is constructed and then used on subsequent problems. The approach is
further refined by Risler and Rey in reference [39]; several new IRKS (iterative reuse of Krylov
subspaces) algorithms are presented for the CG method. Their focus is on developing super-
subspace information based on Krylov information that is gleaned from past problems, for use
in accelerating the current iteration. Tromeur-Dervout and Vassilevsi [40] formulate a nonlinear,
reduced model technique for computing a better initial guess for the inexact Newton method.

Finally, we note that many problems of practical interest result in nonsymmetric matrices of
large dimensionality. To date, symmetric problems have received much more attention in the
deflation and augmentation literature than have nonsymmetric problems. Furthermore, the test
problems that are used in the deflation literature are typically of low dimensionality. Therefore,
the effects of asymmetry and large dimensionality, clearly must be included in both the present
and future deflation studies.

3 Krylov Subspace Methods: Background

3.1 Nomenclature

The derivation and analysis of Krylov subspace methods relies heavily on vector theory, and the
theory of square and non-square matrices. Herein, matrices are presented in italics letters (e.g., A ,
Hm , H̄m ), with the “over-bar” nomenclature: (e.g., H̄m ) reserved for non square matrices. The
subscript signifies the column dimension, while the row dimension is implied from the context of
the equation.

Vectors are presented in bold letters (e.g., b , rm , x ). Groups of vectors (vector spaces) are
presented in standard text, with a subscript signifying the dimensionality of the space (e.g., Vm ,
Sm , Vm+1 ). The vector spaces routinely manipulated as matrices.

With a slight abuse of nomenclature, iteration numbers are also denoted using subscripts (e.g.,
xm , rm ). Further clarification is given if ambiguity exists in the meaning of the subscript. Matrices
and vectors that do not have subscripts are of dimension N .

3.2 Conventional GMRES

A general version of GMRES with enrichment is developed, and is shown to be efficient for solving
large systems of slowly varying linear equations. The algorithm is an extension of the well known
GMRES [2] algorithm. It is therefore instructive to first describe the important elements of GMRES.

Let A be an N ×N matrix, and b a vector of length N , that define the linear system

A x = b . (1)

Choose an arbitrary starting guess x0 and form the initial residual r0 = b − A x0 . Next,
generate using the Arnoldi process, the orthogonal basis Vm that spans the m dimensional Krylov
space

Km = span{ r0 , A r0 , A 2 r0 , · · · , A m−1 r0 } . (2)
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Consequently, Vm satisfies the relationship

A Vm = Vm Hm + vm+1 hm+1,m em
T = Vm+1 H̄m (3)

[ Vm+1 ]T Vm+1 = Im+1 (4)

with the unit coordinate vector em ∈ Rm, defined by em = [0, · · · , 0, 1]T , H̄m an upper Hessenberg
matrix, and Im+1 the identity matrix of dimension m.

The GMRES algorithm builds an approximate solution to equation (1) of the form

xm = x0 + Vm ym (5)

with the vector ym ∈ Rm, and determined such that the L2 norm of the residual rm = b − A xm

is minimized over Km. To illustrate, define β = ‖ r0 ‖2, and v1 = r0 /β, then substitute equation
(5) into rm = b − A xm . Simplifying the resulting expression yields

rm = b − A xm = r0 − A Vm ym = r0 − Vm+1 H̄m ym

= v1 β − Vm+1 H̄m ym = Vm+1 (β e1 − H̄m ym )
(6)

By construction, Vm+1 is orthogonal, and the L2 norm of rm simplifies to ‖ rm ‖2 = ‖β e1 − H̄m ym ‖2.
The GMRES algorithm chooses the vector ym such that the residual ‖ rm ‖2 is minimized; i.e.,
ym = argminy‖β e1 − H̄m ym ‖2.

To solve for ym , first form the Q R decomposition of the matrix H̄m = Qm+1 R̄m , with
Qm+1

T Qm+1 = Qm+1 Qm+1
T = Im+1 . Alternatively, note that H̄m = Q̄m Rm with

Q̄m
T Q̄m = Im . (The matrix R̄m is obtained from Rm by appending the zero transpose vector

in row m + 1.) Next, substitute H̄m into the residual ‖ rm ‖2 to obtain

‖ rm ‖2 = ‖β Qm+1 (Qm+1
T e1 − R̄m ym )‖2 = ‖β Qm+1

T e1 − R̄m ym ‖2 .

Defining the vector gm+1 = β Qm+1
T e1 and expanding ‖ rm ‖2 into two terms yields

‖ rm ‖2 = ‖( gm − Rm ym )‖2 + |gm+1|2 . (7)

Clearly, the minimum is achieved when

ym = argminy‖β e1 − H̄m ym ‖2 → ym = Rm
−1 gm = β Rm

−1 Qm+1
T e1 .

(8)
The L2 norm of the residual rm is a commonly used measure of iterative convergence. An

efficient means of calculating this norm is to combine equation (6) with equations (7) and (8)

‖ rm ‖2 = Vm+1 (β e1 − H̄m ym ) = |gm+1|2 . (9)

The quantity |gm+1| is a byproduct of the minimization problem solved in equation (8), requires
no additional computations, and does not require decoding the solution vector xm . It is, however,
sensitive to rounding errors. A combination of these two approaches is therefore used to monitor
and terminate the GMRES iteration. Early stages of the iteration use the approximate residual
‖ rm ‖2 = |gm+1|2, while in later stages (residual norm approaching machine precision, or two
estimates significantly different) then rm = b − A xm must be used to monitor the progress of
the iteration. The pseudo-code for the GMRES(m) algorithm to solve the linear system A x = b ,
is given in Algorithm 1.

Remark. For the sake of clarity our general algorithm described above is derived for unpre-
conditioned systems. However, the algorithm is also valid for preconditioned systems. In fact, the
results described in section 5 are all for preconditioned systems.
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Algorithm 1 (GMRES(m) to solve A x = b .)

1: Choose x0 and compute r0 = b− A x0

2: Until convergence do:
3: Compute β = ||r0||2, v1 = r0/β and set j = 0
4: Until convergence and j < m do:
5: j = j + 1
6: vj+1 = A vj

7: for i = 1, . . . , j

Hij = (vi,vj+1)
vj+1 = vj+1 −Hijvi

7: end for

8: vj+1 = vj+1/Hj+1, j ; Hj+1, j =
∣∣∣∣vj+1

∣∣∣∣
2

9: end do

10: Compute y = miny∈<k

∣∣∣∣βe1 −Hj+1, j y
∣∣∣∣, rj = Vj+1[βe1 −Hj y] and xj = x0 + Vj y

11: If not converged set x0 = x0 + xj and r0 = rj

12: end do

4 A Generalized Krylov Subspace Method

4.1 The Algorithm

A GMRES with enrichment algorithm denoted as (“GMRES-E”) algorithm is developed; the al-
gorithm is designed specifically to solve a variety of large, slowly varying linear systems of the
form A i x = b i. The kernel of the GMRES-E algorithm is essentially a conventional GMRES
algorithm with k enrichment vectors ξj , j = 1, 2, · · · , k prepended to the test space, and is im-
plemented as follows. Starting with the initial guess x0 , the residual r0

i is formed. Next, the
vector r0

i is orthogonalized with respect to the range ηi−1
j of the enrichment space ξi−1

j (η spans
A ξ ) to obtain the orthogonal (⊥) component r⊥ i, which is then appended to the enriched space.
The Arnoldi process is used to build a Krylov subspace based on the vector r⊥ i, then the current
residual is minimized on that subspace. Note that any ξ is an admissible enrichment vector, which
is a property that significantly extends the generality of GMRES-E. See figure 1 for a schematic of
the algorithm.

Four critical subelements contribute to the generality or extend the efficiency of the GMRES-E
algorithm. They are (see figure 1 for a schematic of the algorithm):

1. Determine an optimal starting solution x̄ 0 based on previous solutions to the problems
A i x i = b i. This subelement is applicable when A i remains unchanged from previous one
or more iterations (shown in green in figure 1).

2. Select a predetermined number k of enrichment vectors. This subelement is invoked at the be-
ginning of each new problem in the sequence [· · · , i] or when the current problem is restarted.
A new approach for choosing enrichment vectors is presented; this approach enhances the
performance of the GMRES-E algorithm in cases where the accurate approximation of the
eigenvectors is difficult (shown in blue in figure 1).
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3. Construct the Arnoldi relationship A i Sk = Vk H̄k for the k enrichment vectors selected.
Note that when A does not change, an existing Arnoldi relationship A i Sm = Vm+1 Hm

can be compressed or rotated into the desired form (shown in yellow in figure 1).

4. Use a Galerkin projection technique to preprocess the new r0
i so that it is consistent with the

currently available Arnoldi relation. This subelement ensures the admissibility of arbitrary
enrichment vectors (shown in rose in figure 1).

We now present the theoretical underpinnings for the GMRES-E algorithm; we begin with the
kernel and then include the four subelements. Note the similarity between the kernel and the
conventional GMRES algorithm.

4.2 Kernel: GMRES with Enrichment

Let A be an N ×N matrix and b a vector of length N ; these define the linear system A x = b
[see equation (1)]. Define or construct a kth-dimensional (nonorthogonal) vector space Sk and the
corresponding orthogonal space Vk that satisfies the relation A Sk = Vk Hk . Next, append
to Vk the orthogonal component of the current residual vector r⊥ , and then, using the Arnoldi
process, build the vector spaces Sm and Vm+1 such that the expressions

A Sm = Vm Hm + vm+1 hm+1,m em
T = Vm+1 H̄m (10)

[ Vm+1 ]T Vm+1 = Im+1 ; r0
i = Vm+1 fm+1 (11)

are satisfied. Note that the vector fm+1 is the projection of the residual r0
i onto the space Vm+1 .

Using equations (10) and (11), GMRES-E builds an approximate solution to equation (1) of the
form

xm = x0 + Sm ym (12)

with the vector ym ∈ Rm and ym determined such that the L2 norm of the residual rm = b−Axm

is minimized over the vector space Vm+1 . The approach that is used to minimize rm in GMRES-E
is identical to that in GMRES.

The residual rm satisfies the expression rm = r0 − Vm+1 H̄m ym , which when simplified
using equation (11) (and fm+1 = [ Vm+1 ]T r0 ) yields

rm = r0 − Vm+1 H̄m ym = Vm+1 ( fm+1 − H̄m ym ) (13)

By construction, Vm+1 is orthogonal, and the L2 norm of rm simplifies to ‖ rm ‖2 =
‖ fm+1 − H̄m ym ‖2. The residual ‖ rm ‖2 is minimized for a value of ym such that ym =
argminy‖ fm+1 − H̄m ym ‖2. Forming the QR decomposition of the matrix H̄m and substituting
H̄m into the residual ‖ rm ‖2 produces

‖ rm ‖2 = ‖ Qm+1
T fm+1 − R̄m ym ‖2 .

Defining the vector gm+1 = Qm+1
T fm+1, and expanding the residual as ‖ rm ‖2 = ‖( gm − Rm ym )‖2+

|gm+1|2 implies that ‖ rm ‖2 is minimized by

ym = argminy‖ fm+1 − H̄m ym ‖2 → ym = [Rm ]−1 gm = [Rm ]−1 Q̄m
T fm .

