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Termination criteria for GMRES-like methods to solve the
discretized incompressible Navier-Stokes equations

C. Vuik

Faculty of Technical Mathematics and Informatics
Delft University of Technology
Mekelweg 4, 2628 CD Delft
The Netherlands

Abstract

In this paper we discuss some strategies to solve the discretized incompressible Navier-
Stokes equations in general coordinates. For the implicit time integration a termina-
tion criterion is given, and some practical and theoretical properties of this criterion are
shown. The linear systems: momentum-, pressure- and transport equations are solved
each timestep by an iterative solution method (GMRES). We specify and discuss several
starting- and stopping strategies. Some numerical experiments are used to illustrate the
theory. These experiments show that a clever solution strategy can save much CPU-time.

1 Introduction

In this paper we summarize the state of the art of our incompressible Navier-Stokes solver. We
focus attention on the solution of stationary problems. In all sections we end with suggestions
for further research.

We consider the flow of an incompressible fluid in a two dimensional domain. In[4] and [13]
the Navier-Stokes equations, which are used to describe this flow, are formulated in general
coordinates. We present these equations in Cartesian coordinates:
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and appropriate initial and boundary conditions. In these equations u; is the component of
the velocity of the fluid in z;-direction, p is the pressure and Re the dimensionless Reynolds
number.

With respect to the time-discretization, we restrict ourselves in this paper to the Euler back-
ward scheme in combination with a pressure correction method [15], and a Newton lineariza-
tion. The timestep is denoted by At. For a given function » and n € IV, »" is an approxima-
tion of v(nAt).

For the discretization in space the physical domain is mapped onto a rectangle (computational
domain). Combining this coordinate transformation with finite volumes on a staggered grid
in the computational domain, we obtain two systems of equations:

un+1
the momentum equations: My = fn+17 uth = ( u711—|—1 ) ) (1)
2
and the pressure equation: PAYHY = g1 where Aptl = prtl _ . (2)

For more details on the discretization we refer to [4] and [13]. More details on iterative so-
lution methods to solve these systems of equations are given in: [17] using Krylov subspace
methods, and [5], [8] using multigrid methods. A comparable discretization of the incom-
pressible Navier-Stokes equations in general coordinates is given in [10]. They use a multigrid
method to solve their linear systems of equations [9].

Other iterative methods to solve the incompressible Navier-Stokes equations are:
- the SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations) [7], [6],

- the distributive Gauss-Seidel smoothing method [1], [2],

the symmetric coupled Gauss-Seidel method [16],
- the distributive ILU smoothing method [20].

For more details on these methods used in combination with the mutigrid method we also
refer to [19].

In Section 2 we specify a test problem, which will be used throughout this paper. We consider
some quantities to measure the convergence of the time dependent solution to the stationary
solution. These quantities are used in a termination criterion. The section is illustrated with
some numerical experiments for different Reynolds numbers (Re) and timesteps (At).

In Section 3 the momentum equations are solved with an iterative solution method.We discuss
some termination criteria. From numerical experiments we obtain relations between the ter-
mination criteria of the sections 1 and 2. Furthermore, these experiments show the behaviour
of GMRES, an iterative solution method proposed in [11], for different choices of Re and At.
Thereafter we approximate the eigenvalues of the discretized momentum equations. We show
that these approximations can be used to study the stability of the time integration, and the



convergence behaviour of the iterative solution method.

The pressure equations are solved in Section 4 with a new variant of GMRES: GMRESR. One
of the given termination criteria relates the accuracy of the approximate pressure solution to
the divergence of the resulting velocity field. Initially we start GMRESR with a start vector
equal to zero. It appears that other start vectors give a faster convergence of GMRESR.
Our experiments show that a clever combination of starting, postconditioning and termina-
tion strategies may result in a considerable saving in CPU time.

Finally, in Section 5 we consider the case of a transport equation, coupled with the Navier-
Stokes equations. The structure of the discretized transport equation is the same as the
structure of the pressure equation, whereas the convergence behaviour of GMRES is the
same as for the momentum equations. Starting vectors and termination criteria are given.

2 The time integration

In this section we describe the geometry and initial and boundary conditions for the test
problem that is used in the remainder of this paper. We specify some quantities to observe
the convergence of the time dependent solution to the stationary solution. Furthermore, these
quantities are used to define a termination criterion, which implies that the distance between
the calculated solution and the stationary solution is less than a prescribed quantity. Finally,
we give some theoretical and practical properties of the termination criterion.

