Further experiences with GMRESR

Report 92-12

C. Vuik

I U D e I f‘t Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft

Delft University of Technology

ISSN 0922-5641

Copyright © 1992 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone +3115784568.

A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They arelocated in the directory /pub/publications/tech-reportsat ftp.twi.tudeft.nl

Further experiences with GMRESR

C. Vuik
Faculty of Technical Mathematics and Informatics
Delft University of Technology
Mekelweg 4, Delft
The Netherlands

Abstract

The GMRES method proposed in [8] is a popular method for the iterative
solution of sparse linear systems with an unsymmetric nonsingular matrix.
We propose in [13] a variant of the GMRES algorithm, GMRESR, in which
it is allowed to take a different preconditioner in each iteration step. Here
some properties of this approach are discussed and illustrated with numerical
experiments. We compare GMRESR with GMRES, Bi-CGSTAB [11] and
FGMRES [7].

Key words. GMRES, nonsymmetric linear system, iterative solver.
AMS(MOS) subject classifications. 65F10

1 Definitions and properties of the GMRESR method. We specify the
GMRESR method given in [13] and summarize some of its properties.

1.1 Definitions. In this subsection we give the GMRESR method [13]. The
new idea behind the GMRESR method is to use a preconditioning which may be dif-
ferent for each iteration step. We obtain the preconditioning by carrying out a number
of GMRES steps in what may be regarded as an inner loop. However, any other pro-
cess, which approximates A~ly for a given vector y, can be chosen (e.g. LSQR [6],
Bi-CGSTAB [11], QMR [3] or GMRESR). Furthermore, the choice of the process used
in the innerloop may be different in each iteration. Note that one can use GMRESR
in a recursive way, which motivates the name of the method GMRESR(ecursive).

We denote the approximate solution of A=!r by P,,(A)r, where P, represents the GM-
RES polynomial that is implicitly constructed in m iteration steps of GMRES. Note
that this polynomial depends on the residual r, so that we have effectively different
polynomials in different steps of the outer iteration. We will make this dependence ex-
plicit by adding the number of the current outer iteration as an index to P : P, 1(A)r.
The resulting process, GMRESR, is represented by the following iteration scheme for
the solution of Az = b:

GMRESR algorithm ([13])

1. Start: Select xg, m, eps;
ro=b— Azxg, k= -1;

2. Tterate: while ||rry1]l2 > eps do
k:=k+1, u;ﬂo) = P r(A)rg, C;ﬂo) = Auggo);
for: =0,...,k—14do
a; = ciTcg), CEJ-H) = cg) — ¢y, ugjﬂ) = ug) — Qg
endfor
ex = e/l s wi = uf /el
Thil = Tk + URCLTE
Tha1 = Tk — CRCETL;
endwhile.

(0)

Note: In the remainder of this paper, the process to calculate u;’ is called the in-
nerloop of the GMRESR method. If GMRES in the innerloop stagnates we obtain
(0)

u; = 0 and the method breaks down. In such a case we avoid break down by using

one step of LSQR [6] in the innerloop: u;ﬂo) = ATrj,. In Section 6 we give a motivation
for this choice and specify some examples where the LSQR switch gives a much better

convergence behaviour.

A more practical scheme, in our opinion, arises when the outer iteration is restarted
after [s iterations, in order to limit memory requirements, or to include only updates
from the last It outer iterations (a truncated GMRESR version). The resulting scheme
is denoted by GMRESR (Is,lt,m). In Section 3 we give other truncation strategies
and compare restarting and truncation for some testproblems.

1.2 Properties. In this subsection we summarize some properties of GMRESR
without restarting or truncation. This method is denoted by GMRESR(m). For the
proofs of these properties we refer to [13]. We assume that the inner iteration is always
started with initial guess ugf()) = 0 (note that in this notation u;ﬂo) = ugf%l = P r(A)ry).
In the GMRESR algorithm ¢ is undefined if cgf) = 0. If this happens, while r; # 0,
then we will speak of a breakdown of GMRESR.

