
GMRESR: A family of nested
GMRES methods

Report 91-80

H.A. van der Vorst
C. Vuik

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c

 1991 by the Faculty of Technical Mathematics and Informatics, Delft, The

Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They are located in the directory /pub/publications/tech-reports at ftp.twi.tudelft.nl

GMRESR: A FAMILY OF NESTED GMRES

METHODS

�

HENK A. VAN DER VORST

Mathematical Institute

University of Utrecht

Budapestlaan 6

Utrecht, the Netherlands

KEES VUIK

Department of Technical Mathematics and Computer Science

Delft University of Technology

Mekelweg 4

Delft, the Netherlands

Abstract

Recently Eirola and Nevanlinna have proposed an iterative solution

method for unsymmetric linear systems, in which the preconditioner is

updated from step to step. Following their ideas we suggest variants of

GMRES, in which a preconditioner is constructed at each iteration step

by a suitable approximation process, e.g., by GMRES itself.

Keywords: GMRES, nonsymmetric linear systems, iterative solver, EN-

method

�

This version is dated June 23, 1992

1

Introduction

The GMRES method, proposed in [13], is a popular method for the iterative so-

lution of sparse linear systems with an unsymmetric nonsingular matrix. In its

original form, so-called full GMRES, it is optimal in the sense that it minimizes

the residual over the current Krylov subspace. However, it is often too expen-

sive since the required orthogonalization per iteration step grows quadratically

with the number of steps.

For that reason, one often uses in practice variants of GMRES. The most well-

known variant, already suggested in [13], is to restart after each cycle of m

iteration steps: GMRES(m). A disadvantage of this approach is that the con-

vergence behavior in many situations seems to depend quite critically on the

value of m (for examples see, e.g., [9]). Even in situations in which satisfactory

convergence takes place, the convergence is less than optimal, since the history

is thrown away so that potential superlinear convergence behavior is inhibited

[18].

Another approach is to apply polynomial preconditioning (in combination with

a possibly available preconditioner, e.g., ILU). To that end a �xed low degree

polynomial is constructed, e.g., the m-th degree iteration polynomial obtained

from the �rst m iteration steps [11]. A disadvantage of this approach is that

this polynomial does not take advantage of the current residual, i.e., this precon-

ditioner may be strong in reducing eigenvector components that have already

vanished in the iteration process.

We propose a variant GMRES? of the GMRES algorithm, in which it is al-

lowed to take a di�erent preconditioner in each iteration step. For a special,

though rather meaningful, choice we prove robustness of the resulting algorithm

(GMRESR). Numerical examples have been added in order to demonstrate the

possibilities of this novel approach. Though we have made a choice for the

implementation of the new algorithm, it will be clear that there are other pos-

sibilities. For example, the preconditioner can be constructed di�erently for

parts of the domain (in a PDE context), and the choice of preconditioner per

domain, or even the choice of domains, may be di�erent for each iteration step

of GMRES?.

Other GMRES-like iteration schemes with a variable preconditioner have

been proposed recently by Saad [14] and Axelsson and Vassilevski [2]. In Saad's

scheme (FGMRES) the search directions are preconditioned, whereas in our

method the residuals are preconditioned. This gives us direct control over the

reduction in norm of the residual. As a result, GMRESR can be made robust,

whereas FGMRES may su�er from break-down (in [20] the di�erences between

FGMRES and GMRESR are discussed in more detail, in particular an example

of break-down for FGMRES is given). Furthermore, in GMRESR it is easy

to truncate the orthogonalization process, or to select speci�c orthogonalization

directions. We also believe that the derivation of our algorithm is rather general

2

(in fact GMRESR is only a special case), and that it gives new insights on the

method, as well as on GMRES.

The method proposed in [2] is a generalized conjugate gradient method. Variant

1 in [2] (algorithm 1) produces, in exact arithmetic, and with the same choice

for the search direction as in GMRES?, identical results as GMRES? (though

at considerably higher computational costs and with a Gram-Schmidt orthog-

onalization procedure instead of a modi�ed version). Our scheme has a wider

applicability.

The outline of this paper is as follows. In Section 1 basic ideas behind

the new algorithm are presented, while in Section 2 the iteration scheme for

GMRESR is proposed. In Section 3 some theoretical properties are analysed.

Implementation aspects for speci�c choices of the algorithm are discussed in

Section 4. Finally, we present some numerical examples in Section 5. These

examples illustrate the e�ectiveness of our approach in relevant situations.

1 Rank-one updates for the Preconditioner

Iterative methods can be derived from a splitting A = H

�1

�R of the matrix.

In [6] it is suggested to update the matrix splitting with information obtained in

the iteration process. We will give the
avour of this method here since it turns

out that it has an interesting relation with GMRES-like methods (GMRES,

GCR, and ORTHODIR). This approach is followed for the construction of new

classes of GMRES-like methods, that can be used as cheap alternatives for the

increasingly expensive full GMRES method. One such alternative, GMRESR,

will be discussed in more detail in Section 2.

Assume that the matrix splitting in the k-th iteration step is given by A =

H

�1

k

� R

k

. Then we obtain the iteration formula

x

k

= x

k�1

+H

k

r

k�1

with r

k

= b�Ax

k

:

The idea is to construct H

k

by a suitable rank-one update to H

k�1

:

H

k

= H

k�1

+ u

k�1

v

T

k�1

;

which leads to

x

k

= x

k�1

+ (H

k�1

+ u

k�1

v

T

k�1

)r

k�1

(1)

or

r

k

= r

k�1

� A(H

k�1

+ u

k�1

v

T

k�1

)r

k�1

(2)

= (I � AH

k�1

)r

k�1

� �

k�1

Au

k�1

:

The optimal choice for the update would have been to select u

k�1

such that

�

k�1

Au

k�1

= (I �AH

k�1

)r

k�1

;

3

or

�

k�1

u

k�1

= A

�1

(I � AH

k�1

)r

k�1

:

The operator A

�1

is not available, but we have the approximation H

k�1

. This

leads to the choice

u

k�1

= H

k�1

(I � AH

k�1

)r

k�1

: (3)

The constant �

k�1

is chosen such that kr

k

k

2

is minimal as a function of �

k�1

.