The test problem describes the flow through a curved channel. The physical domain is dis-
played in Figure 1. As initial condition we take the velocities equal to zero. The following
boundary conditions are used: a parabolic velocity profile, with the maximum velocity equal
to one at the inflow boundary (Boundary 1), a no slip condition on Boundary 2 and 4, and
the normal stress and tangential velocity given on the outflow boundary (Boundary 3). The
total number of finite volumes in our example is 16 x 64 = 1024.

In this paper we are interested in the stationary solution. To compute this solution we use
the time-dependent equations, and try to obtain the stationary solution in a cheap way. This
means that we stop the time integration as soon as possible, and choose a large time step At.

In the following we state some theoretical results, which are used to obtain a practical termi-
nation criterion. If this criterion holds we expect that the solution no longer depends on the
time variable, and is a good approximation of the stationary solution.

[lw —u =]

= e To obtain a termination criterion we assume that
- 2

We define p?, as follows: p!,
Py exists such that:

pl < pu <1 foralli. (3)

Under certain conditions it is possible to prove that p, exists, however, in practice these con-
ditions can be too severe. In such a case it is always possible to inspect p!, after n timesteps,
and look, for a p, > 0 such that |p!, — p,| < § K 1 — py, for i € [n — m,n]. For large m,



it is reasonable to assume that inequality (3) holds for all ¢ > n — m. In Figure 2 we show
p., and p, = 0.81 for Re = 10, At = 0.0625 and n = 40. Note that |[p}, — pu|l2 € 1 — p, for
i € [15,39].

The stationary solution is denoted by u = lim w’. Using (3) we obtain the following inequal-

ities fork > ¢+1>n—m:
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which implies ||u — u?||, < T ||u* — u'=Y||. This leads to the following termination strategy:

compute p, estimate p, such that (3) holds, and stop if

pu_Jlut —u s

T el O W
Using this termination criterion it follows that
o= wlle o =l . pu [l =
[l ol = L=pu uilla 77
so the relative error in u® is less than ¢. For the pressure we define p; = H%p_il_—f;i!—ﬂz) and use

an equivalent termination strategy (see also [12]; p.13).

Some topics for further research are:

how to obtain a good choice of At,

- is it a good idea to take At as a function of the time variable?

the behaviour of p, and p, in relation with At, Re, etc,
- the convergence behaviour to the stationary solution.

In the following paragraphs we describe some experiments to illustrate the above mentioned
topics. Figure 3 and 4 show the quantities:

0]og (lp—“ M) respectively 19log (

—pulu'l2

Pp IIPi—pi‘lllz)
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for our testproblem with At = 0.125,7 = 10 and various choices of Re. For Re < 10 we
observe a reasonably smooth convergence behaviour. Note that Re = 10 converges much
faster than Re = 1. Considering the convergence of u't! for Re = 50 or 100 we see that
initially convergence is much slower for Re = 50 or 100 than Re < 10, but after some time
convergence is faster. Comparing Re = 50 and 100 we note that Re = 100 converges slower



than Re = 50. A possibility to obtain a smoother behaviour for Re = 50 and 100 is to start
with a smaller timestep At and after some steps to enlarge it.

Figures 5 and 6 show the same quantities for Re = 10, At = 0.25,0.125 and 0.0625. Note that
At = 0.25 shows a bad convergence behaviour especially in the convergence of the pressure.
With respect to the choice Aty = 0.125 and Aty = 0.0625 we note that one time step with
Aty is cheaper than with Aty, because the starting solutions are better and the momentum
equations have a better convergence behaviour. It appears from the following examples that a
too large choice of At leads to much CPU-time to obtain a stationary solution. For instance,
if we choose ¢ = 1073® for the momentum equations than it follows from Figures 3 and 5 that
we need 45 steps for Aty = 0.0625 and 64 steps for Aty = 0.125. For the pressure equation
we choose ¢ = 10725 and need 24 steps with Aty and 36 steps with At;. For both choices of
¢ using the small time step Aty costs much less work than the choice Aty.

