
Further experiences with GMRESR

Report 92-12

C. Vuik

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c
 1992 by the Faculty of Technical Mathematics and Informatics, Delft, The
Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They are located in the directory /pub/publications/tech-reports at ftp.twi.tudelft.nl

Further experiences with GMRESRC. VuikFaculty of Technical Mathematics and InformaticsDelft University of TechnologyMekelweg 4, DelftThe NetherlandsAbstractThe GMRESmethod proposed in [8] is a popular method for the iterativesolution of sparse linear systems with an unsymmetric nonsingular matrix.We propose in [13] a variant of the GMRES algorithm, GMRESR, in whichit is allowed to take a di�erent preconditioner in each iteration step. Heresome properties of this approach are discussed and illustrated with numericalexperiments. We compare GMRESR with GMRES, Bi-CGSTAB [11] andFGMRES [7].Key words. GMRES, nonsymmetric linear system, iterative solver.AMS(MOS) subject classi�cations. 65F101 De�nitions and properties of the GMRESR method. We specify theGMRESR method given in [13] and summarize some of its properties.1.1 De�nitions. In this subsection we give the GMRESR method [13]. Thenew idea behind the GMRESR method is to use a preconditioning which may be dif-ferent for each iteration step. We obtain the preconditioning by carrying out a numberof GMRES steps in what may be regarded as an inner loop. However, any other pro-cess, which approximates A�1y for a given vector y, can be chosen (e.g. LSQR [6],Bi-CGSTAB [11], QMR [3] or GMRESR). Furthermore, the choice of the process usedin the innerloop may be di�erent in each iteration. Note that one can use GMRESRin a recursive way, which motivates the name of the method GMRESR(ecursive).We denote the approximate solution ofA�1r by Pm(A)r, where Pm represents the GM-RES polynomial that is implicitly constructed in m iteration steps of GMRES. Notethat this polynomial depends on the residual r, so that we have e�ectively di�erentpolynomials in di�erent steps of the outer iteration. We will make this dependence ex-plicit by adding the number of the current outer iteration as an index to P : Pm;k(A)rk.The resulting process, GMRESR, is represented by the following iteration scheme forthe solution of Ax = b:GMRESR algorithm ([13])1. Start: Select x0; m; eps;r0 = b� Ax0; k = �1; 1

2. Iterate: while krk+1k2 > eps dok := k + 1; u(0)k = Pm;k(A)rk; c(0)k = Au(0)k ;for i = 0; :::; k� 1 do�i = cTi c(i)k ; c(i+1)k = c(i)k � �ici; u(i+1)k = u(i)k � �iui;endforck = c(k)k =kc(k)k k2; uk = u(k)k =kc(k)k k2;xk+1 = xk + ukcTk rk;rk+1 = rk � ckcTk rk;endwhile.Note: In the remainder of this paper, the process to calculate u(0)k is called the in-nerloop of the GMRESR method. If GMRES in the innerloop stagnates we obtainu(0)k = 0 and the method breaks down. In such a case we avoid break down by usingone step of LSQR [6] in the innerloop: u(0)k = AT rk. In Section 6 we give a motivationfor this choice and specify some examples where the LSQR switch gives a much betterconvergence behaviour.A more practical scheme, in our opinion, arises when the outer iteration is restartedafter ls iterations, in order to limit memory requirements, or to include only updatesfrom the last lt outer iterations (a truncated GMRESR version). The resulting schemeis denoted by GMRESR (ls; lt;m). In Section 3 we give other truncation strategiesand compare restarting and truncation for some testproblems.1.2 Properties. In this subsection we summarize some properties of GMRESRwithout restarting or truncation. This method is denoted by GMRESR(m). For theproofs of these properties we refer to [13]. We assume that the inner iteration is alwaysstarted with initial guess u(0)k;0 = 0 (note that in this notation u(0)k = u(0)k;m = Pm;k(A)rk).In the GMRESR algorithm ck is unde�ned if c(k)k = 0. If this happens, while rk 6= 0,then we will speak of a breakdown of GMRESR.The next theorem says that GMRESR(m) is a robust method, and that it is a minimumresidual method.Theorem 1.1(a) GMRESR(m) does not break down,(b) In GMRESR(m) the residual rk is minimized over the spacer0 + spanfc0; c1; :::; ck�1g:It is easily seen that Theorem 1.1 (b) implies that rk = 0, for some k � n, so GMRESRis a �nite method.In [13] we show that the norm of the k-th GMRESR(m) residual is larger than orequal to the norm of the full GMRES residual after k �m iterations. This implies thatGMRESR takes at least as many matrix vector products as full GMRES in order toobtain comparable accuracy.The following lemma states that it is never necessary to compute the inner approxi-mation more accurately than the outer one.2