This leads to

�

k�1

=

1

kAu

k�1

k

2

2

(Au

k�1

)

T

(I � AH

k�1

)r

k�1

:

Since v

k�1

has to be chosen such that �

k�1

= v

T

k�1

r

k�1

, we have the following

obvious choice for it

v

k�1

=

1

kAu

k�1

k

2

2

(I � AH

k�1

)

T

Au

k�1

(4)

(note that from the minimization property we have that r

k

? Au

k�1

).

In principle the implementation of the method is quite straight forward, but

note that the computation of r

k�1

, u

k�1

and v

k�1

involves 3 matrix vector mul-

tiplications with A and one with A

T

(and also some with H

k�1

). This would

make the method too expensive for being of practical interest. Also the updated

splitting is most likely a dense matrix if we carry out the updates explicitly.

We will now show, still following the lines set forth in [6], that there are orthog-

onality properties, following from the minimization step, by which the method

can be implemented much more e�ciently.

We de�ne

1. c

k

=

1

kAu

k

k

2

Au

k

2. E

k

= I � AH

k

>From (2) we have that r

k

= E

k

r

k�1

, and from (3):

Au

k

= AH

k

E

k

r

k

= �

k

c

k

; �

k

= kAu

k

k

2

or

c

k

=

1

�

k

(I � E

k

)E

k

r

k

=

1

�

k

E

k

(I � E

k

)r

k

: (5)

Furthermore:

E

k

= I � AH

k

= I � AH

k�1

� Au

k�1

v

T

k�1

(6)

(4)) = I � AH

k�1

�Au

k�1

(Au

k�1

)

T

(I � AH

k�1

)

1

kAu

k

k

2

2

= (I � c

k�1

c

T

k�1

)E

k�1

=

k�1

Y

i=0

(I � c

i

c

T

i

)E

0

:

4

We see that the operator E

k

has the following e�ect on a vector. The vector is

multiplied by E

0

and then orthogonalized with respect to c

0

, ..., c

k�1

. Now we

have from (5) that

c

k

=

1

�

k

E

k

y

k

; y

k

= (I �E

k

)r

k

;

and hence

c

k

? c

0

; :::; c

k�1

: (7)

The orthogonality of the c

j

's follows from the special choice made for u

k

. For

other choices the c

j

's have to be made orthogonal explicitly, in order to obtain

a convenient computational scheme.

The actual implementation is based on the above properties. Given r

k

we

compute r

k+1

as follows (and we update x

k

in the corresponding way):

r

k+1

= E

k+1

r

k

:

With �

(0)

= E

0

r

k

we �rst compute (with the c

j

from previous steps):

E

k

r

k

= �

(k)

� (I �

k�1

X

j=0

c

j

c

T

j

)�

(0)

=

k�1

Y

j=0

(I � c

j

c

T

j

)�

(0)

:

The expression with

P

leads to a Gram-Schmidt formulation, the expression

with

Q

leads to Modi�ed Gram-Schmidt.

The computed updates �c

T

j

�

(0)

c

j

for r

k+1

correspond to updates

c

T

j

�

(0)

A

�1

c

j

= c

T

j

�

(0)

u

j

=kAu

j

k

2

for x

j+1

. These updates are in the scheme, given below, represented by �.

>From (3) we know that

u

k

= H

k

E

k

r

k

= H

k

�

(k)

:

Now we have to make Au

k

� c

k

orthogonal w.r.t. c

0

, ..., c

k�1

, and to update

u

k

accordingly. Once we have done that we can do the �nal update step to

make H

k+1

, and we can update both x

k

and r

k

by the corrections following

from including c

k

. The orthogonalization step can be carried out easily as

follows. De�ne c

(k)

k

� �

k

c

k

= AH

k

E

k

r

k

= (I�E

k

)E

k

r

k

(see (5)) = (I�E

0

+

P

k�1

E

0

)�

(k)

(see (6)) = AH

0

�

(k)

+ P

k�1

(I � AH

0

)�

(k)

= c

(0)

k

+ P

k�1

�

(k)

�

P

k�1

c

(0)

k

, where c

(0)

k

= AH

0

�

(k)

. Note that the second term vanishes since

�

(k)

? c

0

; :::; c

k�1

.

The resulting scheme for the k-th iteration step becomes:

5

1. �

(0)

= (I � AH

0

)r

k

; �

(0)

= H

0

r

k

;

for i = 0; :::; k� 1 do

�

i

= c

T

i

�

(i)

; �

(i+1)

= �

(i)

� �

i

c

i

; �

(i+1)

= �

(i)

+ �

i

u

i

;

2. u

(0)

k

= H

0

�

(k)

; c

(0)

k

= Au

(0)

k

;

for i = 0; :::; k� 1 do

�

i

= �c

T

i

c

(i)

k

; c

(i+1)

k

= c

(i)

k

+ �

i

c

i

; u

(i+1)

k

= u

(i)

k

+ �

i

u

i

;

c

k

= c

(k)

k

=kc

(k)

k

k

2

; u

k

= u

(k)

k

=kc

(k)

k

k

2

;

3. x

k+1

= x

k

+ �

(k)

+ u

k

c

T

k

�

(k)

;

r

k+1

= (I � c

k

c

T

k

)�

(k)

;

Remarks

1. The above scheme is a Modi�ed Gram-Schmidt variant, given in [21], of

the original scheme in [6].

2. If we keep H

0

�xed, i.e., H

0

= I, then the method is not scaling invariant

(the results for �Ax = �b depend on �). In [21] a scaling invariant method

is suggested.

3. Note that in the above implementation we have 'only' two matrix vector

products with A per iteration step (and no operations with A

T

). In [21] it

is argued that in many cases we may also expect convergence comparable

to that for GMRES in half he number of iteration steps.

4. A di�erent choice for u

k�1

does not change the formulas for v

k�1

and

E

k�1

. For each di�erent choice we can derive similar schemes as the one

above.