(14)
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Remark. The residual monitoring techniques that are used in GMRES are expandable to
GMRES-E. An efficient (no cost) alternative to direct formation of rm = b − A xm is
also available with GMRES-E

‖ rm ‖2 = ‖ fm+1 − H̄m ym ‖2 = ‖( gm − Rm ym )‖2 + |gm+1|2 = |gm+1|2 . (15)

Remark. The matrix H̄m in GMRES-E is in general full, at least in the k × k submatrix
that corresponds to the enrichment vectors. Householder rotations are used to form the Q R
decomposition in this case. (The fullness of the k × k submatrix depends on the particular choice
of enrichment vectors.)

Remark. The GMRES-E algorithm generates the following vector spaces (with a slight abuse
of the Krylov nomenclature Km):

Km(S) = [ ξ1, ξ2, · · · , ξk, r⊥ , (P A ) r⊥ , (P A )2 r⊥ , · · · , (P A )m−k−1 r⊥ ]
Km+1(V ) = [A ξ1, A ξ2, · · · , A ξk, r⊥ , (P A ) r⊥ , (P A )2 r⊥ , · · · , (P A )m−k−1 r⊥ , (P A )m−k r⊥ ]

(16)
where P is the projection matrix P = (I − ηi−1

k [ηi−1
k ]

T
), and is spanned by the basis vectors Sm

and Vm+1 . Appendix (A) contains a proof that the final m − k vectors in Km form a Krylov
subspace.

The vectors Sm and Vm+1 are closely related. Specifically, if we define a

Vk+1→m ≡ [vk+1, · · · ,vm]

then
Sm = [ Sk , Vk+1→m ] ; Vm+1 = [ Vk , Vk+1→m ,vm+1] (17)

which indicates that Sj = Vj for k + 1 ≤ j ≤ m. As such, both Sm and Vm+1 do not need to
be stored, only Sk and Vm+1 .

4.2.1 Preprocessing Using Previous Solutions

Assume that i− 1 problems have been solved with A unchanged. Preprocessing first projects b i

onto the orthogonal data space span{ b 1, · · · , b i−1} to determine b⊥ i, which is the orthogonal
component of b i. The vector b i is then decomposed into b i = b⊥ i + (b i − b⊥ i). The solution to
the problem A x i = (b i − b⊥ i) is already available from the solution space span{x 1, · · · , x i−1}.
The problem that remains is A x i = b⊥ i. After x i is determined, x i and the RHS vector b⊥ i

are appended to their respective subspaces.
In practical problems, instability can arise without the following modification to the preprocess-

ing step [41]. Note that the equality that is satisfied in practice is A ix i = b i− r i, not A ix i = b i.
The residual vector may be far from machine precision in magnitude. As such, orthogonalizing the
new b i against the data space span{b 1, · · · , b i−1} can lead to instability. Thus, the appropriate
data spaces to use in preprocessing are the solution space span{x 1, · · · , x i−1} and the data space
span{ b 1 − r 1, · · · , b i−1 − r i−1}.

Assume that preexisting solution data satisfies
A x j = b j − r j ; j = 1, · · · , i− 1. Define the vector spaces

Γi−1 = [ x 1, · · · , x i−1] ; Ωi−1 = [ b 1 − r 1, · · · , b i−1 − r i−1] .

9



Orthogonalize Ωi−1 such that

Ωi−1 = Θi−1 Hbr ; [[Θ]i−1]
T
Θi−1 = Ii−1 .

With these definitions, the data from all previous problems can be expressed as

A Γi−1 = Θi−1 Hbr .

The preprocessing step is encapsulated in the following lemma.

Lemma 1 The L2 optimal starting guess x0
i that is constructed from the space Γi−1, and the

initial guess x̄0
i is given by

x0
i = x̄0

i + Γi−1H−1
br [Θi−1]T r̄0

The starting residual is
r0 = (I − Θi−1[Θi−1]T ) r̄0

Proof : The general expression for x0 , formed from an update from the space Γi−1 with starting
guess x̄0 , is

x0 = x̄0 + Γi−1yi−1 (18)

with yi−1 an unknown i− 1-vector. The general residual r0 is then given by

r0 = r̄0 − Θi−1Hbryi−1 = (I − Θi−1[Θi−1]T ) r̄0 + Θi−1{ [Θi−1]T r̄0 − Hbryi−1 } (19)

Solving { [Θi−1]T r̄0 − Hbryi−1 } for yi−1 yields

yi−1 = H−1
br [Θi−1]T r̄0

and the expression for r0 follows immediately. �
Remark. Note that unlike the minimization step in GMRES and GMRES-E, the equation

{[Θi−1]T r̄0−Hbryi−1} can be solved identically for yi−1, instead of resorting to an L2 minimization
technique.

4.2.2 Selecting Enrichment Vectors

The choice of enrichment vectors is a delicate task that has received considerable past attention in
the literature. Indeed, the selection algorithm has a profound impact on the overall performance
of the enrichment algorithms. Although at least three well-established methodologies exist for
selecting enrichment vectors, we include a fourth and a fifth.

I The first approach (e.g., see references [24–27,42,43]) identifies eigenvalues (and eigenvectors)
that are inadequately clustered by the preconditioner and, thus, contribute to poor conver-
gence. Ritz pairs [27, 44] (e.g., Ritz-values and vectors) are commonly used to approximate
the eigenvalues and eigenvectors of the matrix A . They are obtained by choosing vector
ξ̆m such that the error is minimized in the relation [ A − θ̆I] Sm ξ̆m = 0 . Two popular
techniques for minimizing the error in the Ritz problem are the Galerkin Projection (GP)
and the Petrov-Galerkin projection. The Galerkin and Petrov-Galerkin projections produce
the conventional Ritz and harmonic Ritz pairs, respectively. See Appendix B for derivations
of the harmonic and conventional Ritz formulations. One or more Ritz vectors are used to
enrich the next Sm and converge to the exact eigenvectors as the iteration progresses.
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II A second approach (e.g., see references [45–54]) uses physical arguments to construct ap-
proximate eigenvectors, a technique that is highly effective for problems with a recognizable
physical attribute that contributes to problematic eigenvalues. Much research, including the
early work of Nicolaides [45], demonstrates the use of algebraic deflation vectors to deflate
coarse-grid information. Indeed, using piecewise constant or piecewise linear (see Verkaik
et al. [52]) deflation vectors is often sufficient. Vuik et al. [47, 48, 55] used this technique
to accelerate the convergence of a preconditioned CG method that was used to solve the
time-dependent diffusion equation with discontinuous coefficients. Furthermore, they showed
(through analysis and numerical experiments) that perturbations in the approximate eigen-
vectors had limited influence on the efficacy of eigenvector enrichment in this context. This
approach has been shown to be effective on the more complicated cases that involve time-
dependent problems with moving discontinuities [54].

III A third approach (e.g., see reference [42]) uses vectors that correspond to the eigenvector that
significantly impacted the convergence of past iterations. This approach asks the questions,
“How much worse would the convergence be at step m if the iteration was restarted at step
s (s < m) and s −m vectors were discarded?” and “Furthermore, which vectors should be
retained?” To answer these questions, optimal solutions are obtained via projections onto
the full and truncated spaces. The residuals are compared in each case, and the truncated
modes are identified and ranked in importance.

IV A fourth approach is to use the Ritz vectors from a previous and slightly different A . This
step is only warranted if A i−1 ≈ A i. The Ritz vectors are computed in a manner that is
similar to that described in approach I, while the Arnoldi relation is constructed as described
in II.

V A fifth approach is to retain the entire space Km and the accompanying Arnoldi relation
(with the assumption that memory resources are sufficient). This approach is motivated by
cases for which accurate approximations of the eigenvectors are not forthcoming. This is
frequently the case when the desired tolerance for the linear system is reached well before
the Ritz vectors are accurate approximations of the problematic eigenvectors. This approach
could be considered a trivial extension of the first (or the third) approach in the limit where
all m harmonic Ritz vectors are retained rather than only a few.

The preferred approach for choosing enrichment vectors in GMRES-E is the first, which is closely
patterned after that of Morgan [26]. The generalized eigenvalue problem derived in Appendix B
[eq. (41)] is solved to determine m harmonic Ritz pairs. Next, the selection algorithm in section
B.2 chooses the worst k eigenvectors and loads them into an m× p matrix P̄k . Right-multiplying
Sm yields the desired Ritz space Sk = Sm P̄k . Enrichment by this approach is referred to as
eigenvector enrichment and is denoted in the results section by the subscript E.

The fifth approach is the preferred alternative if accurate approximations of the problematic
eigenvectors are not forthcoming. (This is commonly the case in defect-correction iterations and is
the topic of a future paper.) Note that this approach is equivalent to choosing P̄k to be I, with
k = m. Enrichment by this approach is referred to as appending enrichment, and is denoted in the
results section by the subscript A.
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4.2.3 Data Rotation and Compression

In preparation for the next cycle (i.e., restart or a new problem), the existing Arnoldi relation must
be rotated or compressed. If we assume that important information is stored in the matrix P̄k ,
then this step is accomplished as follows.

Right-multiply the Arnoldi relation A i−1 Sn = Vn+1 H̄n by the matrix P̄k to produce the
expression

A Sn P̄k = Vn+1 H̄n P̄k . (20)

Note that this step is only possible when A i−1 = A i and when an Arnoldi relationship is
available. When A i−1 6= A i or when the Arnoldi relationship is not available, data rotation and
compression cannot be used. In this case, the selected enrichment vectors must be left-multiplied
with A to construct the Arnoldi relationship A i Sk = Vk Hk .

Data compression can proceed in two similar ways, which differ only in how the nonsquare
matrix H̄n P̄k is decomposed. The first technique uses QR factorizations to decompose the matrix
product H̄n P̄k . This technique is computationally efficient, although numerical experiments
reveal that it is more susceptible to roundoff errors. The second technique uses a singular value
decomposition to decompose H̄n P̄k . This technique has better stability properties but is more
computationally intensive.

Q R Compression:
The Q R technique begins by substituting H̄n P̄k = Q̄n Rk into equation (20) to yield the
expression

A Sn P̄k = Vn+1 H̄n P̄k = Vn+1 Q̄n Rk . (21)

Next, we define
Sk = Sn P̄k ; Vk = Vn+1 Q̄n (22)

With these definitions, the compressed system becomes

A Sk = Vn+1 Q̄n Rk = Vk Rk (23)

and retains the following property.

Lemma 2 The compressed matrix Vk is orthogonal.

Proof :
Vk

T Vk = Q̄n
T

Vn+1
T Vn+1 Q̄n = Ik

�
S V D Compression:

The singular value decomposition (S V D) technique begins by substituting H̄n P̄k = Q̄n Dk WT
k

into equation (20) to yield the expression

A Sn P̄k = Vn+1 H̄n P̄k = Vn+1 Q̄n Dk WT
k (24)

Right-multiplying by [WT
k ]−1 = Wk and using the definitions

Sk = Sn P̄k Wk ; Vk = Vn+1 Q̄n Dk (25)
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yields the compressed system
A Sk = Vk Dk (26)

Inspection reveals that this form also retains the desired orthogonality property for the compressed
matrix Vk .

Remark. The Q R compression technique is significantly more efficient when P̄k = In . In
this case Sn remains unchanged; thus the work is reduced by n2 matrix-vector products (i.e. n2

calls to the blas1 routine DAXPY).
Remark. Both new Arnoldi relations [eqs. (23) and (26)] can be expressed symbolically in the

form A Sk = Vk Rk where Rk is an upper triangular matrix.