Lemma 1.2If the norm of the j-th innerloop residual krk � Au(0)k;jk2 is less than eps, where j �m, then it is proved in [13] that using u(0)k = u(0)k;j , the outer loop residual satis�eskrk+1k2 < eps.From this lemma it follows that it is not necessary to apply m iterations in the �nalinner loop. If the innerloop residual satis�es the stopping criterion for j < m one canstop the inner iteration process and use the approximation u(0)k;j of A�1rk as the �nalsearch direction. In general this saves some CPU time.1.3 The choice of m. In order to compare the e�ciency of GMRES and GM-RESR(m), estimates for the amount of work and the required memory of both methodsare listed in Table 1.method GMRES GMRESR(m)steps mg mgrmatvec mg mgr �mvector updates 12m2g mgr � (m22 +mgr)inner products 12m2g mgr � (m22 + mgr2)memory vectors mg 2mgr +mTable 1: Amount of work and memory for GMRES and GMRESR(m)It appears from our numerical experiments that in many casesmgr �m is approximatelyequal to mg. This observation is used to derive optimal choices for m with respect towork and required memory. In the following, we assume that a vector update costs asmuch as an inner product. Using mgr = mg=m it appears that the minimal amountof work is attained for m = 3p3mg, and it is less than 2:5m4=3g . Note that the amountof work of GMRES is equal to m2g. With respect to memory requirements the optimalvalue is equal to m = p2mg, so the amount of memory for GMRESR(m) is equal to2p2mg. This combined with Table 1 implies that for large value ofmg, GMRESR(m)needs much less memory than GMRES. Both optimal values of m are slowly varyingwith mg. Thus a given m is near-optimal for a wide range of values of mg. Note thatthe optimal m with respect to work is in general less than the optimal m with respectto memory. It depends on the problem and the available computer, which value ispreferred. In our experiments we observe that for both choices the amount of workand required memory is much less than for GMRES.2 Numerical experiments. In this section we illustrate the theoretical prop-erties of GMRESR with experiments.In our numerical experiments we use a linear system obtained from a discretization ofthe following pde: �(@2u@x2 + @2u@y2) + �(@u@x + @u@y) = f on
;uj@
 = 0;3