5. From (2) we have

r

k

= r

k�1

� AH

k�1

r

k�1

� �

k�1

Au

k�1

:

In view of the previous remark we might also make the choice u

k�1

=

H

k�1

r

k�1

. With this choice, we obtain a variant which is algebraically

identical to GMRES (for a proof of this see [21]). This GMRES variant is

obtained by the following changes in the previous scheme:

Take H

0

= 0 (note that in this case we have that E

k�1

r

k�1

= r

k�1

, and

hence we may skip part 1 of the above algorithm), and set �

(k)

= r

k

,

�

(k)

= 0. In step 2 start with u

(0)

k

= �

(k)

.

The result is a di�erent formulation of GMRES in which we can obtain

explicit formulas for the updated preconditioner (i.e., the inverse of A is

approximated increasingly well): The update for H

k

is u

k

c

T

k

E

k

and the

sum of these updates gives an approximation for A

�1

. This implementa-

tion of GMRES will be referred to as GMRES-EN.

6

2 A recursive variant of GMRES

In the GMRES-EN algorithm, discussed at the end of the previous section, we

are still free in the selection of u

k

. Remember that the leading factor H

k�1

in (3) was introduced as an approximation for the actually desired A

�1

. With

u

k

= A

�1

r

k

, we would have that r

k+1

= E

k

r

k

� �

k

r

k

= 0 for minimizing �

k

.

Of course, we could take any other suitable approximation u

k

for A

�1

r

k

. This

gives the following iteration scheme for the solution of Ax = b (if one wants to

include conventional preconditioning (e.g., ILU), then we assume that Ax = b

represents the explicitly preconditioned system to be solved):

GMRES? algorithm

1. Start: Select x

0

, m, tol;

r

0

= b�Ax

0

, k = �1;

2. Iterate: while kr

k+1

k

2

> tol do

k = k + 1;

Select any suitable u

(0)

k

;

c

(0)

k

= Au

(0)

k

;

for i = 0; : : : ; k � 1 do

�

i

= c

T

i

c

(i)

k

;

c

(i+1)

k

= c

(i)

k

� �

i

c

i

;

u

(i+1)

k

= u

(i)

k

� �

i

u

i

;

c

k

= c

(k)

k

=kc

(k)

k

k

2

; u

k

= u

(k)

k

=kc

(k)

k

k

2

;

x

k+1

= x

k

+ u

k

c

T

k

r

k

;

r

k+1

= r

k

� c

k

c

T

k

r

k

;

If A is nonsingular, then, clearly, as long as each u

(0)

k

is chosen to be linearly

independent of fu

1

; :::; u

k�1

g or, equivalently, chosen so that Au

k

is linearly

independent of fc

1

; :::; c

k�1

g, GMRES? does not break down and generates u

k

that solves

min

x2x

0

+spanfu

1

;:::;u

k

g

kb� Axk

2

:

If u

(0)

k

in the above scheme is computed as u

(0)

k

= H

0

r

k

for any �xed nonsingular

preconditioner H

0

, then we have precisely the GMRES-EN variant described in

[21]. With u

(0)

k

= r

k

we obtain GCR (for GCR see [7]).

The above scheme opens the possibility for a highly recursive scheme, since the

iterations could be done with a similar scheme as above.

In this paper we will study the algorithmwith the vector u

(0)

k

that is obtained

as the approximation to the solution of Ay = r

k

after m steps of GMRES, with

starting vector y

0

= 0. This leads to the GMRESR family of nested methods.

7

When we compute the approximate solution for Ay = r

k

by m steps of GMRES,

then this is equivalent by stating that A

�1

r

k

is approximated by P

m;k

(A)r

k

,

where P

m;k

represents the GMRES iteration polynomial.

If the GMRES process for computing u

(0)

k

stagnates, i.e., if u

(0)

k

= 0 then, in

order to avoid break-down, we replace this inner iteration process by 1 step

of LSQR [12]: u

(0)

k

= A

T

r

k

. The GMRESR algorithm with this strategy will

be referred to as "GMRESR with LSQR-switch". In practical situations other

strategies may turn out to be more e�ective, and it may also be more practical

to relax the switch condition (for an example see Section 5).

In GMRESR there are various degrees of freedom. For instance, we may

select a di�erent m in each iteration step. This means that we could solve the

inner iteration also with a speci�ed tolerance ", which takes n(") iterations, say,

with GMRES(m).

It may also be practical to restart the outer iteration after k iterations, just as

is common practice with GMRES, in order to limit memory requirements, or to

include only updates from the last j outer iterations (the truncated GMRESR

version). This truncated GMRESR variant is obtained if we replace the for-

loop by

for i = max(0; k � j); :::; k� 1 do

In our limited experience a truncation strategy seems to be much more e�cient

than a complete restart after each j cycles. One might also discard those c

i

's

which do not lead to a signi�cant reduction of r

k+1

.

The resulting scheme is denoted by GMRESR(k, j, n("), m). If the outer

iterations are not restarted this will be denoted by a ?, instead of k. Likewise,

a ? for the second parameter will denote that the process is not truncated.

Before further analyzing these schemes, we will give an example which serves

to demonstrate the potential of the new class of schemes. In Table 1 we have

listed the amount of work (in terms of matrix vector products, vector updates

and innerproducts), the amount of workspace (in terms of n-vectors) and the

CPU-time (in seconds, for 1 processor of a Convex C-240), required by some

methods in order to solve a certain discretized Navier-Stokes problem [19].

method matvec daxpy ddot memory CPU-time

GMRES(50) 1220 35; 000 35; 000 50 17:0

GMRES 184 17; 000 17; 000 184 7:2

GMRESR(?,?,1,10) 198 1386 1224 46 1:2

Table 1: Comparison between GMRES variants for an example

8

Note that the new scheme, in addition being more economic in memory space

than its competitors, is much faster in terms of CPU-time for this speci�c ex-

ample. This motivates us to investigate the method in more detail. A more

elaborate comparison with variants of GMRES, as well as with CGS [15] and

BiCGSTAB [17] will be made for relevant problems in Section 5. In Sections

3 and 4 we will discuss theoretical properties and implementation aspects of

GMRESR.

