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Abstract
We present a matrix-free parallel scalable multilevel deflation preconditioned method for
heterogeneous time-harmonic wave problems. Building on the higher-order deflation pre-
conditioning proposed by Dwarka and Vuik (SIAM J. Sci. Comput. 42(2):A901-A928, 2020;
J. Comput. Phys. 469:111327, 2022) for highly indefinite time-harmonic waves, we adapt
these techniques for parallel implementation in the context of solving large-scale heteroge-
neous problems with minimal pollution error. Our proposed method integrates the Complex
Shifted Laplacian preconditioner with deflation approaches. We employ higher-order defla-
tion vectors and re-discretization schemes derived from the Galerkin coarsening approach for
a matrix-free parallel implementation. We suggest a robust and efficient configuration of the
matrix-free multilevel deflation method, which yields a close to wavenumber-independent
convergence and good time efficiency. Numerical experiments demonstrate the effectiveness
of our approach for increasingly complex model problems. The matrix-free implementa-
tion of the preconditioned Krylov subspace methods reduces memory consumption, and the
parallel framework exhibits satisfactory parallel performance and weak parallel scalability.
This work represents a significant step towards developing efficient, scalable, and parallel
multilevel deflation preconditioning methods for large-scale real-world applications in wave
propagation.

Keywords Parallel computing · Matrix-free · CSLP · Deflation · Scalable · Helmholtz
equation

Mathematics Subject Classification 65Y05 · 65F08 · 35J05

B Jinqiang Chen
j.chen-11@tudelft.nl

Vandana Dwarka
v.n.s.r.dwarka@tudelft.nl

Cornelis Vuik
c.vuik@tudelft.nl

1 Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02786-w&domain=pdf
http://orcid.org/0009-0006-0564-6355


   47 Page 2 of 33 Journal of Scientific Computing           (2025) 102:47 

1 Introduction

The Helmholtz equation is a crucial mathematical model that describes the behavior of time-
harmonicwaves in various scientificfields, such as seismology, sonar technology, andmedical
imaging. While the classical formulation with standard Laplacian operator remains essen-
tial for many practical applications, researchers have also explored extended formulations
to address specific physical phenomena. Recent studies have investigated Helmholtz equa-
tions in various forms, including elastic Helmholtz equations [43], the Stochastic Helmholtz
equation [32], and Helmholtz equations with fractional Laplacian operators [1, 27]. In
this work, we focus on the classical acoustics Helmholtz equation. Solving this equation
numerically involves dealing with a sparse, symmetric, complex-valued, non-Hermitian, and
indefinite linear system. For large-scale problems, iterative methods and parallel computing
are commonly used. However, the indefiniteness of the system introduces significant difficul-
ties, particularly when high frequencies are involved, as it limits the convergence of iterative
solvers. Furthermore, to control pollution errors, it is essential to refine the grid so that
k3h2 < 1 [3], where k is the wavenumber and h is the mesh size. The challenge of efficiently
solving the Helmholtz equation while preserving high accuracy and minimizing pollution
errors continues to be an active area of research. The development of a parallel scalable
iterative method with convergence properties independent of the wavenumber could have
far-reaching implications for various disciplines, including electromagnetics, seismology,
and acoustics [37, 40].

A variety of preconditioners have been proposed for the Helmholtz problem, and among
them, the Complex Shifted Laplace Preconditioner (CSLP) [20, 21] is one of themost popular
options in the industry. The CSLP exhibits good properties for medium wavenumbers. How-
ever, the eigenvalues shift towards the origin as the wavenumber increases. As a result, the
deflation method was introduced to accelerate the convergence of the CSLP-preconditioned
Krylov subspace method [19, 35]. However, the number of iterations in both variations still
gradually increases with the wavenumber k. In a recent development, Dwarka and Vuik [15]
introduced higher-order approximation schemes to construct deflation vectors. This two-level
deflation method exhibits convergence that is nearly independent of the wavenumber. The
authors further extend the two-level deflation method to a multilevel deflation method [16].
Using higher-order deflation vectors, the authors demonstrate that the near-zero eigenvalues
of the coarse-grid operators remain aligned with those of the fine-grid operator up to the level
where the coarse-grid linear systems become negative indefinite. This alignment prevents
the spectrum of the preconditioned system from approaching the origin. By combining this
approach with the CSLP preconditioner, the authors achieved an iterative method with close
to wavenumber-independent convergence for highly indefinite linear systems. Incorporating
the deflation preconditioner has resulted in improved convergence; however, it has an impact
on efficiency in relation to memory and computational cost. A promising branch is the use
of Domain Decomposition Methods (DDM) as preconditioning techniques. These methods
typically require two essential components: carefully designed transmission conditions and
problem-adapted coarse spaces. Notable developments include the DtN and GenEO spectral
coarse spaces [4], which utilize selected modes from local eigenvalue problems specifically
tailored to the Helmholtz equation. For comprehensive surveys on DDM preconditioners for
the Helmholtz problems, we refer the reader to [22] and the references therein. An alternative
direction is the Multiscale Generalized Finite Element Method (MS-GFEM) [2, 30]. Recent
work by Ma et al. [10] has successfully applied MS-GFEM with novel local approximation
spaces to high-frequency heterogeneous Helmholtz problems. While the deflation method
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achieves near wavenumber-independent convergence by aligning the near-zero eigenvalues
between coarse and fine-grid operators, the discrete MS-GFEM approach solves the problem
in one shot without iterating based on solving some carefully-designed local problems and a
global coarse problem, suggesting potential benefits in combining both approaches for future
research.

Efforts are also underway to develop parallel scalable Helmholtz solvers. With well-
designed parallelization strategies, domain decomposition methods have shown promise in
reducing the number of iterations and improving computational efficiency [39]. Another
approach is the parallelization of existing advanced algorithms. Parallel implementations of
Bi-CGSTAB preconditioned by multigrid-based CSLP have been presented for 2D and 3D
forward modeling by Kononov and Riyanti [26, 33], respectively. Gordon and Gordon [23]
proposed the block-wise parallel extension of their so-calledCARP-CGalgorithm (Conjugate
Gradient Acceleration of CARP). The block-parallel CARP-CG algorithm shows improved
scalability as the wavenumber increases. Calandra et al. [5, 6] proposed a geometric two-
grid preconditioner for 3D Helmholtz problems, which exhibits strong scaling in massively
parallel setups.

Although conventional multigrid methods using standard smoothing and coarse grid cor-
rections fail for the Helmholtz equation, their high efficiency in solving positive definite
problems has motivated research into developing robust multilevel approaches for this equa-
tion [16, 17, 25, 29]. While previous works have established the theoretical foundations for
multilevel deflation methods [16, 35, 36, 38], our focus is on a parallel scalable imple-
mentation of multilevel deflation for practical large-scale applications. We aim to perform
comprehensive numerical experiments to validate the theoretical predictions and demonstrate
themethod’s effectiveness in large-scale scenarios, where parallel implementation challenges
often exceed idealized theoretical assumptions.

Based on the parallel framework of the CSLP-preconditioned Krylov subspace methods
[7, 8], a matrix-free parallel two-level deflation preconditioning [9] has been implemented
recently. To the author’s knowledge, there is no existing literature on parallel multilevel
deflation so far. This paper addresses this gap by proposing a matrix-free, parallel scalable
multilevel deflation preconditioning method. In this work, we explore methods to extend
the wavenumber-independent convergence from the two-level to a multilevel setting. This
work presents significant innovations in solving large-scale Helmholtz problems.We develop
novel re-discretization schemes for multilevel hierarchies, ensuring effective approximation
of Galerkin coarsening operators across all levels while maintaining the matrix-free parallel
framework. Through comprehensive numerical experiments,we establish optimal parameters
for robust convergence across different problem scales. Furthermore, we introduce a control-
lable tolerance for coarse-level iterations, a previously unexplored but essential component
for achieving wavenumber-independent convergence in practical multilevel deflation meth-
ods. These innovations culminate in a highly efficient parallel framework that demonstrates
both wavenumber-independent convergence and excellent scaling properties in massively
parallel environments, as validated by extensive numerical experiments.