Conclusions

In this section we specify termination criteria to stop the time integration. The termination
criteria are shown to be correct if the assumption p!, < p,, < 1 holds for all i. Although we are
not able to prove that in our examples this assumption is satisfied, we note that in many cases
p! converges to a quantity p, < 1 and thus the assumption is correct for i large enough. In
some experiments p! does not converge or p > 1. This gives useful information too, because
it indicates that the computed solution u’ does not converge to a stationary solution u. In
many cases this defect is cured if we take a smaller timestep At. In Section 3.5 we shall
analyse a problem where also for a smaller timestep At there is no p, < 1 such that p!, — p,,.
It appears that in this experiment the Euler backward integration scheme is unstable.

3 The momentum equations

In this section we solve the momentum equations with an iterative solution method: GMRES.
It is necessary to stop the iterative method if a certain accuracy is obtained. In the first part of
this section we discuss several termination criteria. In the second part we give the Ritzvalues,
which are approximations of the eigenvalues of the momentum equations, for different choices
of the Reynolds number and the timestep.

3.1 Termination criteria

Consider the linear system Az = b. If z; is an approximation obtained with an iterative
solution method, the following termination criteria are usually applied. Define r; = b — Ax;
the residual of the iteration process.

Criterion 1: ||rj|]2 < e.
The main disadvantage of this criterion is that it is not scaling invariant. So a correct choice
of ¢ depends on properties of the matrix A.

Criterion 2: [[r;|2/]|7oll2 < e.



This criterion is scaling invariant. However, the number of iterations is independent of the
initial estimate xg. This can be a drawback, because we expect that after some time, the
solution of the preceding timestep is a good starting solution.

Criterion 3: ||r;]|2/]|b]]2 < e.

This is a good criterion, because it is scaling invariant, and if the iteration process is started
with an accurate solution vector the number of iterations is less than using an inaccurate
start vector.

Criterion 4: Ko(A)||7]l2/1b]|2 < .
From the inequality llz=2,lle < ](2(A)||||TJ||||27 it follows that if the iteration process is stoped

B bll2

using Criterion 4 then lle=z,l2 <e.
ll=l]2

So this is the best termination criterion, since the iteration process stops if the norm of the

error with respect to the norm of the solution is less than a prescribed accuracy. However, in
general, K5(A) is not known.

The foregoing discussion motivates us to use the GMRES method [11] combined with the

criterion ,
Ko(M™ )72

[FA P
to solve the momentum equations M1y Tt = 71 To obtain an estimate for Ko M™F1)
we calculate the singular values of R; € RUTVXI | The matrix R; is automatically computed
in the GMRES method and hence there is no overhead (see [11], p. 861). An underestimate

of Ky(M™H1) is given by the ratio U§j)/a§j) where Uy) is the largest and O'](]) the smallest

singular value of R;. It appears that in many applications U?O)/U%O) is a good approxima-
tion of Ky(M"t1) ([17], p. 11). So we use the following termination strategy, which is a
combination of Criterion 3 and 4: the GMRES method is stopped if j < 10 and % < €y,

or A Al .
REON VN

< &y

3.2 Numerical experiments

Although a good choice of ¢, is unknown and subject of further research, we use ¢, = 107>,
which appears to be a reasonable choice in our experiments. In the following paragraphs we
discuss the results of our experiments.

Influence of the starting solution
In Figure 7 and 8 the number of GMRES iterations to approximate the solution of the momen-
tum equations are shown. Note that after some timesteps the number of iterations decreases

considerably. An explanation of this behaviour is that after some time the initial approxima-

tion becomes better and better, so it costs fewer iterations to satisfy our termination criterion.

We have also tried to make a better initial estimate by using the following extrapolation:
du”

u o~y A—
+ dt’



%. In this way we get the following initial estimate u

u" + At% — 2u™ — "L, The decrease in the number of iterations was small (a gain

of one or two iterations). For that reason we have decided to limit ourselves to the case in

which we start with uf™! = u".

n+l __
0 =

and approximating dg_t" by

Influence of At

From Figure 3.2 it appears that a reduction of the timestep At gives a faster convergence of
the GMRES method. This is expected because if At goes to zero, the eigenvalues of %M”"’l
cluster around 1, and it is well known that GMRES converges very fast for matrices where the
otl = 4" becomes

eigenvalues are clusteed. Moreover, if At decreases the initial estimate u
better.

The choice of ¢,
For Re = 50, At = 0.125 and Re = 10, At = 0.0625 we see after some timesteps that the
number of GMRES iterations is equal to zero. This means that the solution is constant in the

time variable, and no longer converges to the stationary solution. However the termination
criterion for the time integration is not satisfied. To get around this it seems a good idea to
enforce a minimum number of GMRES iterations, say 3.