3 Properties of GMRESR

In this section we analyse some properties of GMRESR(?, ?, 1, m), or GM-

RESR(m) for short. We will assume that the inner iteration is always started

with initial guess u

(0)

k;0

= 0 (note that in this notation u

(0)

k

= u

(0)

k;m

= P

m;k

(A)r

k

).

Generalization of the properties of this scheme to GMRES? is obvious (and will

sometimes be made explicitly).

>From the GMRESR scheme in Section 2 we conclude that c

k

is unde�ned if

c

(k)

k

= 0. If this happens, while r

k

6= 0, then we will speak of a break-down

of GMRESR. In this section we will consider the break-down situation in more

detail.

We will show that break-down is avoided by including the LSQR-switch

strategy (see Section 2), and that then GMRESR is a �nite method, just as full

GMRES is. We will also show that it is not necessary to carry out all m inner

iterations if that would imply that we are beyond the tolerance for the outer

iterations. Finally, we will show that, in contrast to the original EN-method of

which GMRESR has been derived, GMRESR is scaling invariant.

In this section we will assume exact arithmetic. The residuals obtained by

GMRESR are denoted by an upper index GR, those of GMRES by an upper

index G.

The next theorem states that GMRESR(m) is a robust method, and that it

is a minimum residual method.

Theorem 1 (a) "GMRESR(m) with LSQR-switch" does not break down.

(b) In GMRESR(m) (and GMRES?) the residual r

k

is minimized over the space

r

0

+ spanfc

0

; c

1

; :::; c

k�1

g:

Proof. (a) Suppose that kr

GR

k

� AP

m;k

(A)r

GR

k

k

2

� kr

GR

k

k

2

(the >-case is

precluded in GMRES), and that r

GR

k

6= 0.

We �rst consider the <-case.

Consequently it holds that c

(0)

k

= AP

m;k

(A)r

GR

k

6= 0. Since GMRES minimizes

9

the residual in the innerloop, we have that

(r

GR

k

� c

(0)

k

) ? c

(0)

k

;

and it follows that c

(0)

k

T

r

GR

k

= c

(0)

k

T

c

(0)

k

6= 0.

In the case of equality sign, the LSQR-switch is active, and with

u

(0)

k

= A

T

r

GR

k

and c

(0)

k

= AA

T

r

GR

k

;

we have that c

(0)

k

T

r

GR

k

= (AA

T

r

GR

k

)

T

r

GR

k

= kA

T

r

GR

k

k

2

2

6= 0.

The result c

(0)

k

T

r

GR

k

6= 0, together with the fact that r

GR

k

? spanfc

0

; :::; c

k�1

g,

leads to c

(0)

k

62 spanfc

0

; :::; c

k�1

g.

Hence kc

(k)

k

k

2

6= 0, and the method does not break down.

(b) The minimization property of GMRESR follows immediately from the con-

struction of the algorithm 2.

>From the proof of Theorem 1 it follows that the GMRESR algorithm with-

out LSQR-switch can only break-down when the inner iteration process stag-

nates.

>From the de�nition of GMRESR, in Section 2, we have immediately the

following result.

Lemma 1 For "GMRESR(m) with LSQR-switch" we have

1. r

GR

k+1

= (I � P

k

)r

0

, with P

k

=

k

P

i=0

c

i

c

T

i

the orthogonal projection onto

spanfc

0

; :::; c

k

g.

2. GMRESR(m) is a �nite method, i.e., r

GR

k

= 0, for some k � n.

The next lemma says that the c

k

vectors in GMRESR are contained in a

Krylov subspace. This result will facilitate the comparison between GMRESR

and GMRES.

Lemma 2 If GMRESR(m) (without LSQR-switch) does not break-down within

the �rst k iterations and if the inner iterations are started with initial guess

u

(0)

k;0

= 0, then

r

GR

k

= r

0

+

k�m

X

i=1

�

k;i

A

i

r

0

;

and spanfc

0

; :::; c

k

g � spanfAr

0

; :::; A

(k+1)m

r

0

g:

10

Proof. The proof is by an induction argument in k. Note that u

(0)

0

is obtained

by m steps GMRES: u

(0)

0

2 spanfr

0

; :::; A

(m�1)

r

0

g. Therefore, c

0

= Au

(0)

0

2

fAr

0

; :::; A

m

r

0

g, which gives the result for k = 0.

Using that r

GR

k+1

= r

GR

k

� c

k

c

T

k

r

GR

k

it follows by induction that

r

GR

k+1

= r

0

+

(k+1)m

X

i=1

�

k+1;i

A

i

r

0

:

Furthermore, we note that c

(k+1)

k+1

= (I � P

k

)AP

m;k+1

(A)r

GR

k+1

, and thus

c

(k+1)

k+1

= AP

m;k+1

(A)r

GR

k+1

� P

k

AP

m;k+1

(A)r

GR

k+1

:

It then follows by induction that

c

k+1

=

c

(k+1)

k+1

kc

(k+1)

k+1

k

2

2 spanfAr

0

; :::; A

(k+2)m

r

0

g 2

>From Lemma 2 and the well-known property that GMRES minimizes the

residual over its associated Krylov subspace, it follows that

kr

GR

k

k

2

� kr

G

k�m

k

2

In Section 4 we will show that the computation of x

GR

k

and r

GR

k

together costs

k �m matrix vector products. This shows that GMRESR takes at least as many

matrix vector products as full GMRES in order to obtain comparable accuracy.

However, as we will see in Section 5, it is not always that many more.

Our standard choice in GMRESR is u

(0)

k

= u

(0)

k;m

� P

m;k

(A)r

GR

k

. An obvious

disadvantage of this choice is that always m GMRES iterations are applied in

the inner iteration and that might lead to a higher accuracy than we actually

need in some cases. E.g., when r

GR

k

is close to satisfying the stopping criterion

kr

GR

k

k

2

� tol, then we expect that the choice u

(0)

k

= u

(0)

k;j

� P

j;k

(A)r

GR

k

with j

(much) less thanm will be su�cient to have kr

GR

k+1

k

2

< tol. The following lemma

states that it is never necessary to solve the inner iterations more accurately

than the outer ones, and it leads to an obvious modi�cation to GMRESR (a

similar result is easily proved for GMRES?).