The paper is organized as follows. In Sect. 2, we begin by describing our model problems.
We present thematrix-free parallel variant of themultilevel deflatedKrylovmethod in Sect. 3.
Section4 presents an optimally tuned configuration of the matrix-free parallel multilevel
deflation method. Finally, we present numerical results to evaluate parallel performance in
Sect. 5. Section6 contains our conclusions.
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2 ProblemDescription

We mainly consider the following two-dimensional mathematical model. Suppose that the
domain Ω is rectangular with a boundary Γ = ∂Ω . The Helmholtz equation reads

−Δu − k(x, y)2u = b, on Ω,

supplied with either Dirichlet or Sommerfeld radiation boundary conditions. Suppose the
frequency is f , the speed of propagation is c(x, y), they are related by

k(x, y) = 2π f

c(x, y)
.

2.1 Discretization

The computational domain is discretized using structural vertex-centered grids with uniform
mesh width h. The discrete approximation of u(x, y) is denoted as u(i, j) or ui, j , where grid
points (xi , y j ) are given by xi = x1 + (i − 1)h and y j = y1 + ( j − 1)h.

A second-order finite difference scheme for a 2D Laplace operator has a well-known 3×3
stencil. Similarly, we denote a computation stencil for the wavenumber term in the Helmholtz
equation as

[
I(k2i, j )h

]
=

⎡
⎣
0 0 0
0 k2i, j 0
0 0 0

⎤
⎦ ,

where I(k2i, j ) represents a diagonal matrix with k2i, j as its diagonal elements. The stencil of
the Helmholtz operator Ah can be obtained by

[Ah] = [−Δh] −
[
I(k2i, j )h

]
. (1)

For boundary conditions, a ghost point located outside the boundary points can be intro-
duced. For instance, suppose u0, j is a ghost point on the left of u1, j , for Sommerfeld radiation
boundary condition, we have

u0, j = u2, j + 2hik1, j u1, j . (2)

For the Dirichlet boundary condition, we have

u0, j = 2u1, j − u2, j . (3)

Discretization of the partial equation on the finite-difference grids results in a system of
linear equations Ahuh = bh . With first-order Sommerfeld radiation boundary conditions,
the resulting matrix is sparse, symmetric, complex-valued, indefinite, and non-Hermitian.

Note that kh is an important parameter that indicates howmany grid points per wavelength
are needed. The mesh width h can be determined by the guidepost of including at least
Npw(e.g. 10 or 30) grid points per wavelength. They have the following relationships

kh = 2πh

λ
= 2π

Npw
.

For example, if at least 10 grid points per wavelength are required, we can maintain kh =
0.625.
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Fig. 1 The velocity distribution
of the Wedge problem
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2.2 Model Problem - ConstantWavenumber

We first consider a 2D problem with constant wavenumber in a rectangular homogeneous
domain Ω = [0, 1]. A point source defined by a Dirac delta function is imposed at the center
(x0, y0) = (0.5, 0.5). The wave propagates outward from the center of the domain. The
Dirichlet boundary conditions (denoted as MP-1a) or the first-order Sommerfeld radiation
boundary conditions (denoted as MP-1b) are imposed, respectively.

2.3 Model Problem -Wedge Problem

Most physical problems of geophysical seismic imaging describe a heterogeneous medium.
The so-called Wedge problem [31] is a typical problem with simple heterogeneity. It mimics
three layers with different velocities, hence different wavenumbers. As shown in Fig. 1, the
rectangular domain Ω = [0, 600] × [−1000, 0] is split into three layers. Suppose the wave
velocity c is constant within each layer but different from each other. A point source is
located at (x, y) = (300, 0). The wave velocity c(x, y) is shown in Fig. 1. The first-order
Sommerfeld radiation boundary conditions are imposed on all boundaries.

2.4 Model Problem -Marmousi Problem

For industrial applications, the third model problem is the so-called Marmousi problem [41],
a well-known benchmark problem. It contains 158 horizontal layers in the depth direction,
making it highly heterogeneous. Thewave velocity c(x, y) over the domain is shown in Fig. 2.
The first-order Sommerfeld radiation boundary conditions are imposed on all boundaries.
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Fig. 2 The velocity distribution of the Marmousi problem

Fig. 3 Outer iterations and CPU time vary from different tolerances on the second (L2), third (L3), and fourth
(L4) levels. Five-level deflation for Marmousi problem, grid size 1473 × 481, f = 10Hz

3 Deflated KrylovMethods

We review the two-level deflation preconditioning and a preliminary multilevel setting, then
detail their adaptation to a matrix-free parallel framework.

3.1 Two-Level Deflation

Suppose a general nonsingular linear system Au = b, where A ∈ R
n×n , and a projection

subspace matrix, Z ∈ R
n×m , with m < n and full rank are given. Assume that E = ZT AZ

is invertible, the projection matrix P can be defined as

P = I − AQ, Q = ZE−1ZT , E = ZT AZ . (4)

The observation that multigrid inter-grid operators emphasize small frequencies and preserve
them on coarser levels leads to the possibility of using geometrically constructed multigrid
vectors as deflation vectors. In such scenarios, we refer to E as the coarse grid Helmholtz
operator, which exhibits similar properties to that of A.

123



Journal of Scientific Computing           (2025) 102:47 Page 7 of 33    47 

The CSLP-preconditioner can be included to obtain even better convergence. The CSLP
preconditioner M(β1,β2) is defined by

M(β1,β2) = −Δ − (β1 + iβ2)I(k2i, j ), (5)

where i = √−1, (β1, β2) ∈ [0, 1]. The solution of complex-shifted Laplacian systems,
which arise from approximating the inverse of CSLP, has been extensively studied in the
literature. Various approaches have been proposed, including multigrid methods [11, 20]
and Krylov subspace methods [16, 24]. A recent alternative approach by [28] introduces
absolute-value based preconditioners for the equivalent block real linear system formulation
of the complex-shifted Laplacian system. The multigrid-based CSLPmentioned in this paper
will fully adopt the matrix-free parallel framework and settings proposed in [8].

To allow approximate solvers for E−1, one can prevent close-to-zero eigenvalues from
obstructing the convergence of the Krylov solver by adding a term Q to deflate toward the
largest eigenvalues of the preconditioned system [38]. As a result, the Adapted Deflation
Variant 1 (A-DEF1) preconditioner P reads as

P := M−1
(β1,β2)

P + Q.

When higher-order Bezier curves are used to construct high-order deflation vectors Z , this
results in the so-called Adapted Deflation Preconditioner (ADP) [15]. The preconditioned
linear system to be solved becomes

PAu = Pb. (6)

Note that PA is nonsingular, so Eq. (6) has a unique solution. In this work, we will stick to
the use of the higher-order deflation vectors.

3.2 Multilevel Deflation

When using the two-level method in practical large-scale applications, solving the coarse-
grid system remains expensive, whether solved exactly [16], or approximately by CSLP-
preconditioned Krylov methods [9]. In accordance with the multigrid method, as the coarse
grid system has similar properties as the original Helmholtz operator, one can obtain a
multilevel framework by applying the two-level cycle recursively, as shown in Algorithm 1.
Theflexible subspaceKrylovmethod such as FGMRESpreconditioned by two-level deflation
is applied recursively on subsequent coarse-grid systems E . Compared to the multilevel
deflation proposed in [16], a few remarks are noted here.

First, Algorithm 1 does not include the process of determining the corresponding coarser-
grid system E and CSLP preconditioner M on the current level l. This will be elaborated on
in the next subsection.

Second, for efficient parallelization, we employ a GMRES method to solve the coarsest
grid problem approximately rather than a direct solver. This method is preconditioned by
CSLP, which is defined according to the coarsest grid operator. We will numerically investi-
gate the necessary accuracy (or the number of iterations) for solving the coarsest grid problem
in the next section.