The next theorem says that GMRESR(m) is a robust method, and that it is a minimum
residual method.
Theorem 1.1

(a) GMRESR(m) does not break down,

(b) In GMRESR(m) the residual 74 is minimized over the space

o + span{co, €1, ...y Ch1}.

It is easily seen that Theorem 1.1 (b) implies that r;, = 0, for some k& < n, so GMRESR
is a finite method.

In [13] we show that the norm of the k-th GMRESR(m) residual is larger than or
equal to the norm of the full GMRES residual after k-m iterations. This implies that
GMRESR takes at least as many matrix vector products as full GMRES in order to
obtain comparable accuracy.

The following lemma states that it is never necessary to compute the inner approxi-
mation more accurately than the outer one.

Lemma 1.2

If the norm of the j-th innerloop residual ||ry — Au@”z is less than eps, where j <

(0) (0)

m, then it is proved in [13] that using u; ' = %,
7412 < eps.

the outer loop residual satisfies

From this lemma it follows that it is not necessary to apply m iterations in the final
inner loop. If the innerloop residual satisfies the stopping criterion for 7 < m one can
stop the inner iteration process and use the approximation uk?j of A='r}, as the final
search direction. In general this saves some CPU time.

1.3 The choice of m. In order to compare the efficiency of GMRES and GM-
RESR(m), estimates for the amount of work and the required memory of both methods
are listed in Table 1.

method GMRES | GMRESR(m)
steps my Mgy
matvec my Mgr * M
vector updates sm? Mgy - (m72 + my,)
inner products sm2 Mgy - (m72 + 2
memory vectors my 2mg, +m

Table 1: Amount of work and memory for GMRES and GMRESR(m)

It appears from our numerical experiments that in many cases my, -m is approximately
equal to mg. This observation is used to derive optimal choices for m with respect to
work and required memory. In the following, we assume that a vector update costs as
much as an inner product. Using mgy, = m,/m it appears that the minimal amount
of work is attained for m = {/3m,, and it is less than 2.5 mg/?’. Note that the amount
of work of GMRES is equal to mg. With respect to memory requirements the optimal
value is equal to m = /2my, so the amount of memory for GMRESR(m) is equal to
2,/2m,. This combined with Table 1 implies that for large value of m,, GMRESR(m)
needs much less memory than GMRES. Both optimal values of m are slowly varying
with my. Thus a given m is near-optimal for a wide range of values of m,. Note that
the optimal m with respect to work is in general less than the optimal m with respect
to memory. It depends on the problem and the available computer, which value is
preferred. In our experiments we observe that for both choices the amount of work
and required memory is much less than for GMRES.

2 Numerical experiments. In this section we illustrate the theoretical prop-
erties of GMRESR with experiments.

In our numerical experiments we use a linear system obtained from a discretization of
the following pde:
v 9%u Ju Ou

(@—I@—y?)—l_ﬁ(@_x—l_@_y):fong’

ulag = 0,
3

where €2 is the unit square. The exact solution w is given by u(z,y) = sin(7a) sin(7y).
In the discretization we use the standard five point central finite difference approxi-
mation. The stepsizes in z- and y-direction are equal. We use the following iterative
methods: GMRES(m), Bi-CGSTAB, and GMRESR(m). We use a more or less opti-
mal choice of m to obtain results using GMRES(m). We start with 2o = 0 and stop
i Irallo/lrollz < 10712,

In Table 2 we present results for GMRESR(m). CPU time is measured in seconds us-
ing 1 processor of a Convex (' — 3820. Using full GMRES we observe that m, = 183,
which means, that one needs 183 vectors in memory. Furthermore full GMRES costs

m 4 8 12 16 20
My, 47 25 19 16 14
m- Mg, 188 | 200 | 228 | 256 | 280
CPU time 0.82 1 0.57 | 0.68 | 0.83 | 1.01
memory vectors | 98 58 50 48 48

Table 2: The results for GMRESR(m) with = 1 and h = 1/50.