where
 is the unit square. The exact solution u is given by u(x; y) = sin(�x) sin(�y).In the discretization we use the standard �ve point central �nite di�erence approxi-mation. The stepsizes in x- and y-direction are equal. We use the following iterativemethods: GMRES(m), Bi-CGSTAB, and GMRESR(m). We use a more or less opti-mal choice of m to obtain results using GMRES(m). We start with x0 = 0 and stopif krkk2=kr0k2 � 10�12.In Table 2 we present results for GMRESR(m). CPU time is measured in seconds us-ing 1 processor of a Convex C � 3820. Using full GMRES we observe that mg = 183,which means, that one needs 183 vectors in memory. Furthermore full GMRES costsm 4 8 12 16 20mgr 47 25 19 16 14m �mgr 188 200 228 256 280CPU time 0.82 0.57 0.68 0.83 1.01memory vectors 98 58 50 48 48Table 2: The results for GMRESR(m) with � = 1 and h = 1=50.4:4s CPU time. Note that for small values of m;mgr �m is approximately equal tomg. Suppose mg is unknown and we use mgr �m as an approximation of mg. Thenusing the formulas given in Section 1.3, we obtain the following bounds for the optimalvalues of m:work: 3p3:188 = 8:3 < m < 9:4 = 3p3:280 ,memory: p2:188 = 19:4 < m < 23:7 = p2:280 .Comparing this with Table 2 we note that there is a good correspondence betweentheory and experiments in this example. As expected, the optimal value of m withrespect to memory is larger than with respect to work. However, for both choices ofm we observe a considerable gain in computing time and memory requirements.Results comparing the three iterative methods are shown in Table 3. It appears thatmethod iterations matvec CPU timeGMRES(32) 1355 1355 26Bi-CGSTAB 237 474 1.7GMRESR(10) 36 360 4.3Table 3: Results for � = 1 and h = 1=100.GMRESR(10) is better than GMRES(32). Although Bi-CGSTAB uses less CPU time,it uses more matrix vector products than GMRESR(10).In Table 4 we take the stepsize h = 1=100 and � a function of x and y as follows:�(x; y) = (1 for x; y 2 [12 ; 35]21000 for x; y 2 [0; 1]2 n [12 ; 35]2: (1)4

method iterations matvec CPU timeGMRES(32) 1536 1536 30Bi-CGSTAB n.c.GMRESR(10) 56 560 7.8Table 4: Results, with � given by (1) and h = 1=100.Note that in this problem GMRESR(10) is the best method.The following example comes from a discretization of the incompressible Navier-Stokesequations. This discretization leads to two di�erent linear systems, the momentumequations and the pressure equation (for a further description we refer to [13], [14]). Weconsider a speci�c testproblem, which describes the
ow through a curved channel.The problem is discretized with 32 � 128 �nite volumes. The pressure equation issolved using an average of an ILU and MILU preconditioner with � = 0:975 [1], [14].We start with x0 = 0 and stop when krkk2=kr0k2 � 10�6. The results are shown inTable 5. Note that for this problem GMRESR(4) is the fastest method with respectto CPU time. method iterations matvec CPU timefull GMRES 47 47 0.77CGS 38 76 0.49Bi-CGSTAB 34 68 0.44GMRESR(4) 12 48 0.43Table 5: Iterative methods applied to the pressure equation.3 Restarting and truncation strategies. We present some truncation strate-gies and compare the results with restarted and full GMRESR.There are many di�erent ways to truncate GMRESR. The �rst one, which is alreadygiven in Section 1.3, is to use the lt last search directions (denoted by trunclast).To obtain another truncation strategy we note that in many cases GMRESR has asuperlinear convergence behaviour. This means that after some iterations GMRESRconverges as if some eigenvalues of the matrix are absent (compare [12]). Restarting ortruncation can destroy this behaviour ([4]; pp. 1334,1335). If superlinear convergenceoccurs, it appears a good idea to use the lt � 1 �rst and 1 last search directions (de-noted by trunc�rst). Both strategies are used in the following experiments. It followsfrom Table 6 that truncation with lt � 1 �rst and 1 last search directions is the beststrategy for this example. If there are only 18 memory vectors available, the gain inCPU time for ls = 50; lt = 5 with respect to ls = lt = 5 is equal to 40%. Furthermore,comparing full GMRESR(8) with GMRESR(50,10,8) (trunc�rst variant) we see thatthe amounts of CPU time are approximately the same, whereas the amount of memoryis halved.We conclude this section with some other truncation strategies. First we note thatit seems an awkward choice to use one last search direction in the trunc�rst variant.5