4.2.4 Initialization by Galerkin Projection

A mechanism is now needed to include the current residual in the subspace and start the next
iteration. The Galerkin projection (GP) technique [1, 26, 56, 57] provides such a mechanism. Fur-
thermore, this technique is L2 optimal.

The fundamental steps of the GP are expressed in the following lemma.

Lemma 3 Assume that the relation [A Sk = Vk Rk ] has been constructed. The L2 optimal
starting solution x0 , which is constructed from vectors in Sk and any starting guess x̄0 , is

x0 = x̄0 + Sk Rk
−1 Vk

T r̄0

and the starting residual is
r0 = (I − Vk Vk

T ) r̄0

Proof : The general expression for x0 , formed from an update from the space Sk with starting
guess x̄0 , is

x0 = x̄0 + Sk yk (27)

where yk is an unknown k-vector. Using A Sk = Vk Rk , the general residual r0 is then given
by

r0 = r̄0 − Vk Rk yk (28)

Adding and subtracting Vk Vk
T r̄0 yields the expression

r0 = ( In − Vk Vk
T ) r̄0 + Vk ( Vk

T r̄0 − Rk yk ) . (29)

The term ( In − Vk Vk
T ) r̄0 is the component of r̄0 that is orthogonal to the space Vk , and

it is independent of the choice of yk . Solving the second term in equation (29) implies that the
residual ‖ r0 ‖2 is minimized for the value of yk

yk = argminy‖ Vk
T r̄0 − Rk yk ‖2 → yk = [Rk ]−1 Vk

T r̄0 . (30)

Substituting equation (30) into equations (27) and (28) yields the desired result. �
Remark. Three distinct restart scenarios exist: 1) restart an existing problem A x = b (e.g.,

insufficient memory), 2) solve the same system of equations with a different or multiple RHS b
(e.g., A x = b̃ ), and 3) solve a different but closely related problem Ã x = b̃ . In the first two
restart scenarios which involve constant A , the relation A Sk = Vk Hk is available from the
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previous problem A i−1 x i−1 = b i−1. The third restart scenario requires the construction of a
new Arnoldi relation given the starting vectors Sk .

As a final step of the initialization, normalize the optimal residual r0 and create the starting
vector

vk+1 = r0
‖ r0 ‖2 (31)

Appending vk+1 to Vk in the relation A Sk = Vk Rk yields

A Sk = [ Vk | vk+1 ]
[
Rk

Zk

]
= Vk+1 R̄k (32)

with Zk = [0, · · · , 0]. The matrix R̄k is of dimension k + 1× k, and row k + 1 is entirely zero.

Lemma 4 The matrix Vk+1 is orthogonal.

Proof :

Vk
T Vk = Ik ; vk+1

T Vk = ‖ r0 ‖−1
2 r̄0

T (I − Vk Vk
T ) Vk = 0 ; vk+1

T vk+1 = 1
(33)

� The system A Sk = Vk+1 R̄k is now ready for the generation of an m−k dimensional Krylov
space with vk+1 as its starting vector. Pseudo-code for the GMRES(m) algorithm enriched with
q vectors, and designed to solve a sequence of linear systems A κ x = b κ is given in Algorithm 2.

5 Numerical Experiments

5.1 Test Problems

5.1.1 Advection-Diffusion

The first test problem solves the steady advection-diffusion equation

εx
∂
∂x

∂u
∂x

+ εy
∂
∂y

∂u
∂y

+ εz
∂
∂z

∂u
∂z

= D ∂u
∂x

+ E ∂u
∂y

+ F ∂u
∂z

; 0 ≤ x, y, z ≤ 1

α ∂u
∂n

+ βu = γ
(34)

with the parameters α, β, and γ set to O(1) constants.
The diffusion and advection parameters are assigned to be εx = εy = εz = ε, and

D(x, y, z) = exp[(+x)y] ; E(x, y, z) = exp[(−x)y] sin(πz) ; F (x, y, z) = exp[(−x)y] sin(−πz)

Three values are used for parameters ε in this study: ε = 1, 1
10 , 1

100 . The problem is discretized
on a single [ (Nx, Ny, Nz) = (141, 99, 79) ] grid, and the Jacobian of the discretization operator
produces the matrix A . In principle, the steady solution is obtained by solving a single system
A x = b , where the vector b represents the initial solution field. Herein, to approximately
emulate the conditions that are encountered in unsteady simulations, multiple RHS vectors b ,
[ b i = 1 + 0.1 rand() ], i = 0, 6, are solved sequentially as A x = bi. The ILU(k) (ILU with
level k of fill-in) class of preconditioners with 0 ≤ k ≤ 4, which are formed from the exact matrix
A , are used exclusively in this study. This problem is characterized by strongly varying advection
terms and illustrates the complementary nature of enrichment for ILU(k) preconditioners.
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Algorithm 2 (GMRES(m) with q enrichment vectors to solve A κ x = b κ.)

1: Until nonlinear convergence do:
2: κ = κ + 1
3: Construct A κ and b κ

4: Choose x0 and compute r0 = b− A κ x0

5: If A τ = · · · = A κ−1 = A κ,
Project x0 and r0 onto A x [τ,··· ,κ−1] = b [τ,··· ,κ−1] for optimal initial x 0, r 0

6: Until linear convergence do:
7: Initialize Sκ

q with q enrichment vectors
If restart: problematic eigenvectors from A κ

If same A , new b κ, and available memory: Sκ
q = Sκ−1

m

8: Construct the square Arnoldi relation AκSq = VqHq

9: Orthogonalize r0 against Vq such that r̃0 ⊥ Vq

10: Compute β = ||r̃0||2; vq+1 = r̃0/β ; Hq+1,j = 0T , j = 1, q ; Set j = q + 1
11: Until convergence and j < m do:
12: j = j + 1
13: vj+1 = A κ vj

14: for i = 1, . . . , j

H ij = (vi,vj+1)
vj+1 = vj+1 −H ijvi

14 end for

15: vj+1 = vj+1/Hj+1, j ; Hj+1, j =
∣∣∣∣vj+1

∣∣∣∣
2

16: end do
17: Define S = [Sq, Vq+1→j ] ; xj = x0 + S y

18: Compute y = miny∈<q

∣∣∣∣βeq −Hj y
∣∣∣∣; rj = Vj+1[βeq −Hj y]

19: Estimate problematic eigenvectors from AκSj = Vj+1Hj

20: If linear converged
Save x κ and b κ as A x [τ,··· ,κ] = b [τ,··· ,κ]

Exit to nonlinear loop
20 else

Restart : x0 = x0 + xj and r0 = rj

20: endif
21: end do
22: end do

5.1.2 Diffusion

The second problem is purely diffusive and assigns the advection parameters to D = E = F = 0.
The effect of (grid) anisotropy is studied by assigning the diffusion coefficients εx, εy, εz to be

εx(x, y, z) = εy(x, y, z) = εz(x, y, z) = 1
100εx(x, y, z) = 10εy(x, y, z) = εz(x, y, z) = 1

10000εx(x, y, z) = 100εy(x, y, z) = εz(x, y, z) = 1 .
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The problem is discretized on a family of four grids of densities 33 × 33 × 33 , 65 × 65 × 65 ,
129× 129× 129 and 257× 257× 257 , respectively. All cases are solved with b = [1, · · · , 1]T . The
preconditioners used for this study are ILU(k) as well as “multiple-sweep Jacobi” [Jac(k)]. The
study addresses the efficacy of enrichment for cases with thousands of closely related problematic
eigenmodes.

All terms in both problems are discretized on a uniform mesh using second-order finite-difference
stencils. The resulting matrix A has seven non-zero diagonals in 3D. The subroutine used to gener-
ate the fully discrete matrix A corresponding to equation (34) is from SPARSKIT, Version 2 [58].

5.1.3 2D Unsteady: Hexstream

The second test problem is a fully turbulent, unsteady flow around a 25-percent thick wind turbine
profile that is solved with the Hexstream [14,15] software. A sequence of Jacobians and right-hand
sides are generated that correspond to the three nonlinear solutions that are required to advance
one physical time step with a three-stage implicit RK scheme. The time step in this numerical
experiment occurs after the completion of five vortex shedding cycles. The total number of linear
equations that are solved at each stage are 6, 3, and 4, respectively, for a total of 13 independent
linear solutions. The Jacobian matrix is frozen for all required linear solutions within each stage.
The Jacobians are constructed with a perturbation method but contain only the nearest neighbor
contributions. See Figures 6 and 7 for the wind turbine grid and a temporal solution of the
turbulent viscosity.

The Hexstream flow solver is based on the Reynolds averaged Navier-Stokes (RANS) equations,
which describe conservation of mass, momentum, and energy. The one-equation turbulence model
of Spalart and Allmaras [59] is used as a closure model. The space discretization is performed
with the cell-centered, conservative, finite-volume scheme. The convective flux is discretized by
using a second-order central scheme with a Jameson type of scalar artificial dissipation. Finally,
the integration in time is performed with a third-order ESDIRK scheme [60,61].

5.2 Computational Considerations

One goal of this study is to establish the effectiveness of the enrichment GMRES approach in
environments that are routinely encountered by practitioners in solving large linear systems (> 106

unknowns). Unfortunately, effective preconditioners are not always available; thus, determining
the effectiveness of enrichment by using both strong and weak preconditioners is desirable. The
ILU(k) framework provides a simple means for building variable preconditioners. Changing the
level of fill-in that is allowed in the L and U factors substantially changes the characteristics of
the preconditioner. The ILU(k) preconditioners are derived from the SPARSKIT [58] subroutine
ILUK.

The CPU time that is required to form the incomplete LU decomposition is not included in the
total simulation times. Neglecting the factorization times favors high-quality approximate inverses.
This decision, however, reflects our interest in steady-state and time-dependent simulations for
which the Jacobian matrix A is approximately factored, stored, and reused many times (> 10)
before refactorization is necessary, which mitigates the impact of costly factorizations.

Simulations that use Ritz vectors for enrichment, choose the vectors by first assigning a merit
to each Ritz value and then choosing the k Ritz values with the smallest merit. (See Appendix
B for a derivation of the conventional and harmonic Ritz procedures.) Complex eigenvalues are
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accommodated by using two Ritz vectors, one each for the real and imaginary components. If the
Ritz problem does not yield exactly k eigenvectors, then k − 1 vectors are used.

6 Results

6.1 Advection-Diffusion

6.1.1 Preliminaries

In tables 1, 2, and 3 we compare the impact of the enrichment on the linear advection-diffusion test
problem for values of the parameter ε = 1, 1

10 , 1
100 , respectively. Presented is the CPU time (i.e., the

number of seconds on a single processor) that were required to reach a specific residual tolerance, as
a function of 1) the enrichment vectors, 2) the Krylov subspace vectors, 3) the preconditioners, and
4) the enrichment-vector initialization. The first column in tables 1, 2, and 3 indicates the number
of enrichment vectors (0, 2, 4, 8, 16, 24) that were used for the simulation; the first row after the
“preconditioner” label indicates the number of Krylov vectors (30, 40, 50, 60, 70) that were used
between restarts. The two preconditioners that were used in the study are ILU(0), and ILU(2).
A residual reduction of ten orders (10−10) was the criteria that was used to stop the simulations.
Numbers that are less than or equal to zero denote the logarithm of the final residual, which is
given for simulations that failed to reach the specified tolerance after 2000 iterations for any of the
RHS vectors b j .