Third, the multilevel deflation method requires approximating the inverse of CSLP on
each level. In [16], this is accomplished using several Krylov subspace iterations (e.g., Bi-

CGSTAB) on all levels. The authors set the maximum number of iterations to Cit (Nl)
1
4 ,

where Cit is a constant and Nl denotes the problem size on level l. This strategy allows the

123



   47 Page 8 of 33 Journal of Scientific Computing           (2025) 102:47 

Algorithm 1 Recursive two-level deflated FGMRES: TLADP-FGMRES(A, b)
1: Determine the current level l and dimension m of the Krylov subspace
2: Initialize u0, compute r0 = b − Au0, β = ||r0||, v1 = r0/β;
3: Define H̄m ∈ C

(m+1)×m and initialize to zero
4: for j = 1, 2, . . . ,m or until convergence do
5: v̂ j = ZT v j � Restriction
6: if l + 1 == ml then � Predefined coarsest level ml
7: ṽ ≈ E−1v̂ � Approximated by CSLP-FGMRES
8: else
9: l ← l + 1
10: ṽ ←TLADP-FGMRES(E, v̂) � Apply two-level deflation recursively
11: end if
12: t = Z ṽ � Interpolation
13: s = At
14: r̃ = v j − s

15: r ≈ M−1r̃ � CSLP, by multigrid method or Krylov iterations
16: x j = r + t
17: w = Ax j
18: for i := 1, 2, . . . , j do
19: hi, j = (w, vi )
20: w ← w − hi, j vi
21: end for
22: h j+1, j := ||w||2, v j+1 = w/h j+1, j
23: end for
24: Xm = [x1, . . . , xm ], H̄m = {

hi, j
}
1≤i≤ j+1,1≤ j≤m

25: um = u0 + Xm ym where ym = arg miny
∣∣∣∣βe1 − H̄m y

∣∣∣∣
26: Return um

benefits of using a small shift, resulting in a preconditioner similar to the original Helmholtz
operator that retains the ability to shift indefiniteness at certain levels. However, themaximum
number of iterations is positively correlated with the grid size on each level, indicating that
larger grid sizes require more iterations. Considering the large-scale applications, utilizing
Krylov subspace iterations on the first level (finest grid) or the second level may become com-
putationally intensive. Therefore, we propose employing a multigrid cycle to approximate
CSLP on the first or second level. Several Krylov subspace iterations can then be applied
on the coarser levels. However, in the case of multigrid-based CSLP, ensuring a sufficiently
large complex shift is essential. In addition to setting the maximum number of iterations, a
relative tolerance as stopping criteria for the iterations is also established in this paper. This
allows iterations to cease once the maximum number of iterations or the tolerance is reached.

Fourth, as shown in Algorithm 1, the number of deflated FGMRES iterations is specified
by m. The cycle type of the multilevel deflation technique is determined by the number
of iterations of the deflated FGMRES on each coarse level, except for the finest level. If
only one iteration is allowed on the coarser levels, a V-cycle is obtained, which is similar
to the V-cycle structure of multigrid when γ = 1. Correspondingly, two iterations on the
coarser levels will result in a W-cycle. According to the multigrid method, the W-cycle may
offer faster convergence than V-cycle but at the expense of computational efficiency. For
increasingly complex model problems, striking a balance between optimal convergence and
computational efficiency in the selection ofm, hence determining the necessary accuracy (or
the number of iterations) for the coarser levels, will be a focal point of this study.

Fifth, in Algorithm 1, all involved matrix–vector multiplications (lines 5, 7, 10, 12, 13,
15, 17) are expressed to denote the outcome of these operations. In our implementation,
we compute and return the result of matrix–vector multiplication based on input variables
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through a linear combination. No explicit construction of any matrices takes place in our
approach.

3.3 Matrix-Free Parallel Implementation

Matrix-free implementations offer a compelling alternative to standard sparse matrix data
formats in large-scale computational scenarios. Besides the reduced memory consumption,
matrix-free methods exhibit performance advantages and can potentially outperformmatrix–
vector multiplications with stored matrices [14]. Through roofline model analysis (detailed
in Appendix B), we demonstrate that our approach achieves 2.35 times higher arithmetic
intensity compared to traditional CSRmatrix-based implementations. This theoretical advan-
tage translates to substantial performance gains, particularly for large-scale problems. These
improvements enable the solution of larger-scale Helmholtz problems previously constrained
by memory limitations, while also enhancing the applicability of modern data-driven meth-
ods [13]. This section details the matrix-free implementation of operators in the multilevel
deflation method.

Matrix-free matrix–vector multiplication is implemented using stencil notation. The com-
putational stencils for both the finest-level and second-level operators (Helmholtz and CSLP
preconditioner) and grid-transfer operators (higher-order interpolation and restriction) are
detailed in [9]. To enable true multilevel deflation, we extend the matrix-free implementation
to coarser levels. We denote the Helmholtz operators as A2l−1h and the CSLP operators as
M2l−1h , where l is the level number (l = 1 represents the finest grid). Starting from the second-
level grid, wewant to find the computational stencils for A4h so that it is a good approximation
to the Galerkin coarsening operator ZT A2h Z . Following [9], we decompose the Helmholtz
operator into Laplace and wavenumber operators (assuming a constant wavenumber). By
applying Galerkin coarsening operations to their stencils, we obtain the following stencils of
the Laplace and wavenumber operators for interior points on the third-level coarse grid:

[−Δ4h] = 1

4096
· 1

1024
· 1

h2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 −534 −5773 −11956 −5773 −534 −3
−534 −32844 −207370 −354088 −207370 −32844 −534

−5773 −207370 −294371 384244 −294371 −207370 −5773
−11956 −354088 384244 2945488 384244 −354088 −11956
−5773 −207370 −294371 384244 −294371 −207370 −5773
−534 −32844 −207370 −354088 −207370 −32844 −534

−3 −534 −5773 −11956 −5773 −534 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
4h

,

[I(k2)4h] = 1

4096
· 1

4096
· k2·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 322 3823 8092 3823 322 1
322 103684 1231006 2605624 1231006 103684 322
3823 1231006 14615329 30935716 14615329 1231006 3823
8092 2605624 30935716 65480464 30935716 2605624 8092
3823 1231006 14615329 30935716 14615329 1231006 3823
322 103684 1231006 2605624 1231006 103684 322

1 322 3823 8092 3823 322 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
4h

.
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Using these stencils, the Helmholtz operator and CSLP operator on the third level can be
obtained according to their definitions Eqs. (1) and (5), respectively.

Continuing this process iteratively, we can obtain stencils for the Helmholtz operator on
coarser levels. It should be noted that starting from the third level, the size of the computation
stencils will remain at 7 × 7. Specific stencils for the fourth to sixth levels can be found in
Appendix A.
Boundary Introducing an accurate boundary scheme for the aforementioned 7 × 7 compu-
tational stencils remains an open problem. In this paper, we present a simple yet effective
approach, involving the introduction of a ghost point outside the physical boundaries, as
depicted in Eqs. (2) and (3). We apply standard second-order finite-difference discretiza-
tion to points on the physical boundary. For points near the boundary, we set additional grid
points beyond the ghost point to zero. It is important to note that thewavenumbers of the ghost
points are also required. For Dirichlet boundary conditions, we determine the wavenumbers
of the ghost points similar to Eq. (3). In other cases, the wavenumbers of the ghost points are
uniformly set to zero. This zero-padding approach is motivated by the observation that the
coefficients outside the 3 × 3 kernel become small, and thus, the influence of these points
on the overall solution is expected to be minimal. By setting these points to zero, we aim to
simplify the computation while maintaining the accuracy of the solution.

To develop a parallel scalable iterative solver, the matrix-free multilevel deflated Krylov
subspace methods are implemented within the parallel framework presented by [8, 9].

4 Configuration

Before presenting the performance analysis of thematrix-freemultilevel deflationmethod,we
systematically tune the essential components of the algorithm to achieve an optimal balance
between computational efficiency and numerical robustness. This section establishes the
precise configuration that ensures wavenumber-independent convergence while minimizing
computational overhead for complex numerical applications. The outer FGMRES iterations
start with a zero initial guess and terminate when the relative residual in Euclidean norm
reaches 10−6. Note that all presented results in this section are obtained from sequential
computations. In our notation, Ln represents the n-th level in the multigrid hierarchy, where
L1 corresponds to the finest level.

4.1 Tolerance for Solving the Coarsest Problem

In this subsection, we explore the tolerance considerations for solving the coarsest problem.
For better comparison and fewer other influencing factors, we perform a V-cycle three-
level deflation approach to solve the constant wavenumber model problem with Sommerfeld
radiation boundary conditions. The finest level represents the first level, and the third level
corresponds to the coarsest problem, which will be addressed using GMRES preconditioned
with CSLP. To ensure an accurate inverse of CSLP on each level, we employ Bi-CGSTAB
iterations, reducing the relative residual to 10−8, assuming that the optimal tolerance is
unknown. Since the Krylov subspace method instead of the multigrid method is employed
to solve the CSLP here, a small complex shift can be used. Here we will use β2 = 0.1.
The model problem with wavenumber k = 200 is solved with two kinds of resolution, that
is kh = 0.3125 and 0.625, respectively. As analyzed in [16], the third level will remain
indefinite for kh = 0.3125, while it becomes negative definite for kh = 0.625.
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Table 1 The impact of varying tolerances for solving the coarsest problem on the number of outer iterations

kh 100 10−1 10−2 10−4 10−6 10−8

0.3125 12 (1) 5 (8) 5 (17) 5 (31) 5 (44) 5 (58)

0.625 16 (1) 31 (32) 33 (67) 33 (133) 33 (203) 33 (256)

In parentheses is the number of iterations required to solve the corresponding coarsest problem once

Table 2 Tolerance study for
CSLP approximation for
kh = 0.625

10−1 10−2 10−4 10−6 10−8

Outer FGMRES 18 16 16 16 16

Coarsest FGMRES 1 1 1 1 1

L1 Bi-CGSTAB 69 171 408 666 780

L2 Bi-CGSTAB 15 39 84 119 177

L3 Bi-CGSTAB 29 89 174 370 544

Table 1 illustrates the impact of varying tolerances for solving the coarsest problem on
the convergence behavior. Specifically, it presents the number of outer iterations required to
reduce the relative residual to 10−6 and the corresponding number of iterations needed to
solve the coarsest problem once.