4.4s CPU time. Note that for small values of m,m,, - m is approximately equal to
mg. Suppose my, is unknown and we use mg, - m as an approximation of m,. Then
using the formulas given in Section 1.3, we obtain the following bounds for the optimal
values of m:

work: V3.188 =83 < m < 9.4 = +/3.280 ,
memory: v2.188 = 194 < m < 23.7 = v/2.280 .

Comparing this with Table 2 we note that there is a good correspondence between
theory and experiments in this example. As expected, the optimal value of m with
respect to memory is larger than with respect to work. However, for both choices of
m we observe a considerable gain in computing time and memory requirements.

Results comparing the three iterative methods are shown in Table 3. It appears that

method iterations | matvec | CPU time
GMRES(32) 1355 1355 26
Bi-CGSTAB 237 474 1.7
GMRESR(10) 36 360 4.3

Table 3: Results for 5 =1 and h = 1/100.

GMRESR(10) is better than GMRES(32). Although Bi-CGSTAB uses less CPU time,
it uses more matrix vector products than GMRESR(10).

In Table 4 we take the stepsize h = 1/100 and 8 a function of # and y as follows:

B 1 forz,y €[, 2]
fla,y) _{ 1000 for 2,y € [3,15]2\[%, 2. (1)

[tV

method iterations | matvec | CPU time
GMRES(32) 1536 1536 30
Bi-CGSTAB n.c.

GMRESR(10) 56 560 7.8

Table 4: Results, with 3 given by (1) and A = 1/100.

Note that in this problem GMRESR(10) is the best method.

The following example comes from a discretization of the incompressible Navier-Stokes
equations. This discretization leads to two different linear systems, the momentum
equations and the pressure equation (for a further description we refer to [13], [14]). We
consider a specific testproblem, which describes the flow through a curved channel.
The problem is discretized with 32 x 128 finite volumes. The pressure equation is
solved using an average of an ILU and MILU preconditioner with a = 0.975 [1], [14].
We start with zo = 0 and stop when ||rg||2/||rollz < 1075, The results are shown in
Table 5. Note that for this problem GMRESR(4) is the fastest method with respect
to CPU time.

method iterations | matvec | CPU time
full GMRES 47 47 0.77
CGS 38 76 0.49
Bi-CGSTAB 34 68 0.44
GMRESR(4) 12 48 0.43

Table 5: Iterative methods applied to the pressure equation.

3 Restarting and truncation strategies. We present some truncation strate-
gies and compare the results with restarted and full GMRESR.

There are many different ways to truncate GMRESR. The first one, which is already
given in Section 1.3, is to use the [t last search directions (denoted by trunclast).
To obtain another truncation strategy we note that in many cases GMRESR has a
superlinear convergence behaviour. This means that after some iterations GMRESR
converges as if some eigenvalues of the matrix are absent (compare [12]). Restarting or
truncation can destroy this behaviour ([4]; pp. 1334,1335). If superlinear convergence
occurs, it appears a good idea to use the [t — 1 first and 1 last search directions (de-
noted by truncfirst). Both strategies are used in the following experiments. It follows
from Table 6 that truncation with [t — 1 first and 1 last search directions is the best
strategy for this example. If there are only 18 memory vectors available, the gain in
CPU time for [s = 50,1t = 5 with respect to ls = It = 5 is equal to 40%. Furthermore,
comparing full GMRESR(8) with GMRESR(50,10,8) (truncfirst variant) we see that
the amounts of CPU time are approximately the same, whereas the amount of memory

is halved.

We conclude this section with some other truncation strategies. First we note that
it seems an awkward choice to use one last search direction in the truncfirst variant.

5

lt=1ls restart ls =50 trunclast truncfirst memory
iterations | CPU It iterations | CPU | iterations | CPU | vectors
5 57 1.15 5 41 0.87 37 0.79 18
10 45 0.97 10 32 0.73 29 0.68 28
15 33 0.74 15 29 0.69 26 0.62 38
20 29 0.67 20 25 0.60 25 0.60 48
25 25 0.60 25 25 0.60 25 0.60 58

Table 6: Results with GMRESR((s,1t,8),5 =1 and h = 1/50.