The two selection algorithms that were used in this study to build the enrichment space are
the numbers I and IV which are given in section 4.2.2. Number V was not considered because of
insufficient storage.

6.1.2 Eigenvector Enrichment

The positive impact of enrichment is most evident in the ε = 1
10 study. All cases stall for Krylov

subspace dimensions (≤ 70) when two or fewer eigenvectors are used to enrich the subspace. Slow
convergence is observed for a dimension of 60− 70 and four enrichment vectors, with the exception
of the ineffective ILU(0) preconditioner. The use of eight enrichment vectors proves effective for
nearly all combinations of parameters. Similar trends are observed in the ε = 1 study, although
the tendency to stall is less likely. The ε = 1

100 case shows acceptable convergence in most cases.
Although the effect of enrichment is dependent on ε in this study, efficiency generally increases

with increasing enrichment up to approximately 8−16 vectors, followed by a slight decline. Conver-
gence times with enrichment are two to four times smaller than those without enrichment. Enrich-
ment has a greater impact on those cases that have difficulty converging [e.g., weak preconditioners
like ILU(0)].

Although large dimensional Krylov subspaces (e.g., 70) usually provide faster convergence, this
effect is of secondary importance relative to that of enrichment. For example, large Krylov spaces
without enrichment are far less efficient than small spaces with 8 − 16 enrichment vectors. Thus,
in this example eliminating the problematic eigenvectors via enrichment is easier than building a
large Krylov subspace.

The convergence trends for each value of the parameter ε can be predicted by the number (and
location) of the eigenvalues of AM−1. To illustrate, figures 2, 3, 4, and 5 present an eigenvalue
study. Figure 2 shows the first 60 Ritz values (compared with 1.1 Million eigenvalues) of the matrix

17



AM−1, with the matrix M derived from an ILU(0) or an ILU(2) preconditioner. Ritz values are
generally not eigenvalues, but in this case the error in the Ritz values near the origin is small
due to repeated Krylov subspace enrichment. Indeed the Ritz value error as determined using
equation (46) indicates three to six significant digits. Although it appears that the Ritz values are
converging to eigenvalues, it cannot be determined whether all of the eigenvalues near the origin
are being identified.

Figure 3 shows an expanded view of the eigenvalues near the complex origin (0,0), using ILU(1)
with four different enrichment scenarios to approximate the eigenvalues. The dimension of the
Krylov subspace is 60 in all four cases, while the number of enrichment vectors is 10, 20, 30, 40,
respectively. The vectors are approximated using Harmonic Ritz vectors corresponding to the k
Ritz values closest to the origin. Note that each enriched eigenspace is (almost always) a proper
subset of all larger spaces, and that the new eigenvalues in each successive space move progressively
further from the origin. The enrichment procedure is identifying all the important eigenvalues near
the origin.

Figures 4 and 5 show the eigenvalues of A M−1 located near the origin for the ε = 1
10 and

ε = 1
100 test cases. Both the ILU(0) and ILU(2) preconditioners (M) are used in the study. Recall

that the iteration for the ε = 1
10 test case was stalled for both preconditioners until approximately

10 eigenvalues were used to enrich the space, while the ε = 1
100 test case converged even without

enrichment. Careful examination of the eigenvalues for each case reveals the reason for this behavior.
First, note that numerous eigenvalues (e.g., 10) are outside the unit circle in the ε = 1

10 test case.
(At this resolution, the unit circle is the vertical axis at the origin. Thus, eigenvalues in the LHP are
outside the conventional stability region.) These eigenvectors, if not fully resolved by the restarted
GMRES algorithm, could stall the iteration. The ε = 1

100 case has only one LHP eigenvalue.
Evidently, for these test cases, the restarted GMRES algorithm is capable of isolating a single
ε = 1

100 eigenvector but incapable of isolating all of the spurious modes in the ε = 1
10 case without

the assistance of enrichment. Second, note that while the ILU(2) preconditioner results in spurious
eigenvalues that extend further into the LHP than those produced by the ILU(0) preconditioner,
it clusters most of the eigenvalues away from the origin. The ILU(2) preconditioner outperformed
ILU(0) for all values of the parameter ε. Again this result is consistent with the notion that the
restarted GMRES algorithm is effective at isolating a few spurious eigenvalues but has trouble with
numerous unclustered eigenvalues.

6.1.3 Initialization

Appropriate initialization of the enrichment vectors can also significantly impact the overall conver-
gence rate. The impact of reusing Ritz vectors from previous problems (section 4.2.2, element IV)
is shown in tables 1, 2 and 3. Columns two through six show a conventional enrichment study, for
which the starting vector is x0 = 0. Consequently, several Krylov Arnoldi cycles are necessary to
accurately represent the enrichment vectors. Columns 7 - 11 show an identical study, except that
the enrichment vectors are initialized using accurate data obtained from a previous study. (The
study has the same matrix A but a different RHS vector b .)

Table 1 clearly shows that reusing the Ritz vectors from a previous problem is very effective for
the case ε = 1. This is especially true when 16 and 24 enrichment vectors are used; a large speedup
(i.e., factor of 2 to 3) is realized. The Galerkin projection initialization is much less effective for the
ε = 1

10 and ε = 1
100 cases. In fact, in some cases, the Galerkin projection initialization slows down
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the convergence. Either matrix asymmetry or indefiniteness (or both) could account for this trend.
Evidently, more work is needed to quantify the influences on the effectiveness of initialization.

Table 4 displays the effect of the preprocessing step (i.e., projection initialization) on the start-
ing residual in the advection-diffusion test problem using a diffusion parameter ε = 1

10 . The
preprocessing step first assumes x̄ 0 = 0, which yields a temporary starting residual r̄ 0. This
residual is then projected onto the available solution space, thus producing a new residual r 0. The
ratio of ‖ r 0‖/‖ r̄ 0‖ is reported in columns two through six in table 4, as a function of enrich-
ment vectors (0, 2, 4, 8, 16, 24) and Krylov vectors (30, 40, 50, 60, 70) between restarts. Clearly,
preprocessing becomes more effective as more and higher quality information accumulates in the
enrichment space.

6.1.4 Choosing the Ritz Vectors

Table 5 compares the efficacy of Ritz vector enrichment using two selection algorithms on the
advection-diffusion problem. These results are obtained using the ILU(2) preconditioner. Similar
trends are recovered using ILU(0) and ILU(1), but are not reported herein. The format is the
same as in tables 1, 2 and 3. At each restart, a harmonic Ritz procedure is used to determine the
Ritz values, which are then assigned a merit base on their location in the complex plane. The k
Ritz vectors that correspond to the values with the smallest merits are then chosen for enrichment.
The two methods for assigning merit are |ζj | = [

√
(θr)

2
j + (θi)

2
j ] and |ζj | = [

(θr)jq
(1− θr)2j + (θi)

2
j

].

The two preconditioners that are used in the study are ILU(0) and ILU(2), while the diffusion
coefficient is ε = 1

10 .
Although sensitivity (up to a factor of 2) to the selection algorithms is noted, no clear winner

emerges in this study. This emphasizes the need for a robust methodology to select Ritz vectors.
Similar trends are observed using the conventional Ritz procedure to determine Ritz values.

6.2 Diffusion

6.2.1 Preliminaries

Results for the impact of enrichment on Laplace’s equation are presented in tables 6, 7, 8, and
9. Tables 6, and 7 present results obtained on a 1293 grid with Dirichlet BC’s used on all six
boundaries. Table 6 uses a uniform mesh, while table 7 uses a highly anisotropic mesh (εx =
10000, εy = 100, εz = 1). The CPU time and iterations required to achieve the specified tolerance
(10−10), are presented as functions of 1) enrichment vectors (0, 2, 4) and 2) Krylov vectors (5,
10, 20, 40) between restarts. Two preconditioners are used in each study: ILU(k), k = 0, 1 and
Jac(k), k = 1, 2, 4, 8, 16, 32, 64. The logarithm of the final residual replaces CPU-time for those
cases that did not reach the specified tolerance in 2000 iterations. Galerkin projection initialization
is not applicable because only a single b is solved in this test case.

6.2.2 Eigenvector Enrichment

The uniform grid study shown in table 6 demonstrates the benefits of enrichment for nearly all
enrichment/preconditioners combinations. Enrichment greatly accelerates ( 3×) the convergence for
the weakly preconditioned cases [e.g., Jac(1)], with most of the benefit realized with two enrichment
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vectors. The benefit of enrichment for strongly preconditioned cases [e.g., Jac(64), ILU(1)] is less
significant ( 2×).

As with preconditioner strength, the Krylov dimension strongly affects the efficacy of enrich-
ment. The combination of 4 enrichment vectors with 5 Krylov vectors ([4 : 5]) proves to be
ineffective, while the closely related cases [4 : 10] and [2 : 5] are accelerated relative to conven-
tional GMRES. As the Krylov dimension approaches 40, the influence of enrichment is attenuated.
Enrichment has no impact on the ILU(1) / Krylov:40 combination.

An identical enrichment study performed on a highly anisotropic grid is presented in table 7. Al-
though enrichment produces a small decrease in total iterations for most enrichment/preconditioner
combinations, the actual CPU-time increases in many cases.

The uniform and anisotropic 1293 grid trends shown in tables 6 and 7 are representative of
other uniform and anisotropic grid studies (333, 653, and 2573). Tables 8 and 9 compare 1293 grid
results with those obtained on grids of density 333, 653 and 2573.

6.3 2D Unsteady Hexstream

6.3.1 Preliminaries

Tables 10, 11, 12, 13, 14, and 15 show comparisons of the impact of enrichment on an unsteady,
2D turbulent NS simulation. Table 10 shows the cumulative CPU time that is required for all
13 linear solutions (one full time step) to reach a residual of 10−10, as a function of enrichment
vectors, Krylov subspace vectors, preconditioners, and enrichment vector initialization. The first
column in table 10 indicates the number of enrichment vectors (0, 2, 4, 6, 8, 10) that were used
for the simulation; the first row immediately after the “preconditioner” label indicates the number
of Krylov vectors (20, 25, 30, 35, 40) that were used between restarts. Columns 1 − 6 and 7 − 11
correspond to uninitialized and initialized Krylov space, respectively (see section 4.2.2, element IV).
Numbers less than or equal to zero denote the logarithm of the final residual, which is given for
simulations that fail to reach the specified tolerance after 2000 iterations. The three preconditioners
used in the study are ILU(2), ILU(3), and ILU(4). The preconditioners ILU(0) and ILU(1) could
not reach the specified tolerance within a reasonable number of iterations. Harmonic Ritz vectors
are used to enrich the subspace; the Ritz values were identified by using the k smallest |ζj | with

the selection algorithm |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

]. (This selection algorithm was determined

experimentally to identify the problematic Ritz values.)

6.3.2 Eigenvector Enrichment

Table 10 demonstrates the benefits of enrichment for the ILU(2) and ILU(3) preconditioners.
Convergence is accelerated by approximately a factor of 2 for the ILU(2) cases with less than
30 Krylov vectors. The impact of enrichment is less pronounced for the ILU(4) preconditioner.
Enrichment has the most impact on cases that were run with 30 or fewer Krylov vectors.