lt = ls restart ls = 50 trunclast trunc�rst memoryiterations CPU lt iterations CPU iterations CPU vectors5 57 1.15 5 41 0.87 37 0.79 1810 45 0.97 10 32 0.73 29 0.68 2815 33 0.74 15 29 0.69 26 0.62 3820 29 0.67 20 25 0.60 25 0.60 4825 25 0.60 25 25 0.60 25 0.60 58Table 6: Results with GMRESR(ls; lt; 8); � = 1 and h = 1=50.This choice is motivated by the fact that if one applies GCR to a symmetric problemthen it is necessary and su�cient to use one last search direction in order to obtain thesame convergence behaviour as full GCR. We have done experiments without this �naldirection (trunc�rst1). These results are given in Table 7. Note that the trunc�rst1variant is the worst truncation strategy, so it is indeed a good idea to include one lastsearch direction, which is done in the original trunc�rst variant.lt 5 10 15 20 25trunc�rst1 55 49 34 26 25minalfa 36 28 25 25 25Table 7: Number of iterations for GMRESR(50; lt; 8), � = 1 and h = 1=50.Finally in ([4]; p. 1335) another truncation strategy is proposed for a GCR-likemethod. For the GMRESR algorithm this strategy leads to the folowing variant(minalfa): if k � lt then the search direction with the smallest absolute value of �iin the for loop is thrown away. The motivation is that the search direction with thesmallest j�ij has only a limited in
uence on the GMRESR convergence. From Table7 it appears that this leads to the best truncation strategy for this example. An-other important advantage of the minalfa variant is that it is a black box strategy.For instance if the bad eigenvector components (with respect to the convergence be-haviour) appear after some iterations, then the trunc�rst variant is much worse thanthe minalfa variant.4 Some ideas for choosing an iterative solution method. There are alarge number of known iterative solution methods for non-symmetric problems. Inthis section we present some ideas to motivate a choice of a feasible iterative method.These ideas are based on our experiments. Probably they should be adapted for otherclasses of problems. The insights in this section can be used to guess a priori if it hassense to change from one iterative method to another. Furthermore it is shown thattwo parameters: the ratio of the CPU time for a matrix vector product and a vectorupdate, and the expected number of full GMRES iterations, are important to choosean iterative method. Finally, the ideas given in this section show a good agreementwith our experiments given in Section 2.In the remainder of this section we assume that the amount of required memory isavailable. Otherwise restarted or truncated versions of GMRES (GMRESR) can beused, however it is not clear if the results in this section holds in such a case.6

The CPU time of many iterative methods consists of two main parts:- the total CPU time used for matrix vector products, which is denoted by tm(if a preconditioner is used, tm includes the time for preconditioning),- the total CPU time used for vector updates and inner products, which isdenoted by tv .We prefer GMRES (GMRESR) if tv is less than
tm for a given constant
. Notethat for every other Krylov subspace method the gain in CPU time is always lessthan
1+
 � 100%. In our experiments it appears that for the choice
 = 0:5; (1+
)tmof GMRES (GMRESR) is approximately equal to tm + tv of Bi-CGSTAB. So in ourexample at the end of this section we take
 = 0:5 (for this choice
1+
 � 100% = 33%).The CPU time used for one matrix (+ preconditioner) vector product is denoted bytm1, and the CPU time of one vectorupdate (or inner product) is denoted by tv1. Thefactor f is de�ned by f = tm1=tv1. Using the assumption thatmgr �m �= mg we obtainthe following expressions:GMRES: tm = mg � tm1 ; tv = m2gtv1 ;GMRESR: tm = mg � tm1 ; tv = 2:5m4=3g tv1 :As said before we prefer GMRES (GMRESR) if tv �
tm. For GMRES this meansmg �
f , whereas for GMRESR this means mg � (
f=2:5)3. For GMRESR thebound of this inequality is given by mg = (
f=2:5)3. This equation de�nes
 as aslow varying function of mg, so the total CPU time of GMRESR is a slowly varyingfunction of mg.Figure 1 illustrates the given bounds for the choice
 = 0:5. We emphasize that this�gure only gives qualitative information. It illustrates the dependence of the choiceon f and mg. Below we specify some applications using this information.- For a given system and computer, f can be measured. This together with anestimate of mg and Figure 1 gives an impression of which iterative method isfeasible.- Suppose Bi-CGSTAB is the best method for a certain problem, without pre-conditioning. Including preconditioning, Figure 1 suggests that GMRESRcan be better for this preconditioned system, because mg is (much) lower andf is (much) higher (in general a preconditioner is harder to vectorize than amatrix vector product).Note that the applicability of GMRESR for large values of f is much wider thanGMRES.For the �rst example given in Section 3, f = 10, so Figure 1 agrees with our ob-servation that Bi-CGSTAB costs more matrix vector products but less CPU timethan GMRESR. In the practical examples given in Section 3 and [13], f = 20 andmg � 50. In these examples the CPU time of GMRESR is less than the CPU time ofBi-CGSTAB, which is also in accordance with Figure 1.Finally we compare GMRESR with QMR. It is easily seen from [3], equations (2.7),(2.8) and (3.1) that the QMR method uses k multiplications with A and AT to con-struct a solution, which is an element of a Krylov subspace with dimension k. So we7