Irregularities in the converence of the time integration

We observe in Figure 3 some irregularities in the convergence of the time integration. For
instance for Re = 10, there are disturbances at ¢t = 3.6 and 6.0. Comparing this with Figure 7
we see that the number of iterations jumps from 3 to 2 at ¢ = 3.6 and from 2 to 1 for ¢ = 6.0.

So there is a connection between an irregularity in the time convergence and a jump in the
number of GMRES iterations to solve the momentum equations. This relation can also be
observed for other choices of Re and At. To explain this phenomenon we note that in Figure
3 we plot

pu = w Ty i e el
L=pi w2 =t = w2
The quantity p!, is estimated by
: -
o ey = w2

b || :1_(2'1—1) - u:”a_(z'2—2)||27
where u;(i) is the GMRES approximation of u'. If n(i) = n(i — 1) — 1, it is reasonable to
expect that ||u;(i) — u'||3 is considerably larger than ||u2?21_1) — w'Y|3. This implies that 7},

is a bad approximation of p if 7 is in the vicinity of a jump of n(i).

3.3 A discussion of the termination criterion

We note that there should be a relation between ¢, and ¢ where ¢ is the required difference
between the computed and the stationary solution as given in Section 2, e.g. it is necessary
that e, is less than ¢. Let us give some other open questions concerning the stopping criterion
below:



- What is the influence of ¢, on the time convergence of the pressure correction method?

- Is it a good idea to choose ¢, as a function of n? A possibility could be: take ¢
relatively large for small » and small for large n, because for small n the exact solution
has a large distance to the stationary solution, so it makes no sense to approximate the
exact solution with an accurate solution of the discrete problem.

- From the foregoing it seems that the termination criterion: ||r;||2/||rollz < €u, the
relative precision of the residual with respect to the initial residual can be a good
alternative. Advantages of this criterion: the number of iterations is approximately the
same for every n (no minimum number of iterations required, and a good approximation
of p, and p,), and the required accuracy varies with » in a natural way. Initially one
has a bad initial guess and so the computed solution has a low accuracy, whereas after
some time the starting solution becomes better and thus the computed solution has a
high accuracy.

- The best criterion seems a combination: choose ¢,; larger that ¢,5 and stop if j < 10
and ||rjll2 < cullrollz + cuall /2, or

(10)

g
I75ll2 < cutllroll2 + €u2 }?0) (PP
g

1

3.4 Ritzvalues of the momentum equations

In this subsection we study the behaviour of the eigenvalues of M™ and discuss the conse-
quences of this behaviour for the convergence of the linear solver and the convergence of the
time integration.

We note that the momentum equations M7+ u"t! = f**! comes from an Euler backward
discretization of

du

Pt

So M™t! can be written as M"t! = vt pMnH, where the matrix 3" is an approxima-

tion of M(u™*1). Using the GMRES method we calculate the eigenvalues of the Hessenberg

matrix H; (for definition of H; see [11], p. 858), which are called Ritzvalues. These Ritzvalues

are approximations of the eigenvalues of M"*!. In general, there is a fast convergence to the

extreme eigenvalues. So the convex hull of the calculated Ritzvalues gives a good approxima-
tion of the convex hull of the eigenvalues.

= pM(u)u.

To obtain the Ritzvalues of M"T! we solve the linear system without preconditioning. The
Dirichlet boundary equations are included as an identity in the momentum equations. So we
always get a Ritzvalue equal to one, which does not approximate an eigenvalue of M (u"*1)
(see [17], p. 9, 10). To get rid of this "wrong” Ritzvalue our startvector ugt! is such that it
satisfies the boundary conditions.

In the following figures we plot Ritzvalues of Mnl, where nl = %, for different choices of



the Reynolds number Re, the timestep At, the space discretization and the endtime 7. A
Ritzvalue p of M is obtained from a Ritzvalue A of M™ using the relation