Table 11 shows the convergence study results for the ILU(2) preconditioner. Only a single Ritz
vector is enriched into the Krylov subspace at each restart. The eigenvalues that were used for
enrichment are shown in the table, with the cumulative CPU time that was required to complete the
13 linear solutions. The eigenvalues with the greatest influence on the convergence are located near
the left half-plane (LHP) point (−0.25, 0.0). The impact decreases with increased distance from
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the origin. Removing the eigenvalues inside the unit circle has even less impact on convergence.
Finally, note that removal of the three eigenvalues that are furthermost from the unit circle (13.29,
-23.28, 122.63) has little impact on convergence.

Figure 8 shows a plot of the most problematic eigenvector. It corresponds to the eigenvalue
located at (−0.16, 0, 0) in the complex plane. The eigenvector is related to an undamped pressure
mode that is located near the blunt trailing edge of the airfoil.

6.3.3 Initialization

Initialization is accomplished by first enriching the space with Ritz vectors that are available from
previous IRK iterative problems (section 4.2.2, element IV). Thus, the linear solution begins with
the initial residual orthogonal to a preexisting enrichment space, which generally is not yet invariant.
Second, the new problem is projected onto the existing solution space that is obtained from previous
problems, which provides an optimal starting guess for the new problem (section 4.2.1). In table
10, columns 7−11 show the cumulative CPU times that are required to solve all 13 linear problems.
The initialization step is clearly not effective for this nonlinear unsteady NS simulation.

Table 12 shows the impact of projecting the current problem onto the existing solution space.
Shown are the stage (IRK), the iteration within that stage and the reduction of the initial residual.
Very little benefit is gained from this initial projection.

6.3.4 Choice of Ritz Vectors

Tables 13 and 14 compare different methods for choosing Ritz vectors, an important task that has
received little attention in the enrichment literature. At restart, a p - dimensional Krylov space
must be intelligently compressed, a task that is by no means trivial. Solution of the (standard
or harmonic) Ritz problem yields p Ritz values that approximate the eigenvalues of the iteration
matrix A . Table 13 compares four different methods for assigning a value of merit to each Ritz
value in the current iteration. The first column in table 13 indicates the number of enrichment
vectors (0, 2, 4, 6, 8, 10) that are used for the simulation; columns 2− 6 and 7− 11 correspond to
the number of Krylov vectors (20, 25, 30, 35, 40) that are used between restarts. All simulations
are performed with the ILU(2) preconditioner, and the Krylov subspace is not initialized based on
past problems. Different merit functions |ζj | are used in each of the four cases.

The two merit functions |ζj | that perform well in this problem assign high merit to Ritz values

near the origin, biased slightly into the LHP. These are |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

] and |ζj | =

[
(θr)jq

(1− θr)2j + (θi)
2
j

]. The remaining two merit functions have difficulty locking onto the problematic

modes. The function that performs the worst assigns merit based on inverse distance from the
point (1.0, 0.0).

The two common approaches for approximating matrix eigenvalues and eigenvectors are the
harmonic Ritz and the conventional Ritz problems. See Appendix B for a discussion of the Ritz
approximations. Table 14 compares these two approaches. The cumulative CPU time that is
required to converge all 13 linear problems with an ILU(2) preconditioner, is shown in the table.
Columns 2− 6 and 7− 11 show the CPU times that are required with the use of the harmonic Ritz
and conventional Ritz problem, respectively. The merit function that is used for both approaches
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is |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

]. Both techniques perform well on this test case. Indeed, the

CPU times that are obtained for each approach with the ILU(3) and ILU(4) preconditioners (not
presented) are nearly indistinguishable.

This comparative study highlights the importance of the choice of merit function when approx-
imating eigenvalues using either Ritz technique. Simply deflating eigenvalues near the origin may
not be effective if the problematic eigenvalues are in the LHP or are far removed from the unit
circle.

6.3.5 Reordering Strategies

Incomplete factorization preconditioners [e.g., ILU(k)] are known to be sensitive to matrix ordering
[62–64]. The principle reason is that the preconditioner quality is sensitive to the size and number
of terms that are dropped from the factorization, which depends indirectly on the ordering of
the matrix. Experimental evidence presented thus far consistently demonstrates that enrichment
depends to a large extent on the quality of the preconditioner. Table 15 presents a convergence
study that compares the sensitivity of enrichment to matrix reordering, which directly tests this
hypothesis.

The cumulative CPU time that is required for all linear solutions, is shown as a function of
1) enrichment vectors, 2) Krylov subspace vectors, 3) preconditioner, and 4) matrix ordering.
Columns 2− 6 correspond to the boundary-layer reverse Cuthill-McKee (BL-RCM)1 ordering that
is used throughout the 2D unsteady Navier-Stokes study; columns 7 − 11 correspond to standard
RCM ordering. Note that the number of linear solutions that is required by the BL-RCM and
RCM ordering is 13 and 11, respectively. Thus, a direct comparison favors the RCM method.
Nevertheless, the significant reduction in CPU time that is required by the RCM ordering indicates
that it is a significantly better ordering for the ILU(k) class of preconditioners k > 2. Furthermore,
note that enrichment has little impact with the RCM ordered matrix, a result that is consistent
with our hypothesis.

7 Conclusions

A general purpose algorithm, GMRES-E is presented to facilitate the reuse of Krylov subspace
information to accelerate the convergence of linear systems with multiple right-hand sides A i x =
b i. The motivating problems for the algorithm are steady or unsteady simulations of nonlinear
equations (e.g., unsteady NS). The kernel of the algorithm is a conventional GMRES algorithm but
includes a specific form of eigenvector enrichment that facilitates arbitrary vectors. Four critical
subelements contribute to the generality of the algorithm. First, solutions x i from previous linear
problems A x i = b i are stored, which allows for an optimal starting guess x 0 via a Galerkin
projection of the current problem onto the available solution space. Second, a variety of eigenvector
approximation techniques are available. Third, each new problem requires compression or rotation
of the subspace information that is available in an Arnoldi relation. A Q R compression technique
is shown to be effective for this purpose. Fourth, a Galerkin projection step is developed to inject

1Here, the grid boundary-layer cells are ordered separately from the Cartesian cells. (See also fig. 6).
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the current residual r0 into the preprocessed Arnoldi relation. This step facilitates the admissibility
of arbitrary enrichment vectors.

Two different problems are used to test the GMRES-E algorithm. The first is the steady,
three-dimensional, advection-diffusion equation, which is simulated for various values of the dif-
fusive parameter ε. The second is a two-dimensional, URANS (unsteady Reynolds-averaged NS)
simulation of a wind turbine blade run at a high angle of attack.

General findings include the following: 1) Enrichment can significantly improve convergence
and even eliminate stall in certain cases. 2) Eigenvector enrichment is ideally suited for cases in
which a preconditioned matrix has several (e.g., less than 10) unclustered eigenvalues that the
Krylov subspace cannot resolve. This scenario commonly occurs with “weak” preconditioners and
small Krylov subspace dimensions. 3) Enrichment is ineffective or has no impact if many (i.e.,
100) eigenvectors remain unclustered. Indeed, cases exist for which enrichment can even degrade
the convergence. In short, enrichment is no substitute for a good preconditioner. 4) The Ritz
value ranking and selection algorithm has a large impact on the convergence and the robustness of
GMRES-E, as much if not moreso than the minimization technique (e.g., conventional/harmonic
Ritz) that is used to approximate the eigenvalues. A general means for identifying problematic
eigenvectors is not known, although selecting the Ritz values in the left half-plane near the origin is
nearly always productive. 5) Reusing Ritz vectors when A changes (section 4.2.2) is not effective
for the unsteady NS test case but is successful in the advection-diffusion tests, particularly for cases
that are nearly symmetric (or definite). More work is needed to quantify the influence of matrix
symmetry (and definiteness).

This work demonstrates the simplicity and flexibility of the proposed enrichment algorithm
GMRES-E. Furthermore, it highlights the potential for subspace enrichment for cases that are
derived from unsteady aerodynamics. Two important questions that still remain are: 1) “Depend-
ing on the application, which enrichment vectors are most productive?”, and 2) “Do a priori or
concurrent tests exist that can indicate when enrichment should not be used?”

A Which Portions of Sm and Vm+1 are Krylov Subspaces?

We begin by deriving some preliminary results that are needed in the lemma to follow. First, left-
multiplying A Sm = Vm+1 H̄m with [ Vm+1 ]T and using the relationship [ Vm+1 ]T Vm+1 =
Im+1 immediately produces the relation

[ Vm+1 ]T A Sm = H̄m . (35)

In equation (17) we noted that Sm and Vm+1 coincide for the integers in the interval k ≤ j ≤ m.
Choosing j from this interval, using equation (35), and defining P = [ Ik − Vk Vk

T ] produces
the following relation

A sj −
∑k

i=1 vi hi,j = [ Ik − Vk Vk
T ]A sj + Vk Vk

T A sj −
∑k

i=1 vi hi,j

= P A sj +
∑k

i=1 vi([vi]
T A sj − hi,j)

= P A vj

(36)

The exact character of the vector spaces Sm and Vm+1 is quantified in the following lemma, which
closely resembles the proof that is presented by Saad [56] for Arnoldi’s method.
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Lemma 5 Assume that the algorithm that is defined in equation (10) uses k enrichment vectors
and does not terminate before the mth step (k < m). Then, the vectors vk+1,vk+2, · · · ,vm form
an orthonormal basis for the Krylov subspace

Km−k = span{vk+1, (P A )vk+1, · · · , (P A )m−k−1vk+1} .

Proof : The vectors vj are orthonormal by construction. The fact that the last m − k vectors
span the space Km−k follows from the fact that each vector vj , k + 1 ≤ j ≤ m, is of the form
qj−k−1(P A )vk+1, where qj−k−1 is a matrix polynomial of degree j − k− 1. This can be shown by
induction on j as follows. The result is clearly true for j = k + 1, because vk+1 = q0(P A )vk+1

with q0(P A ) ≡ I. Assume that the result is true for all integers k + 1, · · · , j and consider vj+1.
Using the definition of hj+1,jvj+1 [see the Gram-Schmidt portion of the algorithm that is defined
by equation (10)] with equation (36) leads to the relation

hj+1,jvj+1 = A sj −
∑k

i=1 vi hi,j −
∑j

i=k+1 vi hi,j

= P A vj −
∑j

i=k+1 vi hi,j
(37)

The term (PA)qj−k−1(PA)vj+1 is obviously a polynomial of degree j−k, while all vi, k+1 ≤ i ≤ j,
are polynomials of degree i − k − 1. Thus, vj+1 is a polynomial of degree j − k, which completes
the proof. �

Remark. Note the two equivalent representations of Km(S). The first is a Krylov space that is
expanded in the vector r⊥ as

Km(S) = [ ξ1, ξ2, · · · , ξk, { r⊥ , (P A ) r⊥ , (P A )2 r⊥ , · · · , (P A )m−k−1 r⊥ }]

The second is expanded in the vector r0 and then rotated as

Km(S) = [ ξ1, ξ2, · · · , ξk,P{ r0 , (AP) r0 , (AP)2 r0 , · · · , (AP)m−k−1 r0 }]

by using the projection operator P.