choose
 = 1 in order to compare GMRESR and QMR (Figure 2). From Figure 2 wenote that GMRESR has a large region of feasibility with respect to QMR.5 Comparison of GMRESR with FGMRES. Another GMRES-like iter-ation scheme with a variable preconditioner is proposed in [7]. In Saad's scheme(FGMRES) a Krylov subspace is generated that is di�erent from ours (GMRESR).We specify an example for which FGMRES breaks down. Comparison shows thatin our examples the convergence behaviour of GMRESR and FGMRES are approx-imately the same. An advantage of GMRESR is that it can be truncated and/orrestarted, whereas FGMRES can only be restarted. In Section 3 we have seen that insome problems truncated GMRESR converges faster than restarted GMRESR. Usingsuch an example we show that restarted FGMRES (FGMRES can not be truncated)costs more CPU time than truncated GMRESR.A well-known property of GMRES is, that it has no serious breakdown. From thefollowing example we conclude that it is possible that FGMRES breaks down. Forthe algorithm we refer to ([7]; p.4) and note that FGMRES is equal to GMRES ifMj = M for all j. So breakdown of FGMRES is only possible if one chooses di�erentMj .ExampleTake A = 0B@ 0 0 11 0 00 1 0 1CA ; x = 0B@ 001 1CA and x0 = 0B@ 000 1CA. In Algorithm 2.2 of [7]we choose M1 = I and M2 = A2. These choices lead to z1 = z2 = 0B@ 100 1CA ; v1 =0B@ 100 1CA ; v2 = 0B@ 010 1CA, and h3;2 = 0, which implies that v3 does not exist. Sincex2 = x0 + �z1 + �z2, it follows that x2 6= x, so this is a serious breakdown. Note thatAz2 = v2 but x2 6= x, which contradicts Property 1 of ([7]; p.5).In the inner loop of GMRESR, we calculate an approximate solution of Au(0)k = rk.In FGMRES an approximation of Azk = vk is calculated. If the preconditioner is thesame for every k, then ui and zi; i = 0; :::; k span the same Krylov subspace. However,if the preconditioner varies, the Krylov subspaces can be di�erent. To illustrate thiswe calculate the solution of the problem given in Section 3, with � = 1 and h = 1=50.As inner loop we take one step of GMRES(10) in both methods. The results are givenin Figure 3. As expected krok2 and kr1k2 are the same for both methods. In thisexample the di�erences of the norms of the residuals are small. We have also doneexperiments with the same search directions in both methods. In these experimentsthe results of GMRESR and FGMRES are the same to machine precision.It follows from Algorithm 2.2 [7] that only the vectors vk are updated in the orthog-onalization process. Assuming that GMRESR and FGMRES use both mgr iterationsfor convergence, GMRESR needs 12m2gr vectorupdates more than FGMRES. Note thatGMRESR and FGMRES are feasible for relatively large values of f (see Section 4 forthe de�nition of f). In this case the CPU time of 12m2gr extra vectorupdates is negli-8