1 A

H= At ; (5)
Accurate Ritzvalues are plotted with the symbol x, whereas inaccurate Ritzvalues are plot-
ted with the symbol 0. In Figure 9 to 13 we choose At = 0.125,7 = 0.25 and Re =
1,5,10,50,100( Re = 2p in these examples). Note that for Re = 1 all Ritzvalues are real, for
Re = 5,10 some Ritzvalues are complex, whereas for Re = 50, 100 nearly all Ritzvalues are
complex. If Re increases the spectrum of M converges to the imaginary axis. In Table 3.1
we specify some additional information. In this table we specify the condition number of
M?, the maximal (minimal) real part of the Ritzvalues of M? : \,40(Amin ), and the maximal
(minimal) real part of the Ritzvalues of i Pmaz (fmin ). Note that an increase of Re leads
to a decrease of the condition of M?, and an increase of Ain, fmas and fi,i,. We make the
following observations with respect to the spectrum of M? and the convergence behaviour
of GMRES: for Re = 1,5,10 the spectrum of M? is in the vicinity of the real axis. For
increasing Re from 1 to 10 the ratio im‘” and the number of GMRES iterations decrease.

min

For Re = 50,100 the spectrum of M? has large imaginary components. The increase from
Re = 10 to Re = 100 leads to an increase of the number of GMRES iterations.

Re 1 5 10 | 50 100
condition 255 91 51 | 12.5 7
P W 2296 | 2308 | 2310 | 2150 | 2200
Anin 9 27 52 | 224 | 465
Hmaz -10 | -29 | -2.31-0.95| -1.3
Lmin -4585 | -915 | -454 | -78 -36

Table 1: Properties for M? and M’ for At = 0.125.

In Figure 14 and 15 we plot results for Re = 10, At = 0.125,7 = 5 and 10. Note that the
Ritzvalues do not differ much, which agrees with the fact that this is a stationary problem,
oM — M (u) for n large enough. A consequence of this is that it is possible, that after
some timesteps a fixed preconditioning saves some computing time.

In Figure 16, 11 and 17 we choose Re = 10, At = 0.25,0.125, and 0.0625. As can be seen
from the formula p
M= 2T—pM" 6
lr (6)
and the fact that M " does not depend (much) on At it is expected that pi,,q, is constant for
different choices of At, and thus A,,;, is given by A, = % — Blmaz. Using fnee = —2.3
from Table 1 we obtain Table 2.
There is a good correspondence between the observed A.;;, and the expected value of A,,;,



At ]0.25]0.125 | 0.0625
Amin | 315 | 52.0 | 89.0
Aewp | 316 | 51.5 | 91.5

Table 2: Dependence of A,,;, on At.

given by Acyp. From this we conclude that for n large enough the eigenvalues of M"™ are only
shifted along the real axis for different choices of At¢. This implies that if At decreases the
eigenvalues of %M” cluster around 1, so the convergence of the GMRES method should be
faster. This agrees with our observations given in Figure 8.

In Figure 18 we show the Ritzvalues for Re = 10, At = 0.125 and T = 5 on an 8 x 32 grid.
From this it seems that the imaginary part of the convex hull of M™ grows like O(+) and
|lemin| grows as O(hl—z)) for decreasing h.

Conclusions

In this subsection we have calculated Ritzvalues (approximate eigenvalues) of M", and indi-
cated how the Ritzvalues depend on Re, At and the space discretization. This dependence
agrees with practical and theoretical results known for the eigenvalues of the momentum
equations. This increases our confidence in the correctness of the discretized momentum
equations. Furthermore, the Ritzvalues give useful information to understand and predict
the convergence behaviour of the iterative solution method (GMRES).

3.5 The time integration and Ritzvalues

In this subsection we give an application of the Ritzvalues with respect to the convergence
of the time integration. We solve a small test problem, which has a large jump in the
finite volumes in the x1-direction. The mesh of this problem is given in Figure 19. Starting
with u® = 0 we try to calculate the stationary solution u = 1. We observe that for large
At(At = 0.1) the time integration converges, whereas for small At(At = 0.01) the time
integration diverges.

To understand this strange behaviour we calculate the Ritzvalues of M, which are given
by: -11.7,-11.2, -1.64 £3.2¢, —1.58+ 3.2¢, — 1.4+ 3.2¢, —0.56, —0.18, 33.1, 33.5.Note that some
Ritzvalues of M positive. This indicates that the discretization of the momentum equations
is incorrect, since we expect that the real parts of the eigenvalues are negative. Furthermore,
this enables us to understand that the choice At = 0.1 leads to convergence, whereas At = 0.01
leads to divergence. It is known that FEuler backward applied to Cfl—? = [u has as stability
region |1 — SAt| > 1. This implies that only Ritzvalues with a positive real part can cause
instability. For Ritzvalues 33.1 and 33.5 and At = 0.1 we obtain 33.1 x 0.1 = 3.31 and
33.5x 0.1 = 3.35 and so Fuler backward is stable, whereas At = 0.01 gives 33.1 x 0.01 = 0.331

and 33.5 x 0.01 = 0.335 and Euler backward is instable. This agrees with our observations.