B Determination of Eigenvectors

Consider the non-symmetric eigenvalue problem

(A − θI)ζ = 0 (38)

where A is the n× n matrix given in the linear problem A x = b .
Projection techniques seek to extract an approximate solution to equation (38) from a vector

subspace that in general may not include the exact eigenvector ζ. For example, if the subspace of
candidate approximations (i.e., the search space) is Sm then an approximation to equation (38) is

[A − θ̆I] Sm ξ̆m = 0 (39)

where ξ̆m is an arbitrary m vector that combines the basis vectors in the search space Sm . In
general, no vector ξ̆m exists for any θ̆ that exactly satisfies equation (39). Note, however, that an
exact eigenvector ζj in the space Sm exactly satisfies equation (39) for the value θ̆ = θ.
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The harmonic Ritz problem is obtained by using a Petrov-Galerkin (or oblique projection)
technique. Specifically, equation (39) is constrained such that any approximation error that exists
is orthogonal to the subspace A Sm . The resulting expression written in terms of one eigenpair
(θ̃, ξ̃m ) is

(A Sm )T [A − θ̃I] Sm ξ̃m = 0 . (40)

Making use of the relationship A Sm = Vm+1 H̄m and simplifying yields

{ (A Sm )T A Sm − θ̃ (A Sm )T Sm } ξ̃m =
{ ( Vm+1 H̄m )T

Vm+1 H̄m − θ̃ ( Vm+1 H̄m )T
Sm } ξ̃m =

{ ( H̄m )T H̄m − θ̃ ( H̄m )T Γ } ξ̃m = 0
(41)

with Γ = ( Vm+1 )T Sm . The result {( H̄m )T H̄m − θ̃( H̄m )T Γ} ξ̃m = 0 is the m×m generalized
eigenvalue problem

{ A 1 − θ̃ A 2} ξ̃m = 0 ; A 1 = ( H̄m )T H̄m ; A 2 = ( H̄m )T Γ

which is easily solved by using the Eispack [65] subroutine rgg().
The close relationship between Vm+1 and Sm make further simplification of Γ possible. Using

the expressions for Vm+1 and Sm found in equation (17) yields

Γ =

 ( Vk )T Sk , ( Vk )T Vk+1→m

( Vk+1→m )T Sk , ( Vk+1→m )T Vk+1→m

( vm+1 )T Sk , ( vm+1 )T Vk+1→m

 =

 ( Vk )T Sk , 0
( Vk+1→m )T Sk , Im−k

( vm+1 )T Sk , 0

 (42)

Thus, Γ is obtained at a cost of k × (m + 1) additional dot products.
The condition number of the harmonic Ritz problem can be reduced by introducing the following

algebraic simplifications. Recall that H̄m = Hm + hm+1,m em+1 em
T . Thus,

( H̄m )T H̄m = (Hm )THm+(hm+1,m)2emem
T ; ( H̄m )T Γ = (Hm )T ( Vm )T Sm+hm+1,memem+1

T Γ

Multiplying equation (41) by the inverse transpose (Hm )−T and defining he = (Hm )−Tem yields
the equivalent harmonic Ritz eigenvalue formulation

{ Ā 1−θ̃ Ā 2}ξ̃m = 0 ; Ā 1 = Hm+(hm+1,m)2heem
T ; Ā 2 = ( Vm )T Sm+(hm+1,m)heem+1

T Γ

.

B.1 Ritz-Value Error Estimation

Define the residual ρj in the eigenvalue problem (i.e., the eigenresidual) to be

A Sm (ξm) j − θI Sm (ξm) j = ρj . (43)

We seek an efficient algorithm for determining ‖ρj‖2 for any approximate Ritz pairs (θ, (ξm) )
without additional matrix-vector operations (or a preconditioner step).

By definition, the L2 norm of the complex eigenresidual ρj is defined as

(ξm) ∗j
T [A Sm − θ∗ Sm ]T [A Sm − θ Sm ] (ξm) j = ‖ρj‖2
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and can be expanded into the form

(ξm) ∗j
T [A Sm ]T [A Sm − θ Sm ] (ξm) j − (ξm) ∗j

T [θ∗ Sm ]T [A Sm − θ Sm ] (ξm) j = ‖ρj‖2

(44)
where the superscript ∗ denotes a complex conjugate. The residual ‖ρj‖2 is composed of two
terms. The first term is zero for the harmonic Ritz eigenpairs [eq. (40)] while the second is zero
for conventional Ritz eigenpairs.

Now assume (A Sm )T [ A − θI] Sm (ξm) = ε with ε close to machine precision. The Ritz
pair (θ, (ξm) ) will in general be complex valued and can be defined by θ = (θr + i θi) and
(ξm) = ( (ξm) r + i (ξm) i). The L2 norm of the eigenresidual ρj then reduces to

− (ξm) ∗j
T [θ∗ Sm ]T [ Vm+1 H̄m − θ Sm ] (ξm) j = ‖ρj‖2 (45)

Expanding the LHS of equation (45) yields

− [θr (ξm) r − θi (ξm) i]
T {[ Sm

T Vm+1 H̄m − θr Sm
T Sm ] (ξm) r + θi Sm

T Sm (ξm) i}
− [θr (ξm) i + θi (ξm) r]

T {[ Sm
T Vm+1 H̄m − θr Sm

T Sm ] (ξm) i − θi Sm
T Sm (ξm) r}

+ i [θr (ξm) i + θi (ξm) r]
T {[ Sm

T Vm+1 H̄m − θr Sm
T Sm ] (ξm) r + θi Sm

T Sm (ξm) i}
− i [θr (ξm) r − θi (ξm) i]

T {[ Sm
T Vm+1 H̄m − θr Sm

T Sm ] (ξm) i − θi Sm
T Sm (ξm) r}

(46)
which with further simplification, yields

− θr [ (ξm) r
T Sm

T Vm+1 H̄m (ξm) r + (ξm) i
T Sm

T Vm+1 H̄m (ξm) i ]
+ θi [ (ξm) i

T Sm
T Vm+1 H̄m (ξm) r − (ξm) r

T Sm
T Vm+1 H̄m (ξm) i ]

+ ‖θ‖2 [ (ξm) r
T Sm

T Sm (ξm) r + (ξm) i
T Sm

T Sm (ξm) i ] = ‖ρj‖2

(47)
Note that the (zero) imaginary component

+ i θi[ (ξm) r
T Sm

T Vm+1 H̄m (ξm) r + (ξm) i
T Sm

T Vm+1 H̄m (ξm) i ]
+ i θr[ (ξm) i

T Sm
T Vm+1 H̄m (ξm) r − (ξm) r

T Sm
T Vm+1 H̄m (ξm) i ] = 0

(48)
can be used as a measure of roundoff error.

B.2 Ritz-Value Selection Algorithms

The harmonic Ritz minimization procedure is generally considered to accurately predict the small
eigenvalues in the matrix [19, 26]. The optimal choice for a selection algorithm would seem to be
the selection of the k smallest (in magnitude) harmonic Ritz values. Frequently, this is the case,
but exceptions do exist.

In most applications, the matrix A is a matrix product of a discretization and a preconditioner
matrix (i.e., A = ĀM−1). An effective preconditioner clusters the eigenvalues of Ā within the unit
circle that is centered in the complex plane at the point (1.0, 0.0). Occasionally, however, eigenvalues
are not confined to within this unit circle. If they are near the origin, then the standard selection
algorithm identifies them as problematic. Another selection algorithm is necessary, however, if they
are far removed from the origin.

The selection algorithm begins with a weighting step that assigns each the Ritz value θj a merit
ζj . The discrete function ζj is constructed such that it preferentially assigns small merit to Ritz
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values depending on their location in the complex plane. Next, the Ritz values are sorted according
to their merit, and the k smallest values are chosen as enrichment vectors.

Four different routines are used in the GMRES-E algorithm. Unfortunately, no merit function
has been found to be optimal for all problems. What is clear, however, is that the choice of merit
function has a significant influence on the overall performance of GMRES-E. The merit routines
are

|ζj | = [
√

(θr)
2
j + (θi)

2
j ]

|ζj | = [ 1q
(1− θr)2j + (θi)

2
j

]

|ζj | = [
−(θr)jq

(1− θr)2j + (θi)
2
j

]

|ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

]

(49)

The first algorithm (i.e., the conventional method of selection) selects Ritz values based on their
distance from the origin (0.0, 0.0). The second algorithm selects values based on their inverse
distance from the point (1.0, 0.0). This technique overemphasizes eigenvalues that are outside
the unit circle. The third algorithm selects the Ritz values base on their inverse distance from
the position (1.0, 0.0) by assigning higher importance to those in the left half-plane. The fourth
algorithm emphasizes Ritz values outside the unit circle but focuses on those located near the point
(−0.25, 0.0).

The selection algorithm must be modified slightly when a complex conjugate eigenpair is as-
signed the ranks of k and k +1. Including k vectors would require inclusion of only one of the pair.
In these cases, the number of retained eigenvalues is reduced to k − 1.

Now, assemble an n × k matrix P̃k with the columns composed of linear combinations of the
harmonic Ritz eigenvectors [see eq. (41)]. For the complex conjugate eigenvector pairs, use the
(linearly dependent) Schur vectors rather than the eigenvectors, a modification that allows the use
of real arithmetic while retaining the same column span for P̃k . The Schur vectors are formed
from the conjugate eigenvector pairs ξ̃n j , ξ̃n j+1 using the rotations[

ξ́n j

ξ́n j+1

]
= 1

2

[
1 1
i − i

] [
ξ̃n j

ξ̃n j+1

]
. (50)

With P̃k assembled, use the modified Gram-Schmidt algorithm on P̃k to produce the orthogonal
matrix P̄k . The columns of the matrix P̄k are no longer eigenvectors (or Schur vectors) of the
(harmonic) Ritz problem, but the column span P̄k is the same as for the original eigenvectors.
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14. Patel, A.: Développement d’un solveur adaptif sur maillages non-sturcturés hexaédriques.
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Enrichment For every new problem: For every new problem, pre-enrich:
Vectors discard A Sm

j−1 = Vm+1
j−1 H̄m

j−1 retain A Sm
j−1 = Vm+1

j−1 H̄m
j−1

Preconditioner: ILU(0)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 0 0 -1 -1 -1 0 0 0 -1 -1
2 -3 -2 -3 -5 -5 -4 -4 -3 -5 -4
4 -4 -7 -5 -8 -8 -4 -4 -5 -7 -8
8 -8 -9 650 681 601 -7 176 524 507 395
16 555 530 460 447 421 106 446 335 293 261
24 -3 671 570 523 485 625 231 177 162 153

Preconditioner: ILU(2)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 -2 -2 -3 -3 -3 -2 -2 -3 -3 -3
2 -5 -8 -9 1052 953 -5 -8 279 945 910
4 748 822 518 628 492 496 726 481 579 436
8 461 363 368 381 357 377 246 262 226 226
16 432 255 279 255 249 341 183 154 143 128
24 686 358 309 283 306 275 132 98 144 91

Table 1. Comparison of effectiveness of enrichment for advection-diffusion test problem with ε = 1.
The CPU time required to achieve the specified tolerance (1.0−10), is presented as a function of
enrichment vectors (0, 2, 4, 8, 16, 24) and Krylov vectors (30, 40, 50, 60, 70) between restarts.
Negative numbers indicate stalled iterations, whereby the logarithm of the residual at iteration
2000 is given. Additional parameters include preconditioners [ILU(0), ILU(1), and ILU(2)] and
enrichment vector initialization.
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Enrichment For every new problem: For every new problem, pre-enrich:
Vectors discard A Sm

j−1 = Vm+1
j−1 H̄m

j−1 retain A Sm
j−1 = Vm+1

j−1 H̄m
j−1

Preconditioner: ILU(0)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 -3 0 0 0 0 -3
8 0 493 651 590 540 0 405 498 455 401
16 375 343 345 322 369 199 160 162 159 160
24 -5 544 486 440 431 527 222 177 179 164

Preconditioner: ILU(2)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 0 0 0 0 0 0 0 0 0 -3
2 0 0 0 0 746 0 0 0 0 583
4 0 -6 683 643 573 213 -2 586 482 439
8 457 348 321 267 237 323 257 256 242 215
16 233 198 196 217 210 110 95 98 99 97
24 487 306 264 254 259 236 118 104 106 93

Table 2. Comparison of effectiveness of enrichment for advection-diffusion test problem with ε = 1
10 .