Lemma 3 If GMRESR(m) (without LSQR-switch) does not break down and

kr

GR

k

� Au

(0)

k;j

k

2

< tol; j � m, then with u

(0)

k

= P

j;k

(A)r

GR

k

we have that

kr

GR

k+1

k

2

< tol.

11

Proof. >From Theorem 1 we have that

kr

GR

k+1

k

2

= min

z2spanfc

0

;:::;c

k

g

kr

0

� zk

2

=: kr

0

� z

k+1

k

2

:

Since z

k

+AP

j;k

(A)r

GR

k

2 spanfc

0

; :::; c

k

g we obtain

kr

GR

k+1

k

2

= kr

0

� z

k+1

k

2

� kr

0

� z

k

�AP

j;k

(A)r

GR

k

k

2

= kr

GR

k

�AP

j;k

(A)r

GR

k

k

2

< tol: 2

The quantity kr

GR

k

�AP

j;k

(A)r

GR

k

k

2

is equal to the norm of the j-th residual

in the k-th GMRES inner iteration, and this norm can be computed with little

additional costs in GMRES (see [13]).

It follows from Lemma 3 and Theorem 1 that if GMRESR does not break

down, then the sequence fkr

GR

i

k

2

g is monotonically decreasing.

The reduction that one may expect at least for a given matrix A is given by

�

m

:

�

m

=

sup

r

0

2 IR

n

kr

G

m

k

2

kr

0

k

2

:

(note that the optimality property of GMRES gives �

m

2 [0; 1]).

In the following lemma we compare the convergence behavior of GMRES(m)

and GMRESR(m).

Lemma 4 If �

m

< 1 then

kr

GR

k+1

k

2

kr

GR

k

k

2

� �

m

:

Proof. We applym iteration steps of GMRES to Ay = r

GR

k

with y

0

� u

(0)

k;0

= 0.

After this the residual is equal to r

GR

k

�AP

m;k

(A)r

GR

k

.

Using the de�nition of �

m

it follows that

kr

GR

k

�AP

m;k

(A)r

GR

k

k

2

� �

m

kr

GR

k

k

2

. Hence, since �

m

< 1 it follows from the

proof for Theorem 1 that GMRESR(m) does not switch to LSQR (and does not

break down). From Lemma 3 it then follows that kr

GR

k+1

k

2

� �

m

kr

GR

k

k

2

2.

Corollary 1 If GMRES does not stagnate in m iteration steps(which means

�

m

< 1) for a given matrix A then GMRESR(m) does not need to switch to

LSQR and it converges at least as fast as GMRES(m).

In [21] it is shown that the original method of Eirola and Nevanlinna [6] is

not scaling invariant. Since the idea of GMRESR originates from that method,

we investigate the convergence behavior of GMRESR with respect to scaling.

12

De�nition 1 The quantities associated with GMRESR, when applied to �Ax =

�b with � > 0 are denoted by a hat, e.g.,

^

A = �A;

^

b = �b, etc.

Lemma 5 GMRESR(m) is scaling invariant:

x̂

GR

k

= x

GR

k

:

Proof. We prove the lemma by an induction argument in k. The induction

hypothesis is:

x̂

GR

k

= x

GR

k

; r̂

GR

k

= �r

GR

k

; û

k

=

1

�

u

k

; and ĉ

k

= c

k

:

For k = 0 we have x̂

0

= x

0

and r̂

GR

0

= �r

0

. It is easy to show that û

(0)

0

=

P

m;0

(

^

A)r̂

0

= u

(0)

0

thus ĉ

(0)

0

=

^

Aû

(0)

0

= �c

(0)

0

. This implies that û

0

=

1

�

u

0

and

ĉ

0

= c

0

. Since x̂

GR

1

= x̂

0

+ û

0

ĉ

T

0

r̂

0

we obtain x̂

GR

1

= x

0

+

1

�

u

0

c

T

0

�r

0

= x

GR

0

and

r̂

GR

1

= �r

GR

1

(scaling invariance in case of an LSQR-switch is easily veri�ed).

By similar arguments it follows that û

(0)

k

= u

(0)

k

and ĉ

(0)

k

= �c

(0)

k

. From the

GMRESR scheme and the induction hypothesis it follows that û

k

=

1

�

u

k

; ĉ

k

=

c

k

; x̂

GR

k+1

= x

GR

k+1

, and r̂

GR

k+1

= �r

GR

k+1

2.

For the invariance property we have used the fact that the inner iterations

are started with u

(0)

k;0

= 0, which is necessary in order to avoid shifts in the

Krylov subspaces. Other starts do not necessarily ensure the scaling invariance

of the process.

4 Implementation details

In this section we use results from Sections 2 and 3, and [13] to obtain a

cheaper implementation for GMRES in the inner iteration. Then we compare

the amount of work and required memory for full GMRES and GMRESR(?, ?,

1, m) (GMRESR(m) for short). Furthermore we will derive expressions for m

that lead to optimal choices with respect to work and memory requirements. We

conclude this section with some indications for situations when GMRESR may

be preferred over GMRES. In this section we will assume that the LSQR-switch

has not been activated. This facilitates the performance analysis.

4.1 The inner iteration process

In the GMRESR scheme we do the inner iteration by GMRES for the calculation

of u

(0)

k

= P

m;k

(A)r

GR

k

. Since the inner iteration has some special properties we

13

modify GMRES slightly in order to obtain a cheaper variant.

First of all we note that the inner iteration starts with u

(0)

k;0

= 0, which implies

that the initial residual r

GR

k

� Au

(0)

k;0

is equal to r

GR

k

. So the matrix vector

product to calculate Au

(0)

k;0

is not necessary in the inner iteration. Second, it

follows from Lemma 3 that we can stop the inner iteration if the residual is less

than tol. Finally, in [13]: p. 863 it is shown that the residual can be calculated

with m + 1 vector updates instead of using a matrix vector product as in the

expression r

m

= b � Ax

m

. In most applications m will be small, e.g. m < 10,

which implies that m + 1 vector updates cost much less than a matrix vector

product, so we use a similar idea to calculate c

(0)

k

= Au

(0)

k

.