10



Our research shows that in this case the finite volume discretization described in [13] is not
stable for large jumps in the meshes, and hence can only be applied for relatively small ratios
in gridsize. In fact our testproblem motivates a subject of further study: to construct a
discretization such that eigenvalues of the discretized momentum equations with a positive
real part are avoided, also if there is a (large) jump in the finite volume mesh.

4 The pressure equation

The pressure equation is solved with a variant of the GMRES method. In this new method,
named the GMRESR(m) method (see [14], [17], and [18]), we take a different preconditioner
in each iteration. As preconditioner we choose m steps of GMRES. In this section we consider
the following termination criteria, which can be combined with an iterative solution method,
e.g. GMRESR: stop the iterative solution method if

- the ratio of the norm of the final and initial residual is less than a given accuracy, or
- the estimated norm of the relative error is small, or
- the norm of the divergence of the velocity is small enough.

Until now the solution of the pressure equation is the most time-consuming part. So it is
important to have a good termination criterion, which means that the accuracy of the final
iterate is sufficient, whereas the number of required iterations is as small as possible. We
illustrate the stopping strategies by some numerical experiments.

The residual criterion
To obtain an approximation of the pressure p"t! we solve the linear system

PApn—I—l — gn—|—17 (7)

"+l is an approximation of p"t! — p”. We start with Apg'i'l = 0 and stop if the

where Ap
inequality
lg"tt = PAPTHY;

I 8
e = ®

holds, where ¢, is a given quantity. Note that the linear system originates from a discretization
of the following equation [17]; equation (5):

Pt —p) 1 (W;H aa;H)

+ O’ N dxq + dxs

PPt —p")
dx?

(9)

Since @' — wu, n — oo and div u = 0 we expect and observe that ||div @"T1||; — 0.
Using the given stop criterion, this implies that the required accuracy of p"t! — p™ grows
considerably. This can be a disadvantage, suppose that ||div 4" 1|y ~ 10715 and [|[u" ||z =~ 1
then GMRESR stops if

g™t — PAPIHY |y < e - 10710

11



However due to rounding errors (using a computer with a relative machine precision equal
to 1071%) we obtain that ||div «"TY||o/||u"TY|s =~ 107, In such a case the solution of the
pressure equation is a waste of computing time.

The error criterion
To overcome the above mentioned disadvantage we can use the following termination criterion:
stop if the inequality

||Apn+1 _ Ap;?-l'le
[P

holds. Using this termination criterion we are able to obtain an idea of the error in the
pressure. Since the exact solution Ap™*! is not known we use the following stopping strategy.

< ey, (10)

In the first timestep we compute 1/0%0) (as for the momentum equations), which is an
approximation of ||[P7Y||y, and stop if

10
lg™t = PAPF 2 < o1y 9"z -
This termination criterion implies that

||Apn+1 _ Ap;ja-l—le

[Pz

lg™t = PARI L 1 flg™t = PARTH

~ <ég,.
T A0 v

<P

The divergence criterion
A third idea is to stop if the ||div u" ||z is small enough. To achieve this, we note that ([17];
equation (5))

op" — p"*)

n+1 ~n+1
U: = U + At
! ! 8$Z

? i:1727

and thus

urtt aunt! 82(1)” _ pn—l—l)
. n+l _ 1 2
divu = o + 0 + At 8$%

Comparing this with equation (7) and (8) we observe that
Idiv ™+ = At [lg™ = PAPTH .
This implies that if we stop when

[[w"|

At

lg™*t = PAPIT; <

2
j Ediv (11)

div u™t1||o
then W S Ediv-

Note that the norm of the residual approximates ||div u"*!||2. In this respect GMRES has the
advantage that it computes the residual with minimal norm in the current Krylov subspace.
It is possible to precondition the pressure equation in order to obtain a fast convergence.

12



However, this implies that the relation between the residual and the div u”*?! is lost. So if
we use this termination criterion it is better to postcondition the pressure equation.