From Table 1, we observe varying accuracy requirements for solving the coarsest grid
problem corresponding to different values of kh. In the case of kh = 0.3125, a relative toler-
ance of 10−1 is necessary for maintaining the convergence of the outer iterations. Conversely,
for kh = 0.625, a single iteration of the coarsest grid solver is sufficient. A strict tolerance
in solving the coarsest grid even leads to more outer iterations.

We attribute this phenomenon to the nature of the coarsest grid system, whether it is
indefinite or negative definite. According to [16], the third level remains indefinite for kh =
0.3125, while it becomes negative definite for 0.625. If the coarsest grid system is indefinite,
the relative tolerance of the iterative solver should be ensured at 10−1 or smaller. On the
contrary, if the coarsest grid system is negative definite, one iteration is adequate. However,
it leads to more outer iterations compared to the former case.

To further validate this conclusion, we note the following numerical observations (not
presented in tables or figures): using the model problem with Dirichlet boundary conditions
at kh = 0.625, a tolerance of 100 results in outer iterations of 27, while 10−1 leads to 32.
This brief numerical observation supports our finding that only one iteration suffices when
the system becomes negative definite on the coarsest grid. It should be noted that, for the
sake of uniformity, if a tolerance of 100 appears in this paper, it means that only one iteration
is performed.

4.2 Tolerance for Solving CSLP

In this section, we explore the accuracy requirements for the approximate inverse of CSLP
on each grid level. Consistent with the solver settings from the previous subsection, we
perform one iteration on the coarsest level for kh = 0.625 and set the tolerance for the
coarsest grid solver to 10−1 for kh = 0.3125. We vary the tolerance for the Bi-CGSTAB
solver used in the approximate CSLP solution. The results are presented in Tables 2 and 3,
where “Ln Bi-CGSTAB” denotes the number of Bi-CGSTAB iterations needed to achieve
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Table 3 Tolerance study for
CSLP approximation for
kh = 0.3125

10−1 10−2 10−4 10−6 10−8

Outer FGMRES 6 5 5 5 5

Coarsest FGMRES 8 8 8 8 8

L1 Bi-CGSTAB 22 338 1149 1771 2344

L2 Bi-CGSTAB 10 44 131 251 300

L3 Bi-CGSTAB 34 48 114 198 272

the corresponding tolerance on the n-th level. The phrases “Outer FGMRES” and “Coarsest
FGMRES” denote the number of FGMRES iterations required for the outer solvers and the
coarsest problem solver, respectively.

FromTables 2 and 3, it is observed that whether the coarsest grid system remains indefinite
or becomes negative definite, setting a tolerance stricter than 10−2 for the approximate inverse
of CSLP does not necessarily result in a further reduction in the number of outer iterations.
For cases with tolerances of 10−1 and 10−2, while the number of outer iterations is reduced
by 1 − 2 with a tolerance of 10−2, achieving this tolerance requires several times more
iterations, particularly on the first and second levels, where computations are expensive.
We choose to set the tolerance for solving the CSLP to 10−1, striking a balance between
achieving sufficient accuracy in the solution and minimizing the overall computational cost.
Given that the scaling behavior of CSLP is well-established in the literature [18, 21], we limit
our analysis to a single configuration and wavenumber, as this adequately demonstrates the
effectiveness of our chosen tolerance.

For a tolerance on the order of 10−1, where the required number of iterations is not
substantial, we choose to use the more stable GMRES solver for better approximations to
the inverse of CSLP. Furthermore, according to [16], while setting the tolerance at 10−1, we

limit the maximum number of iterations to 6(Nl)
1
4 , where Nl denotes the size of the problem

on level l. This allows the iterations to cease once the maximum number of iterations or the
tolerance level is reached.

4.3 OnWavenumber Independent Convergence

To achieve a robust multilevel deflation method, we expand our investigation of convergence
to deeper levels, larger wavenumbers, and more complex model problems.

4.3.1 For Constant Wavenumber Problem

Weemploy theV-cyclemultilevel deflationmethodwith coarsening to different levels to solve
the constant wavenumber model problem with increasing wavenumber k. As mentioned,
GMRES instead of Bi-CGSTAB is used to solve the CSLP with complex shift β2 = 0.1. The
relative tolerance for solving CSLP is set to 10−1. For the coarsest problem, one iteration
is performed if it is negative definite; otherwise, CSLP-preconditioned GMRES iterations
are employed to reduce the relative residual to 10−1. The tolerance for the outer FGMRES
iterations is 10−6.We consider the scenario with kh = 0.3125, indicating that from the fourth
level onward, the linear system becomes negative definite.

From Table 4, we observe that for the multilevel deflation method, if the coarsest grid
system remains indefinite, it exhibits convergence behavior that is close to wavenumber
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Table 4 The number of outer
iterations required for the
constant wavenumber model
problems with increasing
wavenumber k by the multilevel
deflation combined with CSLP
with complex shift β2 = 0.1

k Multilevel deflation
Three-level Four-level Five-level

100 6 9 8

200 6 13 12

400 7 20 20

800 7 37 37

Table 5 The number of outer
iterations required for the
constant wavenumber model
problems with increasing
wavenumber k by the multilevel
deflation combined with CSLP
with complex shift β2 = k−1

k Multilevel deflation

Three-level Four-level Five-level

100 6 6 6

200 6 7 7

400 6 8 8

800 7 9 9

independent, corresponding to the three-level deflation method in the table. However, if the
coarsest grid system becomes negative definite, as shown by the four-level deflation method
in the table, convergence results can still be achieved, but the number of outer iterations
starts to increase with the wavenumber. We also find that continuing to deeper levels, as
demonstrated by the five-level deflation method in the table, does not lead to an increase in
the number of outer iterations compared to the four-level deflation. While theoretically we
could continue to deeper levels until the coarsest problem becomes small enough for direct
solving, this approach is less favorable in massively parallel computing environments due to
the increased communication costs and potential load imbalance.

As mentioned above, the Krylov subspace iterations for the CSLP allow the benefits of
using a small shift, resulting in a preconditioner similar to the original Helmholtz operator
that retains the ability to shift indefiniteness at certain levels. Similar to [16], one can use
the inverse of the wavenumber k as the shift (β2 = k−1). As observed in Sect. 4.2, having
a tolerance of 10−1 to approximate the inverse of CSLP leads to an increase in the number
of outer iterations. For a small complex shift, the residual cannot be reduced to 10−1 within
the maximum number of iterations given. Using the more stable GMRES often provides a
relatively accurate approximation compared to the Bi-CGSTAB method. This is one of the
reasons why GMRES is employed for approximating the inverse of CSLP on the coarse grid
levels in this study.

As shown in Table 5, with complex shift β2 = k−1, the close-to wavenumber independent
convergence is obtained even for the multilevel deflation methods where the coarsest grid
problems become negative definite. Hereafter, we denote this configuration, which is mainly
a parallel matrix-free implementation of the V-cycle multilevel deflation method proposed
in [16], as MADP-v1 (Matrix-free multilevel Adapted Deflation Preconditioning).

4.3.2 For Non-Constant Wavenumber Problem

In this section, we apply MADP-v1 to non-constant wavenumber problems. Note that for
the model problems described in Sect. 2, due to the use of a computational domain based on
actual physical dimensions rather than being scaled to a unit length, we use a complex shift
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β2 = (kdim)−1
max, where kdim is the so-called dimensionless wavenumber, defined as

kdim =
√(

2π f

c

)2

Lx L y,

with Lx and Ly denoting the lengths of the computational domain in the x and y directions,
respectively.