We denote the Krylov subspace basis vectors, generated by GMRES, by

v

j

; V

m

is the matrix with columns v

1

, ..., v

m

and

�

H

m

is the m + 1 by m up-

per Hessenberg matrix generated by GMRES (e.g., see [13]). Then we have

u

(0)

k

= V

m

y

m

, and hence c

(0)

k

= Au

(0)

k

= AV

m

y

m

.

Since AV

m

= V

m+1

�

H

m

it follows that c

(0)

k

= V

m+1

�

H

m

y

m

. With these modi�ca-

tions we obtain the following algorithm:

Algorithm for the computation of u

(0)

k

and c

(0)

k

1. Start: Take tol as in the outer iteration,

r

0

= r

GR

k

and v

1

= r

0

=kr

0

k

2

,

2. Iterate: for j = 1; :::; i (where i is such that

i = m or kr

i

k

2

< tol)

do

v

j+1

= Av

j

;

for t = 1; :::; j do

h

tj

= v

T

j+1

v

t

; v

j+1

= v

j+1

� h

tj

v

t

;

h

j+1;j

= kv

j+1

k

2

; v

j+1

= v

j+1

=h

j+1;j

;

3. u

(0)

k

= V

i

y

i

c

(0)

k

= V

i+1

�

H

i

y

i

, where y

i

minimizes k�e

1

�

�

H

i

y

i

k

2

with � = kr

GR

k

k

2

and e

1

; y

i

2 IR

i

:

4.2 The choice of m

In order to compare the e�ciency of GMRES and GMRESR(m), estimates for

the amount of work and the required memory of both methods are listed in

Table 2.

>From these estimates we derive optimal choices for m with respect to work

and required memory. To that end we assume that m

gr

� m

�

=

m

g

. We have

14

method GMRES GMRESR(m)

steps m

g

m

gr

matvec m

g

m

gr

�m

vector updates

1

2

m

2

g

m

gr

� (

m

2

2

+m

gr

)

inner products

1

2

m

2

g

m

gr

� (

m

2

2

+

m

gr

2

)

memory vectors m

g

2m

gr

+m

Table 2: Amount of work and memory for GMRES and GMRESR(m)

already seen in Section 3 that m

gr

� m � m

g

. In situations where m

gr

� m is

considerably larger than m

g

we expect that GMRESR is far less e�cient with

respect to CPU time and memory than GMRES. Hence, it is only attractive to

use GMRESR(m) when m

gr

�m is not too far from m

g

.

If m

gr

�m

�

=

m

g

then the number of required matrix vector products is about

the same for both methods, however the numbers of vector updates and inner

products can be di�erent. Assuming that a vector update costs as much as an

inner product, the amount of work w (in suitable units), with respect to vector

updates and inner products, is given by:

GMRES: w

g

(m

g

) = m

2

g

,

GMRESR(m): w

gr

(m

gr

;m) = 1:5m

2

gr

+m

gr

�m

2

.

Using m

gr

= m

g

=m, the amount of work w

gr

as a function of m is given by

w

gr

(m

gr

;m) =

1:5m

2

g

m

2

+m

g

�m

The minimum is attained for m =

3

p

3m

g

and is equal to

4:5

3

p

9

�m

4=3

g

. Note that if

m

g

grows the amount of work in GMRES increases as m

2

g

, whereas the increase

of work in GMRESR(m) is equal to 2:5 m

4=3

g

which has a much smaller increase

than m

2

g

. With respect to the optimal value of m =

3

p

3m

g

we remark that it is

a slowly increasing function of m

g

. Thus a given m is near-optimal for a wide

range of values of m

g

. For numerical experiments with this choice of m we refer

to Section 5.

In order to optimize m with respect to memory requirements, we denote the

amount of memory by:

GMRES: mem(m

g

) = m

g

GMRESR(m): mem(m

gr

;m) = 2m

gr

+m

Assuming again that m

gr

= m

g

=m we obtain mem(m

gr

;m) =

2m

g

m

+ m. The

optimal value of m in this case is equal to m =

p

2m

g

, which implies that the

amount of memory is equal to 2

p

2m

g

. So the increase in required memory in

GMRESR(m) as a function of m

g

is much less than for GMRES.

15

Note that the optimalm with respect to work is in general less than the optimal

m with respect to memory. It depends on the problem and the available com-

puter, which value is preferred. However in our experiments we observe that for

both choices the amount of work and required memory are much less than for

GMRES.

In order to obtain an optimal choice of m it is necessary to estimate m

g

. If the

system of equations is solved once the only possibility is to get an upperbound

of m

g

from an analysis of the problem. If the system of equations is solved

many times, e.g. a time dependent problem, a nonlinear problem or many right

hand side vectors, then there are other possibilities:

- the �rst time the system is solved with full GMRES. We then assume that

the value of m

g

does not change much in other problems. Since many

systems are solved, the extra costs of full GMRES are negligible.

- the �rst time the system is solved with, e.g., GMRESR(5) and we use

5 �m

gr

as an approximation for m

g

in the remaining systems.

In this paragraph we give three conditions, under which GMRESR(m) is more

e�cient than GMRES or GMRES(m).

- m

g

is relatively large, because if m

g

is small, e.g. less than 20, then the

gain obtained from GMRESR(m) is negligible,

- m

gr

�m is approximately equal to m

g

,

- full GMRES has a superlinear convergence behavior, which implies that

GMRES (m) shows slow convergence for m� m

g

.

For a class of problems where these conditions holds we refer to [19].

Finally it is possible to use other iterative methods in the inner iteration.

Possibilities are: GMRES(m) where m may be di�erent for every step of the

outer iteration, or GMRESR(m) itself, other implementations of GMRES (see

[3] and [5]) or BiCG-methods: CGS [15], Bi-CGSTAB [17]. Note that, by

following the approaches suggested in [4] and [5], the inner iteration process is

well suited for parallel computation.