(See table 1 for further details).
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Enrichment For every new problem: For every new problem, pre-enrich:
Vectors discard A Sm

j−1 = Vm+1
j−1 H̄m

j−1 retain A Sm
j−1 = Vm+1

j−1 H̄m
j−1

Preconditioner: ILU(0)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 0 0 540 592 607 0 0 483 499 492
2 259 268 325 487 398 203 225 253 305 281
4 313 305 293 362 397 215 321 262 314 330
8 212 244 256 314 311 207 196 232 227 241
16 293 267 253 256 257 252 243 247 243 250
24 595 385 325 303 288 549 354 310 291 293

Preconditioner: ILU(2)
Maximum Krylov subspace dimension

30 40 50 60 70 30 40 50 60 70
0 337 307 285 126 123 314 253 206 152 123
2 190 178 186 103 103 148 160 133 101 99
4 160 209 142 105 104 173 153 117 96 91
8 149 147 129 97 98 142 136 112 102 100
16 165 133 123 107 98 169 132 133 123 118
24 294 166 136 117 108 290 180 165 150 143

Table 3. Comparison of effectiveness of enrichment for advection-diffusion test problem with
ε = 1

100 . (See table 1 for further details).

Enrichment Maximum Krylov subspace dimension
vectors 30 40 50 60 70

0 0.96 0.81 0.76 0.60 0.56
2 0.68 0.57 0.51 0.54 0.56
4 0.49 0.53 0.46 0.45 0.44
8 0.30 0.56 0.54 0.44 0.32
16 0.24 0.22 0.23 0.23 0.21
24 0.13 0.15 0.15 0.15 0.14

Table 4. Comparison of effectiveness of projection initialization on advection-diffusion test problem
with ε = 1

10 . The starting residual (normalized to 1) immediately after the projection, is presented
as a function of enrichment vectors (0, 2, 4, 8, 16, 24) and Krylov vectors (30, 40, 50, 60, 70)
between restarts.
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Enrichment For every new problem: For every new problem, pre-enrich:
vectors discard A Sm

j−1 = Vm+1
j−1 H̄m

j−1 retain A Sm
j−1 = Vm+1

j−1 H̄m
j−1

|ζj | = [
√

(θr)
2
j + (θi)

2
j ]

Maximum Krylov subspace dimension
30 40 50 60 70 30 40 50 60 70

0 0 0 0 0 0 0 0 0 0 -3
2 0 0 0 0 746 0 0 0 0 583
4 0 -6 683 643 573 213 -2 586 482 439
8 457 348 321 267 237 323 257 256 242 215
16 233 198 196 217 210 110 95 98 99 97
24 487 306 264 254 259 236 118 104 106 93

|ζj | = [
(θr)jq

(1− θr)2j + (θi)
2
j

]

Maximum Krylov subspace dimension
30 40 50 60 70 30 40 50 60 70

0 0. 0. 0. 0. -1. 0. 0. 0. 0. -2.
2 0. 0. -1. -1. -2. 0. 0. -1. -2. -5.
4 0. -1. 332. 611. 603. 0. 0. 554. 585. 600.
8 246. 238. 249. 245. 263. 169. 165. 176. 183. 188.
16 254. 225. 215. 225. 244. 120. 116. 116. 116. 132.
24 556. 331. 290. 275. 276. 261. 134. 119. 121. 126.

Table 5. Comparison of effectiveness of enrichment for advection-diffusion test problem with ε = 1
10 .

Eigenvalues are deflated starting with negative-most (LHS) eigenvalues. The preconditioner is
ILU(2). The CPU time required to reach the specified tolerance is tabulated.
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Enrichment Uniform Grid: 129× 129× 129
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
Sweeps 5 10 20 40 5 10 20 40 5 10 20 40

0 -1. -3. -3. -9. -3. 1158. 743. 749. -1. 1222. 630. 638.
1 -5. 1298. 938. 910. 1069. 400. 301. 351. -2. 415. 274. 304.
2 -4. -8. 1416. 1234. -9. 699. 426. 438. -2. 617. 368. 400.
4 -7. 1778. 1167. 925. 1443. 524. 380. 409. -3. 509. 319. 343.
8 3030. 1575. 988. 579. 1262. 488. 358. 351. -6. 444. 301. 316.

16 2815. 1501. 847. 496. 1169. 500. 386. 363. 3523. 450. 342. 331.
32 2755. 1389. 693. 393. 1129. 533. 418. 368. 3169. 481. 371. 362.
64 3018. 1124. 622. 409. 1191. 617. 500. 408. 2980. 556. 500. 409.

ILU(0) 755. 476. 388. 324. 554. 233. 168. 218. -5. 250. 185. 231.
ILU(1) 436. 282. 233. 172. 327. 281. 132. 175. -8. 182. 143. 179.

Number of iterations
Sweeps 5 10 20 40 5 10 20 40 5 10 20 40

0 2000 2000 2000 2000 2000 1950 920 600 2000 1940 720 480
1 2000 1960 1080 720 1690 560 320 280 2000 570 280 240
2 2000 2000 1380 840 2000 710 400 280 2000 720 340 280
4 2000 1560 880 520 1350 460 280 240 2000 470 240 200
8 1675 890 520 280 765 280 200 160 2000 290 160 160

16 885 500 280 160 415 180 140 120 1920 180 120 120
32 465 250 140 80 225 110 80 80 985 110 80 80
64 245 110 80 40 120 70 60 40 500 70 60 40

ILU(0) 1545 840 500 280 1020 370 200 200 2000 380 220 200
ILU(1) 715 410 260 160 500 410 140 160 2000 250 160 160

Table 6. Comparison of the effectiveness of enrichment on the LaPlace’s equation. The diffusion
coefficients used in the study are εx = εy = εz = 1. The grid is 129 × 129 × 129 and Dirichlet
boundary conditions are used on all six boundaries. The CPU time required and iterations required
to achieve the specified tolerance (1.0−10), are presented functions of 1) enrichment vectors (0,2,4)
and 2) Krylov vectors (5,10,20,40) between restarts, and preconditioners. The Jacobi iterations are
used as a precondition with varying number of subiterations (0,1,2,4,8,16,32,64). Negative times
indicate stalled iterations, whereby the logarithm of the residual at iteration 2000 is given.
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Enrichment 10000:100:1 Aspect Grid: 129× 129× 129
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
Sweeps 5 10 20 40 5 10 20 40 5 10 20 40

0 -1. -3. -5. -10. -2. -4. -7. 2157. -1. -4. -8. 2114.
1 -5. 1308. 900. 851. -4. 1451. 883. 856. -2. -9. 955. 873.
2 -4. -8. 1390. 1175. -4. -8. 1309. 1163. -2. -7. 1309. 1166.
4 -7. 1797. 1077. 977. -5. 1867. 1071. 961. -2. -10. 1111. 970.
8 3061. 1568. 941. 870. -7. 1604. 963. 874. -3. 1917. 968. 876.

16 2916. 1351. 951. 881. 4558. 1532. 966. 877. -3. 1711. 967. 892.
32 2763. 1470. 1057. 994. 4227. 1597. 1063. 980. -6. 1764. 1070. 985.
64 2606. 1650. 1302. 1180. 4511. 1797. 1324. 1201. -8. 1953. 1310. 1217.

ILU(0) 63. 57. 68. 100. 138. 75. 76. 105. 794. 102. 89. 112.
ILU(1) 66. 59. 68. 98. 133. 75. 77. 99. 717. 99. 85. 105.

Number of iterations
Sweeps 5 10 20 40 5 10 20 40 5 10 20 40

0 2000 2000 2000 2000 2000 2000 2000 1720 2000 2000 2000 1600
1 2000 1960 1040 640 2000 1980 920 640 2000 2000 940 600
2 2000 2000 1340 800 2000 2000 1180 760 2000 2000 1180 720
4 2000 1570 820 560 2000 1590 780 520 2000 2000 800 520
8 1705 890 500 400 2000 920 500 360 2000 1240 520 360

16 915 450 320 280 1625 530 320 280 2000 690 340 280
32 465 270 200 200 830 310 200 200 2000 410 220 200
64 230 160 140 120 445 190 140 120 2000 240 140 120

ILU(0) 135 100 100 120 250 120 100 120 1605 160 100 120
ILU(1) 110 90 80 80 205 110 80 80 1280 140 100 80

Table 7. Comparison of the effectiveness of enrichment on the diffusion test problem. The diffusion
coefficients used in the study are εx = 10000; εy = 100; εz = 1. All test parameters are identical
to those used in the uniform grid case (see table 6).
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Enrichment 1:1:1 Aspect Grid: ILU(0)
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
Grid 5 10 20 40 5 10 20 40 5 10 20 40
0333 < 1 < 1 1. 1. < 1 < 1 1. 1. 1. < 1 1. 1.
0653 23. 13. 14. 10. 45. 22. 8. 21. 204. 12. 9. 11.
1293 755. 476. 388. 324. 554. 233. 168. 218. -5. 250. 185. 231.
2573 -3. -6. 11575. NA -7. 6254. 4339. NA -2. 6658. 3658. NA

Number of iterations
5 10 20 40 5 10 20 40 5 10 20 40

0333 15 10 20 40 15 10 20 40 35 10 20 40
0653 200 140 120 120 355 150 120 120 1790 200 120 120
1293 1545 840 500 280 1020 370 200 200 2000 380 220 200
2573 2000 2000 1680 NA 2000 1110 580 NA 2000 1140 460 NA

Enrichment 1:1:1 Aspect Grid: ILU(1)
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
5 10 20 40 5 10 20 40 5 10 20 40

0333 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1. < 1 < 1 < 1
0653 12. 8. 5. 6. 10. 5. 5. 6. 45. 6. 5. 7.
1293 436. 282. 233. 172. 327. 281. 132. 175. -8. 182. 143. 179.
2573 -8. 8598. 6301. NA 9610. 3662. 2757. NA -3. 4539. 2452. NA

Number of iterations
5 10 20 40 5 10 20 40 5 10 20 40

0333 65 40 40 40 60 40 40 40 260 50 40 40
0653 205 130 80 80 165 90 80 80 860 100 80 80
1293 715 410 260 160 500 410 140 160 2000 250 160 160
2573 2000 1440 820 NA 1695 570 340 NA 2000 690 280 NA