In Table 6, we give the results for the Wedge problem with kh = 0.349, indicating that
the linear systems become negative definite from the fourth-level coarse grid onward. We
find that the latter case requires more outer iterations and significantly more CPU time. Upon
further observation of the solving process, it is observed that coarsening to negative definite
levels requires a higher number of GMRES iterations to approximate the CSLP compared
to the scenario of coarsening to indefinite levels. In cases where the coarsening remains on
indefinite levels, the tolerance of 10−1 is achieved within the maximum number of iterations.
However, in cases where the coarsening goes to negative definite levels, the number of
iterations reaches the maximum specified value without achieving the same tolerance. For
example, consider the Wedge problem with a grid size of 1153× 1921 and f = 160Hz. On
the first and second levels, the four-level deflation requires 232 and 164 GMRES iterations
to approximate the CSLP per outer iteration, respectively, whereas the three-level deflation
only requires 73 and 49 GMRES iterations.

Table 7 reports the number of iterations required and the time elapsed for the Marmousi
problem with kh = 0.54. In this scenario, the linear systems become negative definite
from the third-level grid onward. Despite being coarsened to deeper negative definite levels,
the number of outer iterations remains constant and the computational time is comparable.
However, one can find that, for such a highly heterogeneous model problem, the number of
outer iterations starts increasing with the frequency. This is consistent with the results in [16].

In summary, the variant MADP-v1, based on the configuration proposed in [16], uti-
lizes a V-cycle type and allows the combination of CSLP with a smaller complex shift
β2 = (kdim)−1

max. For constant wavenumber problems, MADP-v1 achieves near wavenumber-
independent convergence. However, for non-constant wavenumber model problems, as the
wavenumber increases, the number of outer iterations will increase gradually, and the cost
of using Krylov subspace methods to solve CSLP will become more noticeable.

For practical applications, where the wavenumber is usually non-constant within the
domain, and also for better scalability, the coarsening in this multilevel deflation method
should not be limited only to indefinite levels. Therefore, we will pay more attention to
the common occurrence of coarsening to negative definite levels. The case of coarsening to
indefinite levels will serve as a reference for the case of coarsening to negative definite levels.
We aim to achieve at least similar convergence and computational efficiency in the case of
coarsening to negative definite levels.

4.3.3 On the Tolerance for Coarse Levels

Sheikh et al. [36] stated that using n2, n3, and n4 iterations on the second, third, and fourth
levels, respectively, can accelerate convergence, and their results indicate that larger n2 leads
to better convergence for larger wavenumber. Additionally, [16] demonstrates that employing
a W-cycle instead of a V-cycle for constructing the multilevel hierarchy results in a reduced
number of iterations across reported frequencies. In this paper,we attribute this to the accuracy
of solving on the second, third, and fourth levels.
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Table 7 Number of iterations required and time elapsed for the Marmousi problem with kh = 0.54 for the
largest wavenumber k

Three-level MADP-v1 Five-level MADP-v1
f (Hz) Grid size Outer #iter for CSLP CPU Outer #iter for CSLP CPU

#iter L1 L2 time (s) #iter L1 L2 time (s)

10 737×241 12 124 88 133.91 12 124 88 165.43

20 1473×481 16 175 124 1560.03 16 175 124 1743.97

40 2945×961 23 247 175 21557.94 23 247 175 21233.10

Fig. 4 Outer iterations and CPU time vary from different tolerances on the second (L2), third (L3), and fourth
(L4) levels. Five-level deflation for Marmousi problem, grid size 1473 × 481, f = 20Hz

In contrast to the previous configuration of a single iteration on each coarser level, we
introduced distinct tolerances for iterations on the second, third, and fourth levels, explor-
ing their impact on outer iterations and CPU time. The numerical experiments utilized the
Marmousi model problem with a grid size of 1473 × 961 and frequencies of 10Hz and
20Hz, corresponding to kh = 0.27 and 0.54, respectively. As we mentioned, for kh = 0.27,
the linear systems of the second and third levels remain indefinite, while that of the fourth
level becomes negative definite. For kh = 0.54, the third and fourth levels become negative
definite.

It is evident in Figs. 3 and 4 that the number of outer iterations is correlated with the
accuracy of solving the second-level grid system. Overall, a higher number of outer iterations
usually corresponds to increasedCPU time.However, we also observe that theminimumCPU
time does not necessarily align with the minimum number of outer iterations, as depicted in
Fig. 4. This suggests that sacrificing a few extra outer iterations may result in computational
time savings. A balance between the number of outer iterations and computational time needs
to be identified.

For kh = 0.27, it is best to set a tolerance of 10−1 for the second and third levels and per-
form one iteration for coarser levels. Conversely, for the case of kh = 0.54, the recommended
tolerances for the second and third levels are 2 × 10−1 and 5 × 10−1, respectively. From
extensive numerical experiments across various grid sizes and multilevel deflation methods,
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Fig. 5 Outer iterations and CPU time vary from different tolerances on the second (L2), third (L3), and fourth
(L4) levels. Five-level deflation combined with multigrid-based CSLP on first and second levels. Marmousi
problem, grid size 1473 × 481, f = 10Hz

Fig. 6 Outer iterations and CPU time vary from different tolerances (tol) on the second (L2), third (L3),
and fourth (L4) levels. Five-level deflation combined with multigrid-based CSLP on first and second levels.
Marmousi problem, grid size 1473 × 481, f = 20Hz

it is observed that the optimal setting of the tolerance for solving the second, third, and fourth-
level grid systems, corresponding to the minimum CPU time and the fewest outer iterations,
may vary. However, on a comprehensive scale, a robust and acceptable configuration is to
set a tolerance for solving the second-level grid system to 10−1, while performing only one
iteration on the other coarser grid levels. Let us denote this configuration asMADP-v2.

We applied the MADP-v2 to solve the Wedge and Marmousi problems, respectively. The
results are presented in Tables 8 and 9. Compared to the corresponding results in Tables 6 and
7, MADP-v2 results in reduced computation time and a lower number of iterations across all
reported frequencies, showcasing a closer-to-wavenumber-independent behavior. In addition
to reduced outer iterations, we also observe that, when setting the tolerance to 10−1 for the
second-level coarse grid system, the number of iterations required to solve CSLP on the
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Table 8 Number of outer
FGMRES-iterations for the
Wedge problem with kh = 0.349
for the largest wavenumber k

Four-level MADP-v2
f (Hz) Grid size Outer #iter #iter for CSLP CPU

(L2 #iter) L1 L2 time (s)

20 145×241 6 (2) 6 59 4.69

40 289×481 6 (2) 8 83 19.26

80 577×961 7 (2) 7 116 148.05

160 1153×1921 7 (3) 15 164 1113.86

In parentheses are the number of iterations to solve the second-level grid
system

first-level grid is significantly reduced. Comparing Tables 8 with 6 (three-level deflation), in
the case of coarsening to negative definite levels, MADP-v2 achieves similar convergence
and computational efficiency.

4.4 Combined with Multigrid-Based CSLP

Further observation reveals that, in cases where coarsening reaches negative definite levels, a
significant portion of the computational time is still dedicated to approximating the inverse of
CSLP on the first and second levels. Moreover, these iterations on the second level typically

reach the specified maximum number of iterations 6(Nl)
1
4 rather than achieving a tolerance

of 10−1. The use of GMRES iterations for solving CSLP on the first and second levels
consumes a substantial amount of time, since the scale of the first- and second-level grid
systems is large.

Instead of employing the GMRES or Bi-CGSTAB methods, we can utilize the multigrid
method to approximate the inverse of CSLP on the first and second levels. On coarser levels,
GMRES iterations are still used to approximate the inverse of CSLP. However, as known,
the multigrid method requires that the complex shift should not be too small. Consequently,
we cannot use β2 = (kdim)−1

max as the complex shift for CSLP. Therefore, in the multilevel
deflationmethods combined with themultigrid-based CSLP, a complex shift of β2 = 0.5will
be consistently utilized. (Additional numerical experiments have demonstrated that β2 = 0.5
is a superior choice among other smaller complex shifts.)

Except for the choice of the complex shift for CSLP and the method used to solve CSLP
on the first- and second-level coarse grid systems, the remaining settings are mostly inherited
from MADP-v2. Specifically, a tolerance of 10−1 is set for solving the second-level grid
system, and only one iteration is performed on other coarser levels. This modified configu-
ration is denoted as MADP-v3. As it combines with multigrid-based CSLP on the first and
second levels, this variant can be considered as an extension of the two-level deflationmethod
proposed in [9].