5 Numerical experiments

In this Section GMRESR(m) is tested and compared with other iterative meth-

ods. All tests have been carried out in double precision
oating point arithmetic

(� 15 decimals) on one processor of a Convex C240 computer.

In our problems the LSQR switch was never activated, except for the very last

example (which was designed to obtain that e�ect). We start with an arti�-

cial problem: a convection di�usion equation on a unit square. It appears that

16

GMRESR(10) is a robust method for this class of problems. Thereafter we spec-

ify some results for a practical problem, obtained from a discretization of the

Navier Stokes equations. In these experiments we see the theoretical properties

of GMRESR(m), as discussed in Sections 3 and 4, con�rmed.

We describe some numerical experiments with a linear system obtained from a

discretization of the following pde

�

�

@

2

u

@x

2

+

@

2

u

@y

2

�

+ �

�

@u

@x

+

@u

@y

�

= f on
 ;

uj

@

= 0 ;

where
 is the unit square. The exact solution u is given by

u(x; y) = sin(�x) sin(�y):

In the discretization we use the standard �ve point central �nite di�erence ap-

proximation. The stepsizes in x- and y-direction are equal to 1/100. We use the

following iterative methods: GMRES(m), CGS, Bi-CGSTAB and GMRESR(m).

We use a more or less optimal choice of m to obtain results using GMRES(m).

We start with x

0

= 0 and stop if kr

k

k

2

=kr

0

k

2

� 10

�12

.

method iterations matvec CPU time

GMRES(32) 1355 1355 69:0

CGS 288 576 5:8

Bi-CGSTAB 252 504 4:7

GMRESR(10) 36 360 12:0

Table 3: The results for � = 1

method iterations matvec CPU time

GMRES(4) 256 256 4:8

CGS n.c.

Bi-CGSTAB 210 420 4:6

GMRESR(10) 35 350 11:0

Table 4: The results for � = 100

Using � = 100 the updated residual of Bi-CGSTAB satis�es kr

210

k

2

� 10

�13

whereas the norm of the exact residual is equal to 10

�9

.

17

method iterations matvec CPU time

GMRES(4) 302 302 5:6

CGS n.c.

Bi-CGSTAB n.c.

GMRESR(10) 36 360 13:0

Table 5: The results for � = 500

Note that in these examples GMRESR(10) is a robust method because it con-

verges for all our choices of �. CGS and Bi-CGSTAB fail for � large, whereas

for � small the restarted version of GMRES has a slow convergence behavior.

Contrary to GMRESR, where m = 10 is a good choice for a wide range of �,

the optimal value of m, used in GMRES(m), changes considerably for di�erent

values of �.

Finally we take � as a function of x and y as follows:

�(x; y) =

8

<

:

1 for x; y 2 [

1

2

;

3

5

]

2

1000 for x; y 2 [0; 1]

2

n [

1

2

;

3

5

]

2

: (8)

method iterations matvec CPU time

GMRES(32) 1418 1418 70

CGS n.c.

Bi-CGSTAB n.c.

GMRESR(10) 56 560 19

Table 6: The results, where � is given in (4.1)

For CGS the updated residual is such that kr

583

k

2

� 10

�10

whereas the norm

of the exact residual is larger than 10

�4

; we consider this as a case of non-

convergence. Note that in this problem GMRESR(10) is the best method.

The following examples come from a discretization of the incompressible Navier

Stokes equations. This discretization leads to two di�erent linear systems, the

momentum equations and the pressure equation (for a further description we

refer to [19]). Here we consider a speci�c test problem, which describes the
ow

through a curved channel.

In the �rst example the problem is discretized with 16� 64 �nite volumes. The

pressure equations are solved with GMRES(m) and GMRESR(m). We start

with x

0

= 0 and stop when kr

k

k

2

=kr

0

k

2

� 10

�6

. This is essentially the same

problem as the one for which results were reported in Section 2, only the dis-

cretization is slightly di�erent.

18

Full GMRES converges in 177 iterations and used 5:8 s. CPU time. Restarting

GMRES is a bad idea, e.g. GMRES(50) takes 1323 iterates and 16 s. CPU time

to converge. In the following table we specify the results for GMRESR(m),

where m is choosen near the optimal value with respect to work (m = 8) and

with respect to memory (m = 20). Note that in this example m �m

gr

is approx-

imately equal to m

g

for 4 � m � 22.

m 4 8 12 16 18 20 22

iterations 45 23 16 12 11 10 9

CPU time 1.15 0.89 0.90 1.05 1.09 1.23 1.30

memory 94 54 44 40 40 40 40

vectors

Table 7: GMRESR(m) applied to the pressure equations

We observe a good correspondence between the predicted and the real optimal

values of m. Note that the optimal value of m with respect to memory is larger

than that with respect to work.

For this problem we also solve the momentum equations with full GMRES and

GMRESR(m). The choices for m are m = 5, optimal with respect to work, and

m = 8, optimal with respect to memory. For both choices of m we observe a

considerable gain in computing time and memory requirements.

iterations CPU time memory

method vectors

full GMRES 31 0.61 31

GMRESR(5) 7 0.35 19

GMRESR(8) 4 0.37 16

Table 8: Iterative methods applied to the momentum equations

We have solved the pressure equations with a combination of GMRESR(m) with

a (M)ILU preconditioner (see [10], [16], [1], and [8]).

In Table 9 we show results, using an average of an ILU and a MILU precon-

ditioner with � = 0:975 (for a motivation of this, see [19]: p.8). For large

problems (32 � 128) GMRESR(m) is much better than full GMRES. Since

GMRES(m) converges very slowly for these examples we have not included

results for GMRES(m) in Table 9.