This choice is motivated by the fact that if one applies GCR to a symmetric problem
then it is necessary and sufficient to use one last search direction in order to obtain the
same convergence behaviour as full GCR. We have done experiments without this final
direction (truncfirstl). These results are given in Table 7. Note that the truncfirstl
variant is the worst truncation strategy, so it is indeed a good idea to include one last
search direction, which is done in the original truncfirst variant.

It 5 110 15|20 | 25
truncfirstl | 55 | 49 | 34 | 26 | 25
minalfa 36 | 28 | 25| 25| 25

Table 7: Number of iterations for GMRESR(50,¢,8), 5 = 1 and h = 1/50.

Finally in ([4]; p. 1335) another truncation strategy is proposed for a GCR-like
method. For the GMRESR algorithm this strategy leads to the folowing variant
(minalfa): if £ > It then the search direction with the smallest absolute value of a;
in the for loop is thrown away. The motivation is that the search direction with the
smallest |a;| has only a limited influence on the GMRESR convergence. From Table
7 it appears that this leads to the best truncation strategy for this example. An-
other important advantage of the minalfa variant is that it is a black box strategy.
For instance if the bad eigenvector components (with respect to the convergence be-
haviour) appear after some iterations, then the truncfirst variant is much worse than
the minalfa variant.

4 Some ideas for choosing an iterative solution method. There are a
large number of known iterative solution methods for non-symmetric problems. In
this section we present some ideas to motivate a choice of a feasible iterative method.
These ideas are based on our experiments. Probably they should be adapted for other
classes of problems. The insights in this section can be used to guess a priori if it has
sense to change from one iterative method to another. Furthermore it is shown that
two parameters: the ratio of the CPU time for a matrix vector product and a vector
update, and the expected number of full GMRES iterations, are important to choose
an iterative method. Finally, the ideas given in this section show a good agreement
with our experiments given in Section 2.

In the remainder of this section we assume that the amount of required memory is
available. Otherwise restarted or truncated versions of GMRES (GMRESR) can be
used, however it is not clear if the results in this section holds in such a case.

6

The CPU time of many iterative methods consists of two main parts:
- the total CPU time used for matrix vector products, which is denoted by ¢,,
(if a preconditioner is used, ¢,, includes the time for preconditioning),
- the total CPU time used for vector updates and inner products, which is
denoted by t,.
We prefer GMRES (GMRESR) if ¢, is less than vt,, for a given constant y. Note
that for every other Krylov subspace method the gain in CPU time is always less
than % -100%. In our experiments it appears that for the choice v = 0.5, (1 + v)t,,
of GMRES (GMRESR) is approximately equal to t,, + t, of Bi-CGSTAB. So in our
example at the end of this section we take y = 0.5 (for this choice 7= -100% = 33%).

The CPU time used for one matrix (+ preconditioner) vector product is denoted by
tm1, and the CPU time of one vectorupdate (or inner product) is denoted by t,;. The
factor fis defined by f = t,,1/t,1. Using the assumption that mg, -m = m, we obtain
the following expressions:

GMRES: by =My lp1 , ty = mgtvl :

GMRESR: t,, = my -ty t, = 2.5my! "ty .

As said before we prefer GMRES (GMRESR) if ¢, < 4t,,. For GMRES this means
my < vf, whereas for GMRESR this means m, < (yf/2.5)%>. For GMRESR the
bound of this inequality is given by m, = (vf/2.5)%. This equation defines v as a
slow varying function of m,, so the total CPU time of GMRESR is a slowly varying
function of my,.

Figure 1 illustrates the given bounds for the choice ¥ = 0.5. We emphasize that this
figure only gives qualitative information. It illustrates the dependence of the choice
on f and m,. Below we specify some applications using this information.

- For a given system and computer, f can be measured. This together with an
estimate of m, and Figure 1 gives an impression of which iterative method is
feasible.