The number of iterations and computation time required for solving the Wedge and Mar-
mousi problems usingMADP-v3 are presented in Tables 10 and 11, respectively.We observe
that compared toMADP-v2 (as shown in Tables 8 and 9), while the number of outer iterations
has increased, it exhibits nearly wavenumber-independent convergence, with computation
time three times faster. Moreover, compared to the two-level deflation method proposed in
[9], the current multilevel deflation method ensures a similar number of outer iterations while
significantly reducing computation time.
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Table 10 Number of outer FGMRES-iterations for the Wedge problem with kh = 0.349 for the largest
wavenumber k

Four-level MADP-v3 Five-level MADP-v3
f (Hz) Grid size Outer #iter CPU Outer #iter CPU

(L2 #iter) time (s) (L2 #iter) time (s)

20 145×241 10 (6) 1.73 10 (6) 1.83

40 289×481 10 (10) 8.08 10 (10) 8.87

80 577×961 10 (17) 48.05 10 (18) 64.54

160 1153×1921 11 (34) 356.76 11 (34) 367.53

320 2305×3841 11 (66) 3458.14 11 (64) 3065.03

In parentheses are the number of iterations to solve the second-level grid system

Fig. 7 Evolution of
computational time versus
problem size. Wedge model
problem. The data in orange is
extracted from [15]
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O(N1.4)

Similarly to the last section, the optimal tolerance setting is studied for the second, third and
fourth levels, as shown in Figs. 5 and 6. From the figures, it can be observed that performing
only one iteration on the fourth level (L4) or setting a tolerance of 0.5 has little impact on the
outer iterations but introduces additional computational costs. For this reason, we can keep
one iteration on the fourth level. In comparison to performing only one iteration on the third
level (L3), setting a smaller tolerance on L3 helps slow down the increase in the number of
outer iterations but leads to more computational costs. From the perspective of computation
time, performing only one iteration on L3 remains the optimal choice.With the incorporation
of multigrid-based CSLP, the number of outer iterations increases as the tolerance of the
second level (L2) increases, while the computation time shows a trend of decreasing first and
then increasing. If one wants to minimize the computation time, choosing the tolerance of
the second level as 0.3 while still performing only one iteration on other coarser levels can
be the optimal option. Let us denote this configuration as MADP.

Tables 12 and 13 present the number of iterations required and computation time to solve
the Wedge and Marmousi problems using MADP. Compared with Tables 10 and 11, it can
be seen that although a few extra outer iterations are consumed, reduced computation time
is obtained.
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Table 12 Number of outer FGMRES-iterations for the Wedge problem with kh = 0.349 for the largest
wavenumber k

Four-level MADP Five-level MADP
f (Hz) Grid size Outer #iter CPU Outer #iter CPU

(L2 #iter) time (s) (L2 #iter) time (s)

20 145×241 11 (4) 1.51 11 (4) 1.55

40 289×481 12 (6) 6.34 12 (6) 6.42

80 577×961 13 (10) 39.62 13 (10) 42.21

160 1153×1921 15 (17) 410.27 14 (18) 400.64

320 2305×3841 16 (33) 2748.70 16 (32) 2762.84

In parentheses are the number of iterations to solve the second-level grid system

Fig. 8 Evolution of
computational time versus
problem size. Wedge model
problem
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Table 13 Number of outer FGMRES-iterations for the Marmousi problem with kh = 0.54 for the largest
wavenumber k

Three-level MADP Five-level MADP
f (Hz) Grid size Outer #iter CPU Outer #iter CPU

(L2 #iter) time (s) (L2 #iter) time (s)

10 737×241 14 (10) 12.42 13 (7) 12.67

20 1473×481 16 (19) 93.08 15 (15) 84.06

40 2945×961 19 (43) 929.62 18 (29) 816.38

In parentheses are the number of iterations to solve the second-level grid system

Therefore, we regard the variantMADP, which can balance both convergence and compu-
tational efficiency, as an optimal configuration of the present matrix-free multilevel deflation
method. This variant employs a tolerance of 0.3 for solving the second-level grid system and
performs only one iteration on other coarser levels. A multigrid V-cycle is used to solve the
CSLP on the first- and second-level grid systems. On coarser levels, several GMRES itera-
tions approximate the inverse of CSLP with a tolerance of 10−1. In the subsequent sections,
we will use this variant for numerical experiments.
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Table 14 Number of outer FGMRES-iterations for the Wedge problem with kh = 0.1745

Grid size #unknowns f (Hz) Outer #iter CPU time (s)
(L2 #iter)

145× 241 34945 10 10 (2) 1.13

289× 481 139009 20 11 (3) 4.14

577× 961 554497 40 12 (4) 21.64

1153× 1921 2214913 80 12 (7) 127.47

2305× 3841 8853505 160 13 (13) 1003.71

4609× 7681 35401729 320 14 (27) 7678.83

9217× 15361 141582337 640 17 (47) 53481.69

In parentheses are the number of iterations to solve the second-level grid system

Table 15 Number of outer iterations and the number of iterations on the second, third, and fourth levels when
a tolerance of 10−1 is set on these levels

Grid size f (Hz) Outer #iter L2 #iter L3 #iter L4 #iter

289× 481 20 10 3 2 16

577× 961 40 10 3 2 20

1153× 1921 80 10 3 2 30

2305× 3841 160 10 3 2 46

4609× 7681 320 9 3 2 75

Wedge problem with kh = 0.1745

4.5 Complexity Analysis

We next analyze the complexity of the present multilevel deflation method in relation to
the problem size or to the frequency, equivalently. In this numerical experiment, the Wedge
model problem is solved using five-level MADP. The grid resolution, i.e. kh, is kept fixed
to a specific value, while the frequency is growing from 10Hz to 160Hz for kh = 0.349 or
even 640Hz for kh = 0.1745, respectively. The case of f = 640Hz leads to a linear system
with approximately 142 million unknowns. The number of outer iterations and the number
of iterations on the second level are reported in Table 14. Similarly to the results in Table 12,
the number of outer iterations is rather moderate and is found to grow slightly with respect
to frequency.

Figure7 shows the evolution of computational time versus problem size for kh = 0.349
and kh = 0.1745. As the grid size increases, the computational time of the present matrix-
free multilevel deflation method shows a similar trend to the matrix-based version proposed
by [16]. However, with single-core sequential computing, the present method can handle grid
sizesmuch larger than those achievable in [16]. If N represents the total number of unknowns,
it has been observed that the computational time follows a behavior of O(N ) for small grid
sizes and asymptotically approachesO(N 1.4). This is comparable to the geometric two-grid
preconditioner in [6]. The reason for this behavior is that, as the frequency increases, the
number of iterations required on the second level almost increases linearly with frequency,
as shown in Table 14.

One can think about continuing a similar approach, setting a tolerance of 10−1 on the
third level, ensuring that the number of iterations on the second level is independent of
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Fig. 9 Strong scaling of the parallel multilevel ADP-FGMRES for the non-constant wavenumber model
problems with various grid sizes and frequencies

Table 16 Weak scaling for the
model problem with constant
wavenumber

Grid size #unknowns np #iter CPU time (s)

k = 400

641×641 410881 1 16 49.68

1281×1281 1640961 4 13 21.63

2561×2651 6558721 16 12 16.13

5121×5121 26224641 64 11 21.66

k = 1600

2561×2561 6558721 16 20 168.26

5121×5121 26224641 64 14 100.84

10241×10241 104878081 256 13 79.69

20481×20481 419471361 1024 13 93.62

the wavenumber, and so forth. This is feasible but only limited to indefinite levels. Setting
tolerance on negative definite levels, i.e., performing more than one iteration, may lead to a
significant increase in outer iterations and computational time, consistent with the conclusion
in Sect. 4.1. For instance, considering the Wedge model problem with kh = 0.1745, where
the fourth-level grid system remains indefinite, turning negative definite onwards the fifth
level. We can extend MADP-v3 by setting a tolerance of 10−1 for iterations on the third and
fourth levels instead of performing one iteration. Table 15 provides the required number of
outer iterations and the number of iterations on the second, third, and fourth levels. We can
observe that the number of outer iterations and iterations on the second and third levels are
almost independent of the wavenumber, while the number of iterations on the fourth level
gradually increases with the wavenumber. However, as shown in Fig. 8, the computation time
required is more than MADP. Together with the case of kh = 0.087 in the figure, it can be
observed that there are subtle differences in the growth trend compared to that of MADP,
possibly approaching O(N 1.3). While it is beneficial to set a tolerance for coarser levels for
problems with smaller kh, whether the present multilevel deflation method can be closer
to O(N ) remains an open problem that requires further study. To complement this study,
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Table 17 Weak scaling for the
Wedge model problem with
f = 320Hz

Grid size #unknowns np #iter CPU time (s)

2305×3841 8853505 48 16 69.75

4609×7681 35401729 192 14 53.20

9217×15361 141582337 768 14 67.03

it would be interesting to perform the same complexity analysis for more levels and three-
dimensional cases. These are left to a future line of research. Additionally, in the numerical
experiments on current two-dimensional problems, it does not lead to a significant reduction
in computation time. Therefore, we consider MADP to still be the optimal choice.