Our �nal example has been included in order to demonstrate the e�ect of

the 'LSQR switch'. The matrix A has as its columns e

2

, e

3

, ..., e

10000

, e

1

, where

19

�nite volume iterations CPU time memory

method vectors

full GMRES 16� 64 28 0.31 28

GMRESR(4) 16� 64 9 0.27 22

full GMRES 32� 128 47 2.19 47

GMRESR(5) 32� 128 10 1.21 25

Table 9: Iterative method applied to the pressure equation using a MILU pre-

conditioner

e

i

is the i-th canonical basis vector in IR

10000

. For the right-hand side we take

b = e

1

. It is well-known that, with the start x

0

= 0, GMRES produces the

iterands x

1

= ::: = x

9999

= 0 and x

10000

= e

10000

. In this case we may expect

stagnation in the inner iterations for any reasonable choice of m. With the

LSQR switch, however, GMRESR converges in only one iteration, due to the

fact that LSQR converges in one iteration for this speci�c case.

In order to make the situation less trivial, we select a di�erent right-hand side.

The vector b is chosen such that it leads to the solution x with

x

(i�1)�100+j

= sin(�i=100) sin(�j=100);

i; j = 1; :::; 100.

Furthermore, we change the switch criterion a little bit. Instead of switching

only when kAu

(0)

k;m

� r

k

k

2

= kr

k

k

2

, which seems not quite practical in actual

computing, we switch when kAu

(0)

k;m

� r

k

k

2

� skr

k

k

2

, for some suitable s close

to 1.

GMRESR(10) is started with x

0

, as above, and for di�erent values of s we have

listed the number of GMRESR iteration steps in table 10.

s iterations

0:9 2

1� 10

�7

4

1� 10

�8

> 100

Table 10: Results for relaxed LSQR switch

This experiment indicates that it might be better to take s in practice slightly

less than 1.

Conclusions

We propose a class of new iterative methods, GMRES?, for the iterative solution

of a linear system Ax = b with unsymmetric nonsingular matrix A. We have

20

analysed a special member of this class, GMRESR(m), in more detail. This

method is shown to be robust when an LSQR-switch is included.

It appears that the increase of vector updates, inner products and required

memory, as a function of the amount of iterations, is much less than the in-

crease of this quantities using full GMRES. From our numerical experiments

we conclude that GMRESR(m), even without activating the LSQR switch, is a

robust method.

Optimal choices for the parameter m are easily obtained and do not change very

much for di�erent problems. In most experiments we observe for GMRESR(m)

a considerable improvement, in computing time and memory requirements, in

comparison with more familiar GMRES variants.

Though we have only analysed one speci�c GMRES? variant, it is clear from

our presentation that there is an overwhelming freedom in variants. Some of

these are currently being investigated and will be reported separately.

Acknowledgements

We are deeply indebted to both referees, who have helped us to improve pre-

sentation and style of this paper signi�cantly.

References

[1] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class

of preconditioning methods, Numer. Math., 48 (1986), pp. 479{498.

[2] O. Axelsson and P. S. Vassilevski, A black box generalized Conju-

gate Gradient solver with inner iterations and variable-step preconditioning,

SIAM J. Matrix Anal. Appl., 12 (1991), pp. 625{644.

[3] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRES implementa-

tion, Tech. Report 91-03, University of Kentucky, 1991.

[4] A. T. Chronopoulos and S. K. Kim, s-Step Orthomin and GMRES im-

plemented on parallel computers, Tech. Report 90/43R, UMSI, Minneapolis,

1990.

[5] E. de Sturler, A parallel variant of GMRES(m), in Proc. of the 13-th

IMACS World Congress on Computation and Applied Math., J. Miller and

R. Vichnevetsky (eds.), Criterion Press, Dublin, 1991, pp. 682{683.

[6] T. Eirola and O. Nevanlinna, Accelerating with rank-one updates, Lin.

Alg. and its Appl., 121 (1989), pp. 511{520.

21

[7] S. C. Eisenstat, H. C. Elman and M. H. Schultz, Variational it-

erative methods for nonsymmetric systems of linear equations, SIAM J.

Numer. Anal., 20 (1983), pp. 345{357.

[8] I. Gustafsson, A class of �rst order factorization methods, BIT, 18

(1978), pp. 142{156.

[9] Y. Huang and H. A. van der Vorst, Some observations on the conver-

gence behavior of GMRES, Tech. Report 89-09, Delft University of Tech-

nology, Faculty of Tech. Math., 1989.

[10] J. A. Meijerink and H. A. van der Vorst,An iterative solution method

for linear systems of which the coe�cient matrix is a symmetric M-matrix,

Math.Comp., 31 (1977), pp. 148{162.

[11] N. M. Nachtigal, L. Reichel, and L. N. Trefethen, A hybrid GM-

RES algorithm for nonsymmetric matrix iterations, Tech. Report 90-7,

MIT, Cambridge, MA, 1990.

[12] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse lin-

ear equations and sparse least squares, ACM Trans. Math. Soft., 8 (1982),

pp. 43{71.

[13] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual

algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist.

Comput., 7 (1986), pp. 856{869.

[14] Y. Saad, A
exible Inner-Outer preconditioned GMRES algorithm, Tech.

Report UMSI 91/279, University of Minnesota Supercomputer Institute,

Minneapolis, Minnesota, 1991.

[15] P. Sonneveld, CGS: a fast Lanczos-type solver for nonsymmetric linear

systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36{52.

[16] H. A. van der Vorst, High performance preconditioning, SIAM J. Sci.

Statist. Comput., 10 (1989), pp. 1174{1185.

[17] , Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for

the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Com-

put., 13 (1992), pp. 631-644.

[18] H. A. van der Vorst and C. Vuik, The rate of convergence of the

GMRES method, Preprint 654, University of Utrecht, Dept. of Math., 1991

(to appear in JCAM).

[19] C. Vuik, Solution of the discretized incompressible Navier-Stokes equations

with the GMRES method, Tech. Report 91-24, Delft University of Technol-

ogy, Faculty of Tech. Math., 1991.

22

[20] C. Vuik, Further experiences with GMRESR, text presented at Copper

Mountain Conference, 1992.

[21] C. Vuik and H. A. van der Vorst, A comparison of some GMRES-like

methods, Lin. Alg. and its Appl., 160 (1992), pp. 131-162.

23