- Suppose Bi-CGSTAB is the best method for a certain problem, without pre-
conditioning. Including preconditioning, Figure 1 suggests that GMRESR
can be better for this preconditioned system, because m, is (much) lower and
f is (much) higher (in general a preconditioner is harder to vectorize than a
matrix vector product).

Note that the applicability of GMRESR for large values of f is much wider than
GMRES.

For the first example given in Section 3, f = 10, so Figure 1 agrees with our ob-
servation that Bi-CGSTAB costs more matrix vector products but less CPU time
than GMRESR. In the practical examples given in Section 3 and [13], f = 20 and
mg < 50. In these examples the CPU time of GMRESR is less than the CPU time of
Bi-CGSTAB, which is also in accordance with Figure 1.

Finally we compare GMRESR with QMR. It is easily seen from [3], equations (2.7),
(2.8) and (3.1) that the QMR method uses k multiplications with A and AT to con-
struct a solution, which is an element of a Krylov subspace with dimension k. So we

choose v = 1 in order to compare GMRESR and QMR (Figure 2). From Figure 2 we
note that GMRESR has a large region of feasibility with respect to QMR.

5 Comparison of GMRESR with FGMRES. Another GMRES-like iter-
ation scheme with a variable preconditioner is proposed in [7]. In Saad’s scheme
(FGMRES) a Krylov subspace is generated that is different from ours (GMRESR).
We specify an example for which FGMRES breaks down. Comparison shows that
in our examples the convergence behaviour of GMRESR and FGMRES are approx-
imately the same. An advantage of GMRESR is that it can be truncated and/or
restarted, whereas FGMRES can only be restarted. In Section 3 we have seen that in
some problems truncated GMRESR converges faster than restarted GMRESR. Using
such an example we show that restarted FGMRES (FGMRES can not be truncated)
costs more CPU time than truncated GMRESR.

A well-known property of GMRES is, that it has no serious breakdown. From the
following example we conclude that it is possible that FGMRES breaks down. For
the algorithm we refer to ([7]; p.4) and note that FGMRES is equal to GMRES if
M; = M for all j. So breakdown of FGMRES is only possible if one chooses different
M;.

Example
0 0 1 0 0
Take A =11 0 0 , = |0 [and 2o = | 0 |. In Algorithm 2.2 of [7]
0 10 1 0
1
we choose My = I and My = A?. These choices lead to z; = 2 = 0 , V1 =
0
1 0
0 , Dy = 1 |, and A3y = 0, which implies that v3 does not exist. Since
0 0

o = xg + az; + [z, it follows that x5 # 2, so this is a serious breakdown. Note that
Azy = vy but 23 # 2, which contradicts Property 1 of ([7]; p.5).

In the inner loop of GMRESR, we calculate an approximate solution of Au;o) = 7.
In FGMRES an approximation of Az, = vy is calculated. If the preconditioner is the
same for every k, then w; and z;, ¢ =0, ..., k span the same Krylov subspace. However,
if the preconditioner varies, the Krylov subspaces can be different. To illustrate this
we calculate the solution of the problem given in Section 3, with 8 = 1 and h = 1/50.
As inner loop we take one step of GMRES(10) in both methods. The results are given
in Figure 3. As expected ||7,||2 and ||r1]|2 are the same for both methods. In this
example the differences of the norms of the residuals are small. We have also done
experiments with the same search directions in both methods. In these experiments
the results of GMRESR and FGMRES are the same to machine precision.

It follows from Algorithm 2.2 [7] that only the vectors v are updated in the orthog-
onalization process. Assuming that GMRESR and FGMRES use both m,, iterations
for convergence, GMRESR needs %mgT vectorupdates more than FGMRES. Note that
GMRESR and FGMRES are feasible for relatively large values of f (see Section 4 for
the definition of f). In this case the CPU time of %sz extra vectorupdates is negli-

8

gible.