In depends on the problem which criterion should be used. Use (10) as a stop criterion in
order to obtain an accurate approximation of the pressure. On the other hand if one wants
a small norm of div u"*!, (11) is the best choice. A combination of (8) and (11) seems a
Al oy
, 1t 18
only necessary to compute the pressure (satisfying (8)) such that pressure correction scheme
converges. Only in the final time step(s) it is necessary to use condition (11). A possibility

to achieve this: (r; := ¢"T! — PAp?"'l) stop if [|r;|l2 < max(epl|rol|z2, 5dw”uAnl|2),n < Ny —2,

good idea too, because initially it is not necessary to have a small norm of div u

and stop if ||7;||]2 < 5dwﬂ%yz in the final timestep (n = Ny — 1).

We use the start solution Api™ = 0 because we expect that ||Ap"t!||y = 0(At) is small.
Note that Ap} approximates At%. If p is a slowly varying function of ¢ then Ap is also
a good approximation of Atdp;:rl. This motivates us to use the startvector Apg‘i'l = Ap].
In our numerical experiments the choice Apg‘i'l = Ap7 gives slightly better results than the
choice Apgt! = 0.

An open question is: what are the relations between the termination criteria given in this
section, the termination criteria for the momentum equations and the convergence behaviour
and termination criteria of the time integration.

Numerical experiments

In [14] it is shown that an optimal choice of m in the GMRESR(m) method is given by
m = {/3mg, where m, is the number of full GMRES iterations. Since m, > 180 in this
problem (see [17]; p.6) we use GMRESR(10) to solve the pressure equation. Since we do
not use a preconditioner the residual is related to div u”*'. In our experiments we choose
Re = 10,At = 0.125 and T = 5 (40 timesteps). The results are given in Table 3.

FExperiment 1

Our usual choices are to stop if ||ry||2 < 1078||ro||2 and start with Api* = 0.

FExperiment 2

In order to compare a different choice of the start vector, we solve the pressure equation with
Apptt = 0 and termination criterion ||rgly < 1072,

Experiment 3
We take the same termination criterion ||ry|]; < 1079 but start with Appt! = aAp? where o

is such that ||ro||2 is minimal.

In the following experiments we stop the GMRESR iteration if ||rg|ls < e1 + €2 ||roll2 with
€1 = Edin —”uAlb

FExperiment 4
Start vector Apg‘i'l =0, €4y = 1075, and e, = 1076,

13



Experiment 5

Start vector Apitt = alAp?, 4 = 1079, and 5 = 1076,

Experiment 6
Start vector Apg‘i'l = aAp?, e4iy = 107¢ and g5 = 1072 .

experiment 1 2 3 4 ) 6 7
CPU (total) 49| 50| 46| 36| 32| 28| 17
pressure CPU 36 | 38| 34| 24| 20| 16 4.8
pressure iterations 688 | 732 | 667 | 468 | 395 | 323 | 466
momentum CPU 4 4 4 4 4 4 4
momentum iterations | 149 | 149 | 149 | 149 | 149 | 149 | 149

Table 3: Total CPU times and iterations after 40 timesteps

Experiment 7

Combining the solution strategy of Experiment 6 with full GMRES and a post conditioning,
we obtain the results given in Table 3. As MILU postconditioner we take an incomplete
decomposition LU = A— R, where L and U have the same non-zero structure as the pressure
matrix P. To obtain L and U we require that (LU);; = P;; if ¢ # j and P;; #0,L;; = 1 and
U;; is such that Z(LU)Z']‘ = ZPij-

We observe that tlhe computeél solutions at ¢ = 5 are more or less the same in every experiment.
This means that a good termination criterion saves CPU time. Comparing Experiment 1 and
6 we observe that the amount of iterations and computing time to solve the pressure equation
is halved. Comparing Experiment 6 and 7 we note that one GMRESR(10) iteration costs 10
matrix vectorproducts. This explains the observation that the amount of pressure iterations
in Experiment 6 is less than the amount in Experiment 7, but the CPU-time in Experiment 6
is much more than the CPU-time used in Experiment 7. Note that in Experiment 7 the
solution of the pressure equation costs 28% of the total CPU-time, whereas the construction
of the momentum equations costs 48% of the total CPU-time.

Conclusions

In this section we discuss some termination strategies for the pressure equation. One of our
termination criteria relates the accuracy of the pressure solution with the divergence of the
resulting velocity field. This relation only holds if the pressure equation is not preconditioned
(postconditioning is allowed). Thereafter we give some choices of startvectors for the iterative
solution method. We end the section with some numerical experiments. From these experi-
ments it appears that the solution strategy given in Experiment 7 is superior to the strategies
given in the other experiments.