gible. FGMRES GMRESR (trunc�rst) memoryls iterations CPU lt iterations CPU vectors5 128 12.3 5 64 6.5 2010 83 8.2 10 46 4.9 3015 68 6.9 15 41 4.7 4020 59 6.1 20 41 4.8 5025 50 5.3 25 39 4.7 60Table 8: Results with FGMRES(ls; 10) and GMRESR(50,lt; 10),� = 1 and h = 1=100.Finally we compare restarted FGMRES and truncated GMRESR. As we already noteit is impossible to truncate FGMRES. In Table 8 we give results for both methods,for � = 1 and h = 1=100. As inner loop we use one step of GMRES(10) for bothmethods. For this example FGMRES is more expensive than GMRESR. If there isonly a small number of memory vectors available (� 20), then FGMRES uses 2 timesas many iterations and 2 times as much CPU-time.6 Recent results. In this section we give some recent results, which are subjectto further study. First, we give some experiences with the LSQR switch for an inde�-nite system of equations. Thereafter we report some experiments with GMRESR, inwhich we use a single precision innerloop.6.1 The LSQR switch. First we give a motivation of the LSQR switch. There-after we give a problem where the convergence of GMRESR is much faster using theLSQR switch.We use the LSQR switch in the innerloop in the case that GMRES (nearly) stagnates.Due to the optimality property of GMRES it is easily seen that every other Krylovsubspace method based on Kk(A; r0) := spanfr0; Ar0; :::; Ak�1r0g stagnates or breaksdown. However it is possible that LSQR, which is based on Kk(ATA;ATr0), con-verges reasonably fast. Examples of such problems are given in [2] and [5]. The ideais that GMRESR with LSQR switch not only works if GMRES has a good conver-gence behaviour but also if GMRES stagnates and LSQR converges reasonably fast.Furthermore if GMRES stagnates after some iterations it is not necessary to restartwith another iterative method, it is su�cient to change the iterative method in theinnerloop (for instance LSQR).In [13] we propose to relax the LSQR switch condition, instead of switching whenkAu(0)k;m � rkk2 = krkk2, we switch when kAu(0)k;m � rkk2 � skrkk2; s � 1 for somesuitable s close to 1. Below we describe some other GMRESR variants using a relaxedswitch condition. We compare them for a discretization of the following pde:�(@2u@x2 + @2u@y2) + �(@u@x + @u@y)� 100u = f on
;uj@
 = 0;where
 is the unit square. The discretization is the same as the one used for thesimilar testproblem given in Section 2. The linear system can be inde�nite due to the9

�nal term on the left hand side of the pde. We take � = 10; h = 1=10 and use thetrunclast variant with lt = 10.We consider the following GMRESR variants:GMRESR(5): innerloop consists of GMRES(5), combined with the strict LSQRswitch (s = 1),GMRESR1(5): innerloop consists of GMRES(5) followed by one LSQR iteration,GMRESR2(5): innerloop consists of one LSQR iteration followed by GMRES(5),GMRESR3(5): innerloop consists of GMRES(5), combined with a relaxed LSQRswitch (s = 0:99),GMRESR4(5): innerloop consists of GMRES(5), if kAU (0)k;5 � rkk � 0:99krkk2 thenGMRES(5) is followed by one LSQR iteration.GMRESR(5) with s = 1 does not converge within 1000 iterations. The results usingthe other variants are given in Figure 4. Note that GMRESR1 and GMRESR3 havea reasonable good convergence behaviour. This motivates us to combine the ideasbetween both, which leads to the GMRESR4 variant. The advantages of GMRESR4are: it only uses an LSQR iteration if it is necessary, and the GMRES(5) results arenot thrown away, which is done in the GMRESR3 variant. Furthermore it appearsfrom Figure 4 that GMRESR4 has the best convergence behaviour. All variants useapproximately the same CPU-time per iteration.6.2 The single precision innerloop. In the GMRESR method, the inner-loop calculates an approximate solution of Au(0)k;m = rk. This approximation is used assearch direction, so its accuracy only in
uences the convergence but not the accuracyof the �nal solution vector. Since some computers calculate faster in single precisionthan in double precision, we have done experiments with a single precision innerloop.The vector c(0)k = Au(0)k should be calculated in double precision. In such a case moptwith respect to work can be chosen sligthly larger because the innerloop is cheaper.A comparable approach is given in [15] and [10]. In [10] they use as inner loopGMRES(m) in single precision and as outer loop an iterative re�nement algorithm indouble precision.The results for the testproblem of Section 2 are given in Table 9. The CPU timeof GMRESR(15) with single precision innerloop is indeed less than the CPU time ofmethod iterations CPU timeGMRESR(10) 36 4.4GMRESR(15)single precision 27 2.9Table 9: Results for � = 1; h = 1=100 on the Convex C3820.GMRESR(10), whereas the �nal solution vectors have the same accuracy. With re-spect to memory one needs an extra single precision copy of the matrix, however thisincrease is in general less than the decrease in memory caused by the fact that m canbe chosen larger (and thus closer to mopt with respect to memory) and the auxiliaryvectors used in the innerloop are single precision.10