5 Parallel Performance

In this section, we aim to present both weak scalability and strong scalability. Through this
analysis, our goal is to offer insight into the suitability of the present multilevel deflation
method for practical large-scale applications in the context of heterogeneous time-harmonic
wave problems.

The parallel six-levelMADP preconditioned FGMRES is used as the default approach in
this section to solve model problems. All numerical experiments are carried out on the Linux
supercomputer DelftBlue [12], which operates on the Red Hat Enterprise Linux 8 operating
system. Each compute node is furnished with two Intel Xeon E5-6248R CPUs featuring 24
cores at 3.0 GHz, 192 GB of RAM, a memory bandwidth of 132 GByte/s per socket, and a
100 Gbit/s InfiniBand card. The present solver is developed in Fortran 90 and is compiled
usingGNUFortran 8.5.0with the compiler options-O3 for optimization purposes. TheOpen
MPI library (v4.1.1) is used for data communication.

5.1 Weak Scalability

To assess the weak scalability of the proposed matrix-free parallel multilevel deflation pre-
conditioning method, we keep the wavenumber or frequency unchanged and solve the model
problems across varying problem sizes but maintain a fixed workload per processor. The
computational times for different problem sizes and the corresponding number of processors
are summarized in Tables 16 and 17. As the grid undergoes refinement while maintaining
a constant wavenumber, the parameter kh gradually decreases. In the context of deflation
preconditioning, it has been documented that a smaller kh leads to a reduction in the number
of outer iterations [36]. As kh continues to diminish, the number of outer iterations tends to
stabilize. Additionally, the advantages of one or two less iterations may be counteracted by
the overhead of data communication. Consequently, we observe that the computational time
initially decreases due to the reduced number of outer iterations, and then remains almost
constant, even as the grid size expands to tens of millions with over a thousand parallel
computing cores.

This behavior is highly commendable, as it allows for the efficient resolution of large
linear systemswithin a reasonable computational timeframe on a parallel distributedmemory
machine. It is important to emphasize that the advantages of the suggested approach should
be considered in the context of minimizing pollution error by grid refinement for real-world
application of Helmholtz problems.
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Table 18 Performance
comparison of matrix-free and
CSR matrix-based
implementations for
matrix–vector multiplications

Problem size Matrix-free CSR-Matrix Performance
N (GFLOPs/s) (GFLOPs/s) Ratio

289 4.5918 2.5298 1.82

1,089 5.1946 2.8848 1.80

4,225 6.1535 2.8094 2.19

16,641 5.0961 2.8327 1.80

66,049 6.1740 2.6128 2.36

263,169 6.1361 2.8208 2.18

1,050,625 6.2861 2.3977 2.62

4,198,401 5.9456 1.9992 2.97

16,785,409 5.5556 1.9200 2.89

67,125,249 5.4626 1.8979 2.88

268,468,225 5.4626 1.8958 2.88

5.2 Strong Scalability

We are also interested in the strong scalability properties of the present parallel multilevel
deflation preconditioning method for the Helmholtz problems. In this section, we perform
numerical experiments on the nonconstant-wavenumber model problems with fixed problem
sizes while varying the number of processors. First of all, the numerical experiments show
that the number of iterations required is found to be independent of the number of processors
used for parallel computing, which is a favorable property of our multilevel deflation method.

Figure9 plots the computational time versus the number of processors. The figures show
a decrease in parallel efficiency as the number of processors increases, particularly for the
Marmousi model. The analysis suggests that maintaining a minimum of around one million
unknowns per processor ensures a parallel efficiency of 60% or higher. If there are fewer
than 50 thousand unknowns per processor, the ratio of computation load to data communi-
cation may significantly decrease, leading to poor parallel efficiency. However, increasing
the grid size for the same model problem can result in improved parallel efficiency. This is
because, while the number of ghost-grid layers used for communication remains constant, the
amount of data to be communicated doubles when the number of grid points doubles in each
direction. Meanwhile, the total number of grid points increases fourfold, resulting in a larger
ratio of computation load to data communication and better parallel efficiency. Overall, as
demonstrated in solving theWedge problemwith a grid size of 9217×15361 and a frequency
of f = 640Hz, the current matrix-free multilevel deflation approach can effectively solve
complex Helmholtz problems with grid sizes up to tens of millions. It demonstrates strong
parallel scalability, maintaining efficiency across more than a thousand processors.

6 Conclusion

In this work, we present an advanced matrix-free parallel scalable multilevel deflation pre-
conditioning method for solving the Helmholtz equation in heterogeneous time-harmonic
wave problems, benchmarked on large-scale real-world models. Building on recent advance-
ments in higher-order deflation preconditioning, our approach extends these techniques to
a parallel implementation. The incorporation of the deflation technique with CSLP, along

123



Journal of Scientific Computing           (2025) 102:47 Page 27 of 33    47 

with higher-order deflation vectors and re-discretization schemes derived from the Galerkin
coarsening approach, forms a comprehensive setup for matrix-free parallel implementation.
The proposed re-discretized finite-difference schemes at each coarse level contribute to a
convergence behavior similar to that of the matrix-based deflation method.

We have explored different configurations of the multilevel deflation method, conducting
research and comparing various variants. We note that the performance of different cycle
types of the present multilevel deflation method is impacted by whether the coarsest-level
system is negative definite. We suggest that for the multilevel deflation method coarsening
to negative definite levels, ensuring a certain accuracy in iterations on the second-level grid
is crucial to maintain a consistent number of outer iterations. Based on the complexities
revealed during our study, we propose a robust and efficient variant, MADP. This variant
employs the following settings: a tolerance of 0.3 for solving the second-level grid system,
with only one iteration performed on other coarser levels; a multigrid V-cycle to solve CSLP
on the first- and second-level grid systems; several GMRES iterations to approximate the
inverse of CSLP on coarser levels, using a tolerance of 10−1. It addresses the challenges
posed by negative definite coarsest-level systems and does not lead to worse complexities.

Our numerical experiments illustrate the effectiveness of thematrix-free parallelmultilevel
deflation preconditioner, demonstrating convergence properties that are nearly independent
of the wavenumber. The reduction in memory consumption achieved through matrix-free
implementation, along with satisfactory weak and strong parallel scalability, emphasizes
the practical applicability of our approach for large-scale real-world applications in wave
propagation.

Appendix

A Re-Discretization Scheme for Coarse Levels

The stencils of the Laplace and wavenumber operators for interior points on the fourth-, fifth-
and sixth-level coarse grid read as

A8h = 1
4096 · 1

1024 · 1
1024 · 1

h2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10395 −887166 −7871637 −15491748 −7871637 −887166 −10395
−887166 −39105612 −215169378 −348459432 −215169378 −39105612 −887166

−7871637 −215169378 −265120059 413761124 −265120059 −215169378 −7871637
−15491748 −348459432 413761124 2809129936 413761124 −348459432 −15491748
−7871637 −215169378 −265120059 413761124 −265120059 −215169378 −7871637
−887166 −39105612 −215169378 −348459432 −215169378 −39105612 −887166
−10395 −887166 −7871637 −15491748 −7871637 −887166 −10395

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K8h = 1
4096 · 1

4096 · 1
1024 · k2·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

27225 3939210 40768695 83544780 40768695 3939210 27225
3939210 569967876 5898859542 12088170168 5898859542 569967876 3939210
40768695 5898859542 61050008889 125106029556 61050008889 5898859542 40768695
83544780 12088170168 125106029556 256372094224 125106029556 12088170168 83544780
40768695 5898859542 61050008889 125106029556 61050008889 5898859542 40768695
3939210 569967876 5898859542 12088170168 5898859542 569967876 3939210