FGMRES GMRESR (truncfirst) | memory
[s | iterations | CPU | [t | iterations | CPU | vectors
5 128 123 | 5 64 6.5 20
10 83 8.2 |10 46 4.9 30
15 68 6.9 | 15 41 4.7 40
20 59 6.1 | 20 41 4.8 50
25 50 5.3 | 25 39 4.7 60

Table 8: Results with FGMRES(/s, 10) and GMRESR(50,/¢,10),5 = 1 and A = 1/100.

Finally we compare restarted FGMRES and truncated GMRESR. As we already note
it is impossible to truncate FGMRES. In Table 8 we give results for both methods,
for /=1 and h = 1/100. As inner loop we use one step of GMRES(10) for both
methods. For this example FGMRES is more expensive than GMRESR. If there is
only a small number of memory vectors available (< 20), then FGMRES uses 2 times
as many iterations and 2 times as much CPU-time.

6 Recent results. In this section we give some recent results, which are subject
to further study. First, we give some experiences with the LSQR switch for an indefi-
nite system of equations. Thereafter we report some experiments with GMRESR., in
which we use a single precision innerloop.

6.1 The LSQR switch. First we give a motivation of the LSQR switch. There-
after we give a problem where the convergence of GMRESR is much faster using the

LSQR switch.

We use the LSQR switch in the innerloop in the case that GMRES (nearly) stagnates.
Due to the optimality property of GMRES it is easily seen that every other Krylov
subspace method based on Kj(A,ro) := span{rg, Arg, ..., A¥"1ry} stagnates or breaks
down. However it is possible that LSQR, which is based on Kk(ATA,ATTO), con-
verges reasonably fast. Examples of such problems are given in [2] and [5]. The idea
is that GMRESR with LSQR switch not only works if GMRES has a good conver-
gence behaviour but also if GMRES stagnates and LSQR converges reasonably fast.
Furthermore if GMRES stagnates after some iterations it is not necessary to restart
with another iterative method, it is sufficient to change the iterative method in the
innerloop (for instance LSQR).

In [13] we propose to relax the LSQR switch condition, instead of switching when
||Au§€07)n — rgll2 = ||7k||l2, we switch when ||Au§€07)n = rkll2 > s||rgll2, s < 1 for some
suitable s close to 1. Below we describe some other GMRESR variants using a relaxed

switch condition. We compare them for a discretization of the following pde:

*u 0%u ou Ou
_(@J“a—y?”ﬁ(a_fra_y)_mo“_fon Q,

ulag = 0,

where) is the unit square. The discretization is the same as the one used for the
similar testproblem given in Section 2. The linear system can be indefinite due to the

9

final term on the left hand side of the pde. We take § = 10, h = 1/10 and use the
trunclast variant with [t = 10.

We consider the following GMRESR variants:

GMRESR(5): innerloop consists of GMRES(5), combined with the strict LSQR
switch (s = 1),

GMRESRI1(5): innerloop consists of GMRES(5) followed by one LSQR iteration,

GMRESR2(5): innerloop consists of one LSQR iteration followed by GMRES(5),

GMRESR3(5): innerloop consists of GMRES(5), combined with a relaxed LSQR
switch (s = 0.99),

GMRESR4(5): innerloop consists of GMRES(5), if ||AU,£05) — 1%l > 0.99||r||2 then
GMRES(5) is followed by one LSQR iteration.

GMRESR(5) with s = 1 does not converge within 1000 iterations. The results using
the other variants are given in Figure 4. Note that GMRESR1 and GMRESR3 have
a reasonable good convergence behaviour. This motivates us to combine the ideas
between both, which leads to the GMRESR4 variant. The advantages of GMRESR4
are: it only uses an LSQR iteration if it is necessary, and the GMRES(5) results are
not thrown away, which is done in the GMRESR3 variant. Furthermore it appears
from Figure 4 that GMRESR4 has the best convergence behaviour. All variants use
approximately the same CPU-time per iteration.