We have also done experiments on one processor of a CRAY Y-MP4/464. On thismachine single precision arithmetic (64 bits) is much faster than double precisionarithmetic (128 bits). Note that there are practical problems, where the system ofequations is very ill conditioned. These problems can only be solved using a highaccuracy iterative method. In these experiments we choose as termination criterion:krkk2=kr0k2 � 10�20. It follows from Table 10 that GMRESR with a single precisioninnerloop is much faster than with a double precision innerloop. The solution vectorshave the same accuracy. This experiment shows that it is possible to calculate on theCray a double precision result in approximately the same CPU time as to calculate asingle precision result. method iterations CPU timeGMRESR(20) 30 108GMRESR(20)single precision 30 10.8Table 10: Results for � = 1; h = 1=100 on the CRAY Y-MP4/464 (high accuracy).On the Convex C3820 we have also applied GMRESR with single precision innerloopon the discretized Navier-Stokes equations (see Section 2 and [14]). In these exper-iments GMRESR with single precision innerloop is 25% faster than GMRESR, andthe Bi-CGSTAB method.7 Conclusions. We consider the GMRESR(m) method [13], which can be usedfor the iterative solution of a linear system Ax = b with an unsymmetric and nonsin-gular matrix A.Optimal choices for the parameterm are easily obtained and do not change very muchfor di�erent problems. In most experiments we observe for GMRESR(m) a consider-able improvement, in computing and memory requirements, in comparison with morefamiliar GMRES variants. Furthermore, it appears that in many experiments GM-RESR(m) is a robust method even without activating the relaxed LSQR switch.With respect to CPU time full GMRESR(m) seems to be the best variant. However,memory requirements can be so large that restarted and/or truncated GMRESR(m)should be used. From our experiments it appears that the "minalfa" truncation vari-ant is the best strategy, which leads to a large decrease of memory requirements andonly a small increase of CPU time.We compare GMRESR(m) with GMRES, Bi-CGSTAB and QMR. It appears that twoeasy to measure parameters, which depend on the system of equations and the usedcomputer, can be used to facilitate the choice of an iterative method.In [7] a new GMRES-like method is proposed: FGMRES. It appears that full GM-RESR is compatible with full FGMRES, however FGMRES can break down, and canonly be restarted. From examples it follows that truncated GMRESR can be muchbetter than restarted FGMRES.We give some new results with respect to the relaxed LSQR switch. The best inner-loop strategy seems to be: always apply GMRES(m), and if necessary do one LSQRiteration. 11