Table 8. Comparison of the effectiveness of enrichment on the diffusion test problem. The diffusion
coefficients used in the study are εx = 10000; εy = 100; εz = 1. All test parameters are identical
to those used in the uniform grid case (see table 8).
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Enrichment 10000:100:1 Aspect Grid: ILU(0)
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
Grid 5 10 20 40 5 10 20 40 5 10 20 40
0333 < 1 < 1 1. 1. < 1 < 1 1. 1. 1. < 1 1. 1.
0653 2. 4. 2. 4. 11. 5. 3. 4. 39. 7. 3. 8.
1293 63. 57. 68. 100. 138. 75. 76. 105. 794. 102. 89. 112.
2573 2124. 1283. 1355. NA 4139. 1759. 1526. NA -5. 2430. 1704. NA

Number of iterations
5 10 20 40 5 10 20 40 5 10 20 40

0333 15 10 20 40 15 10 20 40 35 10 20 40
0653 50 50 60 40 85 60 60 40 430 70 60 40
1293 135 100 100 120 250 120 100 120 1605 160 100 120
2573 500 260 200 NA 875 320 220 NA 2000 420 220 NA

Enrichment 10000:100:1 Aspect Grid: ILU(1)
Vectors Enrichment vectors : 0 Enrichment vectors : 2 Enrichment vectors : 4

CPU-Time
5 10 20 40 5 10 20 40 5 10 20 40

0333 < 1 < 1 < 1 < 1 < 1 < 1 3. < 1 < 1 < 1 < 1 < 1
0653 0. 2. 0. 3. 4. 0. 0. 3. 19. 0. 0. 3.
1293 66. 59. 68. 98. 133. 75. 77. 99. 717. 99. 85. 105.
2573 2114. 1332. 1335. NA 3779. 1734. 1485. NA -6. 2285. 1631. NA

Number of iterations
5 10 20 40 5 10 20 40 5 10 20 40

0333 20 20 20 20 35 20 50 20 105 20 20 20
0653 30 40 40 40 75 20 40 40 350 20 40 40
1293 110 90 80 80 205 110 80 80 1280 140 100 80
2573 400 230 180 NA 665 270 180 NA 2000 350 200 NA

Table 9. Comparison of the effectiveness of enrichment on the diffusion test problem. The diffusion
coefficients used in the study are εx = 10000; εy = 100; εz = 1. All test parameters are identical
to those used in the uniform grid case (see table 8).
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Enrichment For every new problem: For every new problem, pre-enrich:
Vectors discard A Sm

j−1 = Vm+1
j−1 H̄m

j−1 retain A Sm
j−1 = Vm+1

j−1 H̄m
j−1

Preconditioner: ILU(2)
Maximum Krylov subspace dimension

20 25 30 35 40 20 25 30 35 40
0 2366. 995. 695. 530. 480. 2497. 1003. 727. 563. 487.
2 685. 545. 482. 422. 433. 684. 517. 459. 413. 394.
4 532. 469. 417. 412. 388. 583. 507. 441. 399. 393.
6 493. 439. 412. 394. 381. 580. 466. 426. 400. 374.
8 469. 419. 395. 382. 398. 507. 421. 381. 391. 379.
10 995. 695. 530. 480. 386. 1003. 727. 563. 487. 377.

Preconditioner: ILU(3)
Maximum Krylov subspace dimension

20 25 30 35 40 20 25 30 35 40
0 559. 478. 428. 403. 384. 592. 488. 452. 404. 396.
2 498. 423. 411. 405. 385. 506. 443. 411. 404. 385.
4 384. 380. 378. 353. 376. 381. 367. 356. 338. 337.
6 381. 363. 358. 345. 369. 378. 353. 342. 327. 350.
8 372. 360. 351. 336. 361. 370. 341. 337. 314. 338.
10 478. 428. 403. 384. 356. 488. 452. 404. 396. 337.

Preconditioner: ILU(4)
Maximum Krylov subspace dimension

20 25 30 35 40 20 25 30 35 40
0 339. 316. 337. 346. 316. 341. 318. 340. 348. 331.
2 327. 319. 334. 344. 315. 323. 316. 331. 342. 351.
4 320. 316. 326. 338. 311. 337. 317. 319. 332. 343.
6 319. 310. 318. 329. 307. 337. 311. 305. 321. 346.
8 324. 315. 305. 324. 302. 342. 328. 305. 319. 345.
10 316. 337. 346. 316. 299. 318. 340. 348. 331. 367.

Table 10. Convergence study for unsteady 2D Turbulent NS equations with k = 0, 2, 4, 6, 8, 10
harmonic Ritz vectors to enrich eigenspace. The eigen-selection routine sorts the Ritz values based

on the formula |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

], and chooses the k smallest values of ζj . The data

presented is the CPU time required to reach the specified tolerance.
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Enrichment Total
eigenvalue time
-0.163, 0.0 663.5
-0.40, 0.0 698.2
-1.26, 0.0 852.6
-2.50, 0.0 869.5
0.16, 0.0 886.7
0.18, 0.0 901.1

-23.28, 0.0 958.9
122.63, 0.0 968.4
13.29, 0.0 1016.8

Table 11. Influence on CPU time when the Krylov basis is enriched with one eigenvector. Smaller
times indicate eigenvectors that, when removed, greatly improved the convergence rate.

IRK Iteration Initial reduction
2 1 Not applicable
2 2 0.97
2 3 0.99
2 4 0.46
2 5 0.88
2 6 0.98
3 1 Not applicable
3 2 0.93
3 3 0.82
4 1 Not applicable
4 2 0.92
4 3 0.90
4 4 0.92

Table 12. Initial reduction of residual, based on previous eigenvector. Greater values of reduction
indicate greater linear dependence on the nonlinear iterations.
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Enrichment Maximum Krylov subspace dimension

Vectors |ζj | = [
√

(θr)
2
j + (θi)

2
j ] |ζj | = [

(θr)jq
(1− θr)2j + (θi)

2
j

]

20 25 30 35 40 20 25 30 35 40
0 2358. 997. 696. 528. 477. 2361. 990. 696. 528. 477.
2 0. 710. 549. 487. 452. 1479. 864. 620. 499. 447.
4 1022. 675. 540. 482. 443. 797. 583. 487. 449. 420.
6 1067. 646. 539. 466. 439. 497. 445. 407. 394. 371.
8 0. 711. 556. 467. 433. 477. 423. 388. 382. 398.
10 997. 696. 528. 477. 421. 990. 696. 528. 477. 396.

|ζj | = [ 1q
(1− θr)2j + (θi)

2
j

] |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

]

20 25 30 35 40 20 25 30 35 40
0 2397. 1008. 716. 535. 483. 2366. 995. 695. 530. 480.
2 2173. 928. 695. 527. 480. 685. 545. 482. 422. 433.
4 0. 967. 677. 546. 470. 532. 469. 417. 412. 388.
6 1853. 870. 648. 507. 466. 493. 439. 412. 394. 381.
8 0. 887. 640. 508. 467. 469. 419. 395. 382. 398.
10 1008. 716. 535. 483. 452. 995. 695. 530. 480. 386.

Table 13. Convergence study for unsteady 2D Turbulent NS equations with ILU(2) as precon-
ditioner and k = 0, 2, 4, 6, 8, 10 harmonic Ritz vectors to enrich eigenspace. The eigen-selection
routine sorts the Ritz values based one of four different formulas. Presented is the CPU time
required to reach the specified tolerance.

Enrichment Cumulative CPU time
vectors Harmonic Ritz Conventional Ritz

Maximum Krylov subspace dimension
20 25 30 35 40 20 25 30 35 40

0 2366. 995. 695. 530. 480. 2393. 994. 700. 531. 478.
2 685. 545. 482. 422. 433. 751. 538. 481. 422. 432.
4 532. 469. 417. 412. 388. 616. 470. 419. 410. 387.
6 493. 439. 412. 394. 381. 518. 452. 418. 401. 398.
8 469. 419. 395. 382. 398. 478. 431. 394. 382. 397.
10 995. 695. 530. 480. 386. 994. 700. 531. 478. 389.

Table 14. Convergence study for unsteady 2D Turbulent NS equations with ILU(2) as precondi-
tioner and k = 0, 2, 4, 6, 8, 10 harmonic Ritz or conventional Ritz vectors to enrich eigenspace. The

eigen-selection routine sorts the Ritz values based on the formula |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

].
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Enrichment BL-RCM: 13 Linear Solutions RCM: 11 Linear Solutions
vectors Preconditioner: ILU(2)

Maximum Krylov subspace dimension
20 25 30 35 40 20 25 30 35 40

0 2393. 994. 700. 531. 478. 0. 0. 0. 0. 0.
2 751. 538. 481. 422. 432. 0. 0. 0. 0. 0.
4 616. 470. 419. 410. 387. 0. 0. 0. 0. 0.
6 518. 452. 418. 401. 398. 0. 0. 0. 0. 2718.
8 478. 431. 394. 382. 397. 0. 2385. 1307. 1105. 944.
10 994. 700. 531. 478. 389. 0. 0. 0. 0. 777.

Preconditioner: ILU(3)
Maximum Krylov subspace dimension

20 25 30 35 40 20 25 30 35 40
0 561. 480. 428. 403. 384. 204. 190. 200. 233. 221.
2 509. 423. 411. 405. 385. 201. 180. 199. 232. 220.
4 394. 381. 377. 353. 374. 191. 188. 195. 228. 218.
6 395. 368. 373. 345. 368. 188. 196. 192. 225. 216.
8 384. 361. 358. 336. 362. 198. 207. 187. 221. 213.
10 480. 428. 403. 384. 355. 190. 200. 233. 221. 210.

Preconditioner: ILU(4)
Maximum Krylov subspace dimension

20 25 30 35 40 20 25 30 35 40
0 339. 316. 337. 346. 316. 235. 200. 236. 228. 167.
2 327. 320. 335. 344. 315. 212. 198. 232. 226. 167.
4 322. 323. 325. 338. 311. 220. 192. 229. 224. 167.
6 340. 310. 317. 331. 307. 210. 188. 224. 220. 167.
8 327. 306. 305. 322. 302. 197. 182. 218. 217. 175.
10 316. 337. 346. 316. 299. 200. 236. 228. 167. 167.

Table 15. Convergence study for unsteady 2D Turbulent NS equations with k = 0, 2, 4, 6, 8, 10,
conventional Ritz vectors to enrich eigenspace. The eigen-selection routine sorts the Ritz values

based on the formula |ζj | = [

q
((−0.25)− θr)2j + (θi)

2
jq

(1− θr)2j + (θi)
2
j

]. Two grid orderings are used in study.
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Figure 1. Schematic of the proposed enrichment algorithm.
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Figure 2. Advection-diffusion eigenvalues for the
parameter ε = 1

10 . The two preconditioners used
in the study are ILU(0) and ILU(2).

Figure 3. Comparison of eigenvalues obtained
using 10, 20, 30, and 40 enrichment vectors. The
Krylov dimension is 60 in all cases. Precondi-
tioner is ILU(1).

Figure 4. Advection-diffusion eigenvalues lo-
cated near the origin for the parameter ε = 1

10
with two preconditioners ILU(0) and ILU(2).

Figure 5. Advection-diffusion eigenvalues lo-
cated near the origin for the parameter ε = 1

100
with two preconditioners ILU(0) and ILU(2).
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Figure 6. Close-up grid of airfoil. Figure 7. Turbulent viscosity.

Figure 8. Plot of the dominant problematic eigenvalue; the eigenvalue is (-0.16, 0,0) in the complex
plane.
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