14



5 The transport equation

In this section we give a short description of a transport equation. Such an equation can
be used to describe the transport of temperature, certain quantities occuring in engineering
models of turbulence, the concentration of salt in an estuary, etc. The property, which
is transported, is denoted by ¢, which is a function of the space- and time variable. The
function ¢ satisfies the following convection-diffusion equation (in Cartesian coordinates):

dc dc dc d*c d*c
— + kuy=— F kus—c— | ks— + ks— | =
8t+ 1u18x1+ 2U28$20 ( 35 %-l- 489@%) )

where k;, i = 1,2, 3,4 are given functions. Furthermore, ¢ satisfies given initial and boundary
conditions.

There are several different applications using a transport equation. Firstly we consider the
transport of a so-called passive scalar. In this case the Navier-Stokes equations can be solved
independently of the transport equation. Thereafter uqy and wuy can be used to solve the
transport equation. Secondly, there are applications where the Navier-Stokes equations are
coupled with the transport equation(s), e.g., the Boussinesque problem ([12]; p.30) or turbu-
lence modelling [3] (transport of an active scalar).

The discretization of the transport equation in general coordinates is analogous to the dis-
cretization of the momentum equations, which is described in the introduction (for further
details see [4] and [13]). The discretization leads to the following linear system of equations:

Cn—l—lcn—l—l — dn—l—l

The structure of the transport matrix C"*! is the same as the structure of the pressure
matrix P (see [17]; Figure 2). As an iterative method we use GMRES. It appears that the
convergence properties of GMRES applied to the transport equation resembles the properties
of GMRES applied to the momentum equations. This corresponds with the fact that the
transport equation looks like the momentum equations. Using this resemblance we suggest

to take as starting vector the solution of the foregoing time-step: cgt! = ;. Furthermore we

use the following stopping strategy (r; = d"+1 — C”"’lc?“): choose ¢, larger than £.o and

0'(10) 1 .
U%fo) ||[d"+1|2, which
1

StOp if ¢ < 10 and ||T2||2 S €c1||7‘0||2 _|_€C2||dn-l—1||2 or ||T2||2 S €c1||7‘0||2 —|—€c2

is the same strategy as we use for the momentum equations.

As usual there remain some open questions. Firstly, how should one choose the timestep
At? Is it possible to use different timesteps for the momentum equations and the transport
equations? Or to change the timestep as a function of the time ¢. If the Navier-Stokes
equations and the transport equation(s) are coupled, what is the relation between the stop
criteria in the time integration, the momentum-, the pressure- and the transport equations?
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Conclusions

We analyse starting and stopping strategies for the transport equation. It appears that the
structure of the discretized transport equation is the same as the discretized pressure equation,
whereas the convergence behaviour of the iterative method applied to the transport equation
is comparabe with the momentum equations. This motivates us to propose the same type of
start vector and termination criterion as for the momentum equations.

6 Conclusions

In this paper we have discussed some strategies to solve the discretized incompressible Navier-
Stokes equations. We have restricted ourselves to equations which have a stationary solution.
In every section we have proposed topics for further research.

Time integration

In Section 2 we have specified a termination criterion for the time integration. This criterion
is valid if the inequalities p]; < p, < 1 hold. We have shown how to check these conditions
in practice. If these inequalities are not satisfied, the behaviour of p!! can be used to analyse
(and enhance) the time integration.

Momentum equations

In Section 3 we have discussed termination criteria for the momentum equations. The influ-
ence of different starting vectors, At, and required accuracy on the convergence behaviour of
the iterative method are analysed and illustrated with numerical experiments. These insights
lead us to an optimal termination criteria (Section 3.3). Next, we have calculated Ritzvalues
(approximate eigenvalues) for the momentum equations and compared these with the conver-
gence of the iterative solution method and the time integration.

Pressure equation

In Section 4, a new starting vector has been given for the pressure equation. Furthermore
we have discussed three termination criteria. One of these criteria relates the accuracy of the
pressure solution to the divergence of the resulting velocity field. From numerical expirements
we have noted that we gain a considerable amount of CPU time, using the new starting vector
and termination criterion.

Transport equation
Finally, in Section 5 we have given starting and stopping strategies for the transport equation.
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Figure 1: The physical domain of the test problem
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