Finally, if one uses a computer on which single precision arithmetic is faster than dou-ble precision arithmetic, and the condition number of A is not too large, then a singleprecision innerloop saves CPU time.Acknowledgement. I would like to thank H.A. van der Vorst for stimulatingdiscussions and the suggestions for the GMRESR1 and GMRESR2 variants given inSection 6.1. This work was sponsored by the Stichting Nationale Computerfaciliteiten(National Computing Facilities Foundation, NCF) for the use of supercomputer facil-ities, with �nancial support from the Nederlandse Organisatie voor WetenschappelijkOnderzoek (Netherlands Organization for Scienti�c Research, NWO).References[1] O. Axelsson and G. Lindskog,On the eigenvalue distribution of a class of preconditioning methods,Numer. Math., 48, (1986), pp. 479-498.[2] P.N. Brown,A theoretical comparison of the Arnoldi and GMRES algorithms,SIAM J. Sci. Statist. Comput., 13, (1991), pp. 58{78.[3] R.W. Freund and N.M. Nachtigal,QMR: a quasi-minimal residual method for non-Hermitian linear systems,Num. Math., 60, (1991), pp.315{339.[4] C.P. Jackson and P.C. Robinson,A numerical study of various algorithms related to the preconditioned conjugategradient method,Int. J. Num. Meth. Engng., 21, (1985), pp. 1315{1338.[5] N.M. Nachtigal, S.C. Reddy and L.N. Trefethen,How fast are non symmetric matrix iterations,SIAM. J. Sci. Statist. Comput., 13, (1992), pp. 778{795.[6] C.C. Paige and M.A. Saunders,LSQR: an algorithm for sparse linear equations and sparse least squares,ACM Trans. Math. Soft., 8 (1982), pp. 43{71.[7] Y. Saad,A
exible Inner-Outer preconditioned GMRES algorithm,SIAM J. Sci. Statist. Comput., 14, (1993), pp.461{469.[8] Y. Saad and M.H. Schultz,GMRES: a generalized minimal residual algorithm for solving nonsymmetric lin-ear systems,SIAM J. Sci. Statist. Comput., 7, (1986), pp. 856{869.[9] P. Sonneveld,CGS: a fast Lanczos-type solver for nonsymmetric linear systems,SIAM J. Sci. Statist. Comput., 10, (1989), pp. 36{52.[10] K. Turner and H.F. Walker,E�cient high accuracy solutions with GMRES(m),SIAM J. Sci. Statist. Comput., 13, (1992), pp.815{825.[11] H.A. van der Vorst,Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution ofnon symmetric linear systems,SIAM J. Sci. Statist. Comput., 13, (1992), pp. 631{644.12

[12] H.A. van der Vorst and C. Vuik,The rate of convergence of the GMRES method,Preprint 654, University of Utrecht, Department of Mathematics,(1991).J. Comp. Appl. Math., to appear.[13] H.A. van der Vorst and C. Vuik,GMRESR: a family of nested GMRES methods,Report 91-80, Faculty of Technical Mathematics and Informatics,Delft University of Technology, (1991).J. Num. Lin. Alg. Appl., to appear.[14] C. Vuik,Solution of the discretized incompressible Navier-Stokes equations with the GM-RES method,Int. J. Num. Meth. Fluids, 16, (1993), pp. 507{523.[15] M. Zubair, S.N. Gupta and C.E. Grosch,A variable precision approach to speedup iterative schemes on �ne grained parallelmachines,Parallel Comp., 18, (1992), pp. 1223{1232.

13

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

GMRES

m
g

f

GMRESR

Bi-CGSTAB

Figure 1: Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR for
 = 0:5.
0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

f

m
g

GMRES

GMRESR

QMR

Figure 2: Regions of feasibility of QMR, GMRES, and GMRESR for
 = 1.14

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14 16 18 20

i

10
lo

g(
re

s(
i)

)

-. FGMRES

-- GMRESRFigure 3: The norm of the residuals for � = 1 and h = 1=50.
-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700 800 900 1000

iterations

10
lo

g(
re

s(
i)

)

GMRESR1

GMRESR2

GMRESR3

GMRESR4Figure 4: The convergence behaviour of GMRESR variants.15