27225 3939210 40768695 83544780 40768695 3939210 27225

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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A16 h = 1
4096 · 1

1024 · 1
1024 · 1

1024 · 1
h2

·
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13491387 −1011388446 −8590720245 −16705596516 −8590720245 −1011388446 −13491387
−1011388446 −41427399756 −220811304386 −353095695272 −220811304386 −41427399756 −1011388446
−8590720245 −220811304386 −262703195227 427978620452 −262703195227 −220811304386 −8590720245

−16705596516 −353095695272 427978620452 2827174335440 427978620452 −353095695272 −16705596516
−8590720245 −220811304386 −262703195227 427978620452 −262703195227 −220811304386 −8590720245
−1011388446 −41427399756 −220811304386 −353095695272 −220811304386 −41427399756 −1011388446

−13491387 −1011388446 −8590720245 −16705596516 −8590720245 −1011388446 −13491387

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K16h = 1
4096 · 1

4096 · 1
1024 · 1

1024 · k2·
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

158684409 19907719338 199630340247 405976871820 199630340247 19907719338 158684409
19907719338 2497518765316 25044582577654 50931743533240 25044582577654 2497518765316 19907719338

199630340247 25044582577654 251141703197401 510732601675060 251141703197401 25044582577654 199630340247
405976871820 50931743533240 510732601675060 1038647851363600 510732601675060 50931743533240 405976871820
199630340247 25044582577654 251141703197401 510732601675060 251141703197401 25044582577654 199630340247
19907719338 2497518765316 25044582577654 50931743533240 25044582577654 2497518765316 19907719338
158684409 19907719338 199630340247 405976871820 199630340247 19907719338 158684409

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A32h = 1
4096 · 1

1024 · 1
1024 · 1

1024 · 1
1024 · 1

h2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−14618265915 −1063059274398 −8934400311925 −17322732417892 −8934400311925 −1063059274398 −14618265915
−1063059274398 −42774103061580 −226217899925314 −360608941958056 −226217899925314 −42774103061580 −1063059274398
−8934400311925 −226217899925314 −266795319274715 439293870677284 −266795319274715 −226217899925314 −8934400311925

−17322732417892 −360608941958056 439293870677284 2882610253296592 439293870677284 −360608941958056 −17322732417892
−8934400311925 −226217899925314 −266795319274715 439293870677284 −266795319274715 −226217899925314 −8934400311925
−1063059274398 −42774103061580 −226217899925314 −360608941958056 −226217899925314 −42774103061580 −1063059274398

−14618265915 −1063059274398 −8934400311925 −17322732417892 −8934400311925 −1063059274398 −14618265915

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K32h = 1
4096 · 1

4096 · 1
1024 · 1

1024 · 1
1024 · k2·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

706549519225 85722084590890 852977249303575 1731387418334860 852977249303575 85722084590890 706549519225
85722084590890 10400227566028036 103487421517331808 210060490730926272 103487421517331824 10400227566028036 85722084590890
852977249303575 103487421517331840 1029751161146567936 2090206046973178368 1029751161146568192 103487421517331792 852977249303575

1731387418334860 210060490730926208 2090206046973178624 4242735025361522688 2090206046973178624 210060490730926208 1731387418334860
852977249303575 103487421517331840 1029751161146568064 2090206046973178624 1029751161146567936 103487421517331792 852977249303575
85722084590890 10400227566028036 103487421517331808 210060490730926208 103487421517331808 10400227566028036 85722084590890

706549519225 85722084590890 852977249303575 1731387418334860 852977249303575 85722084590890 706549519225

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

B Performance Analysis Using RooflineModel

This appendix presents a performance analysis of matrix–vector multiplication operations
v = Au comparing our matrix-free implementation with traditional CSR matrix-based
approaches. The analysis focuses specifically on the Helmholtz operator with variable
wavenumber, using five-point stencil discretization. We consider the matrix–vector multipli-
cation as it constitutes the primary computational kernel in preconditioned Krylov subspace
methods, typically accounting for the majority of computational time. Our analysis employs
the roofline model [42], a performance model that bounds computational kernel performance
based on peak computational performance and memory bandwidth limitations. As matrix–
vectormultiplication is typicallymemory-bound,we focus on arithmetic intensity (I ), defined
as the ratio of floating-point operations (FLOPs) to memory accesses:

I = Total FLOPs

Total Bytes Accessed

B.1 Analysis of Matrix-Free Implementation

The matrix-free implementation directly applies the five-point stencil operation for the dis-
crete Laplacian operator combined with the wavenumber term. For variable wavenumber
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k, the implementation of matrix–vector multiplication can be expressed in the following
computational kernel (in Fortran):

! Pre -computed stencil coefficients
ap = -4.d0/h**2
as = aw = ae = an = 1.d0/h**2
do j = 1, ny

do i = 1, nx
v(i,j) = as * u(i,j-1) & ! South

neighbor
+ aw * u(i-1,j) & ! West

neighbor
+ (ap - k(i,j)**2) * u(i,j) & ! Center point
+ ae * u(i+1,j) & ! East

neighbor
+ an * u(i,j+1) ! North

neighbor
end do

end do

In analyzing the memory access patterns, we consider the memory access per grid point
operation. The implementation requires reading of five vector elements (center and four
neighbors), each consuming 8 bytes in double precision. Additionally, we need to access one
wavenumber value (8 bytes) and write one result value (8 bytes). Therefore, the total memory
access per point is bounded by 56 bytes.

The computational intensity involves five multiplications for the stencil coefficients, four
additions for combining the stencil components, and two additional operations (one square
operation and one subtraction) for the wavenumber term. This results in 11 floating-point
operations per grid point.

Consequently, the arithmetic intensity for the matrix-free implementation is:

IMF ≥ 11

56
≈ 0.1964 FLOPs/byte

B.2 Analysis of CSRMatrix-Based Implementation

The compressed sparse row (CSR) format represents the sparse matrix A using three
arrays: values (A%col_indices), and row pointers (A%row_ptr) [34]. The CSR format
implementation is structured as follows:

do i = 1, A\%nrow
v(i) = 0.d0
do j = A\% row_ptr(i), A\% row_ptr(i+1) -1

v(i) = v(i) + A\% values(j) * u(A\% col_indices(j))
end do

end do

The memory access pattern for CSR implementation is more complex. For each non-zero
element, we must read the matrix value (8 bytes), the column index (4 bytes), and access
the corresponding vector element (8 bytes, assuming the vector is too large to fit into the
cache). Additional memory operations include accessing row pointers (4 bytes per row) and
reading/writing the result vector (16 bytes per row). For our five-point stencil case, with five
nonzero elements per row, the total memory access is bounded by 120 bytes per row.

The computation for each non-zero element requires one multiplication and one addition,
resulting in 10 total FLOPs per row.Thus, the arithmetic intensity for theCSR implementation
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is:

ICSR ≥ 10

120
≈ 0.0833 FLOPs/byte

Based on this theoretical analysis, we expect thematrix-free implementation to outperform
the CSR matrix-based implementation by approximately a factor of 2.35.

B.3 Numerical Validation

Tovalidate our theoretical analysis,we conducted extensive performancemeasurements com-
paringboth implementations. For eachgrid size,weperformed100 consecutivematrix–vector
multiplications to obtain statistically stable performance measurements. The performance
metrics are reported in billions offloating-point operations per second (GFLOPs/s), calculated
using the theoretical operation count for each implementation.

Table 18 presents the experimental results, which strongly support our theoretical anal-
ysis. The matrix-free implementation consistently achieves superior performance, with the
advantage becoming more pronounced as the problem size increases. For larger problem
sizes (N > 106), we observe performance improvements approaching a factor of 3, exceed-
ing our theoretical prediction of 2.35. This enhanced performance can be attributed tomemory
hierarchy effects. The matrix-free implementation exhibits superior cache utilization, partic-
ularly for large-scale problems where the memory access patterns of the CSR format become
increasingly inefficient.

The characteristics of these implementations have significant implications for parallel
computing performance. The matrix-free implementation’s regular memory access pat-
terns facilitate better parallel efficiency through predictable memory access and reduced
NUMA (Non-Uniform Memory Access) effects. Furthermore, in distributed memory sys-
tems, the matrix-free approach minimizes communication overhead, requiring only ghost
point exchanges along subdomain boundaries. These parallel computing advantages, com-
bined with the superior cache utilization observed in our sequential tests, suggest even
more pronounced performance benefits in parallel computing environments, particularly for
large-scale problems on distributed memory systems.
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