6.2 The single precision innerloop. In the GMRESR method, the inner-
2?7)71 = rg. This approximation is used as
search direction, so its accuracy only influences the convergence but not the accuracy
of the final solution vector. Since some computers calculate faster in single precision

than in double precision, we have done experiments with a single precision innerloop.

loop calculates an approximate solution of Au

The vector C;ﬂo) = Au;o) should be calculated in double precision. In such a case m,¢
with respect to work can be chosen sligthly larger because the innerloop is cheaper.
A comparable approach is given in [15] and [10]. In [10] they use as inner loop
GMRES(m) in single precision and as outer loop an iterative refinement algorithm in
double precision.

The results for the testproblem of Section 2 are given in Table 9. The CPU time
of GMRESR(15) with single precision innerloop is indeed less than the CPU time of

method iterations | CPU time
GMRESR(10) 36 4.4
GMRESR(15)

single precision 27 2.9

Table 9: Results for 5 =1, h = 1/100 on the Convex C3820.

GMRESR(10), whereas the final solution vectors have the same accuracy. With re-
spect to memory one needs an extra single precision copy of the matrix, however this
increase is in general less than the decrease in memory caused by the fact that m can
be chosen larger (and thus closer to m,,: with respect to memory) and the auxiliary
vectors used in the innerloop are single precision.

10

We have also done experiments on one processor of a CRAY Y-MP4/464. On this
machine single precision arithmetic (64 bits) is much faster than double precision
arithmetic (128 bits). Note that there are practical problems, where the system of
equations is very ill conditioned. These problems can only be solved using a high
accuracy iterative method. In these experiments we choose as termination criterion:
lITll2/]|oll2 < 10720, Tt follows from Table 10 that GMRESR with a single precision
innerloop is much faster than with a double precision innerloop. The solution vectors
have the same accuracy. This experiment shows that it is possible to calculate on the
Cray a double precision result in approximately the same CPU time as to calculate a
single precision result.

method iterations | CPU time
GMRESR(20) 30 108
GMRESR(20)

single precision 30 10.8

Table 10: Results for 5 =1, h = 1/100 on the CRAY Y-MP4/464 (high accuracy).

On the Convex C3820 we have also applied GMRESR with single precision innerloop
on the discretized Navier-Stokes equations (see Section 2 and [14]). In these exper-
iments GMRESR with single precision innerloop is 25% faster than GMRESR, and
the Bi-CGSTAB method.

7 Conclusions. We consider the GMRESR(m) method [13], which can be used
for the iterative solution of a linear system Az = b with an unsymmetric and nonsin-
gular matrix A.

Optimal choices for the parameter m are easily obtained and do not change very much
for different problems. In most experiments we observe for GMRESR(m) a consider-
able improvement, in computing and memory requirements, in comparison with more
familiar GMRES variants. Furthermore, it appears that in many experiments GM-
RESR(m) is a robust method even without activating the relaxed LSQR switch.

With respect to CPU time full GMRESR(m) seems to be the best variant. However,
memory requirements can be so large that restarted and/or truncated GMRESR(m)
should be used. From our experiments it appears that the "minalfa” truncation vari-
ant is the best strategy, which leads to a large decrease of memory requirements and
only a small increase of CPU time.

We compare GMRESR(m) with GMRES, Bi-CGSTAB and QMR. It appears that two
easy to measure parameters, which depend on the system of equations and the used
computer, can be used to facilitate the choice of an iterative method.

In [7] a new GMRES-like method is proposed: FGMRES. It appears that full GM-
RESR is compatible with full FGMRES, however FGMRES can break down, and can
only be restarted. From examples it follows that truncated GMRESR can be much
better than restarted FGMRES.

We give some new results with respect to the relaxed LSQR switch. The best inner-
loop strategy seems to be: always apply GMRES(m), and if necessary do one LSQR
iteration.

11

Finally, if one uses a computer on which single precision arithmetic is faster than dou-
ble precision arithmetic, and the condition number of A is not too large, then a single
precision innerloop saves CPU time.

Acknowledgement. [would like to thank H.A. van der Vorst for stimulating
discussions and the suggestions for the GMRESR1 and GMRESR2 variants given in
Section 6.1. This work was sponsored by the Stichting Nationale Computerfaciliteiten
(National Computing Facilities Foundation, NCF') for the use of supercomputer facil-

ities, with financial support from the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (Netherlands Organization for Scientific Research, NWO).

References
[1] O. Axelsson and G. Lindskog,
On the eigenvalue distribution of a class of preconditioning methods,
Numer. Math., 48, (1986), pp. 479-498.
[2] P.N. Brown,
A theoretical comparison of the Arnoldi and GMRES algorithms,
SIAM J. Sci. Statist. Comput., 13, (1991), pp. 58-78.
[3] R.W. Freund and N.M. Nachtigal,
QMR: a quasi-minimal residual method for non-Hermitian linear systems,
Num. Math., 60, (1991), pp.315-339.
[4] C.P. Jackson and P.C. Robinson,
A numerical study of various algorithms related to the preconditioned conjugate
gradient method,
Int. J. Num. Meth. Engng., 21, (1985), pp. 1315-1338.
[5] N.M. Nachtigal, S.C. Reddy and L.N. Trefethen,
How fast are non symmetric matrix iterations,
SIAM. J. Sci. Statist. Comput., 13, (1992), pp. 778-795.
[6] C.C. Paige and M.A. Saunders,
LSQR: an algorithm for sparse linear equations and sparse least squares,
ACM Trans. Math. Soft., 8 (1982), pp. 43-71.
[7] Y. Saad,
A flexible Inner-Outer preconditioned GMRES algorithm,
SIAM J. Sci. Statist. Comput., 14, (1993), pp.461-469.
[8] Y. Saad and M.H. Schultz,
GMRES: a generalized minimal residual algorithm for solving nonsymmetric lin-
ear systems,
SIAM J. Sci. Statist. Comput., 7, (1986), pp. 856-869.
[9] P. Sonneveld,
CGS: a fast Lanczos-type solver for nonsymmetric linear systems,
SIAM J. Sci. Statist. Comput., 10, (1989), pp. 36-52.
[10] K. Turner and H.F. Walker,
Efficient high accuracy solutions with GMRES(m),
SIAM J. Sci. Statist. Comput., 13, (1992), pp.815-825.
[11] H.A. van der Vorst,
Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of
non symmetric linear systems,
SIAM J. Sci. Statist. Comput., 13, (1992), pp. 631-644.

12

[12]

[13]

[15]

H.A. van der Vorst and C. Vuik,

The rate of convergence of the GMRES method,

Preprint 654, University of Utrecht, Department of Mathematics,

(1991).

J. Comp. Appl. Math., to appear.

H.A. van der Vorst and C. Vuik,

GMRESR: a family of nested GMRES methods,

Report 91-80, Faculty of Technical Mathematics and Informatics,

Delft University of Technology, (1991).

J. Num. Lin. Alg. Appl., to appear.

C. Vuik,

Solution of the discretized incompressible Navier-Stokes equations with the GM-
RES method,

Int. J. Num. Meth. Fluids, 16, (1993), pp. 507-523.

M. Zubair, S.N. Gupta and C.E. Grosch,

A variable precision approach to speedup iterative schemes on fine grained parallel
machines,

Parallel Comp., 18, (1992), pp. 1223-1232.

13

1000
900+ :
800 :
700+ :

6001 Bi-CGSTAB i

500+ :

mg

400|- 1

200l GMRESR

200+ :

100+ A

GMRES
0 . -]

Figure 1: Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR for v = 0.5.

1000
900|-
800|-
700/
600 QMR

500+

mg

400L GMRESR

300

200+

100+

0 5 10 15 20 25 30 35 40 45 50

Figure 2: Regions of feasibility of QMR, GMRES, and GMRESR for v = 1.

14

10log(res(i))

10log(res(i))

10 -. FGMRES

1ol -- GMRESR

_14 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18

-10

-12

Figure 3: The norm of the residuals for 5 =1 and h = 1/50.

20

GMRESR2

GMRESR3

GMRESR1
GMRESR4

0 100 200 300 400 500 600 700

iterations

800

900

Figure 4: The convergence behaviour of GMRESR variants.

15

1000

