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Termination criteria for GMRES-like methods to solve thediscretized incompressible Navier-Stokes equationsC. VuikFaculty of Technical Mathematics and InformaticsDelft University of TechnologyMekelweg 4, 2628 CD DelftThe NetherlandsAbstractIn this paper we discuss some strategies to solve the discretized incompressible Navier-Stokes equations in general coordinates. For the implicit time integration a termina-tion criterion is given, and some practical and theoretical properties of this criterion areshown. The linear systems: momentum-, pressure- and transport equations are solvedeach timestep by an iterative solution method (GMRES). We specify and discuss severalstarting- and stopping strategies. Some numerical experiments are used to illustrate thetheory. These experiments show that a clever solution strategy can save much CPU-time.1 IntroductionIn this paper we summarize the state of the art of our incompressible Navier-Stokes solver. Wefocus attention on the solution of stationary problems. In all sections we end with suggestionsfor further research.We consider the 
ow of an incompressible 
uid in a two dimensional domain. In[4] and [13]the Navier-Stokes equations, which are used to describe this 
ow, are formulated in generalcoordinates. We present these equations in Cartesian coordinates:@ui@t � �@�i1@x1 + @�i2@x2�+ @uiu1@x1 + @uiu2@x2 + @p@xi = 0; i 2 f1; 2g;where �ii = Re�1  43 @ui@xi � 23 @uj@xj! ; �ij = Re�1  @ui@xj + @uj@xi! ; i; j 2 f1; 2g; i 6= j;together with the incompressibility condition@u1@x1 + @u2@x2 = 0;1



and appropriate initial and boundary conditions. In these equations ui is the component ofthe velocity of the 
uid in xi-direction, p is the pressure and Re the dimensionless Reynoldsnumber.With respect to the time-discretization, we restrict ourselves in this paper to the Euler back-ward scheme in combination with a pressure correction method [15], and a Newton lineariza-tion. The timestep is denoted by �t. For a given function v and n 2 IN; vn is an approxima-tion of v(n�t).For the discretization in space the physical domain is mapped onto a rectangle (computationaldomain). Combining this coordinate transformation with �nite volumes on a staggered gridin the computational domain, we obtain two systems of equations:the momentum equations: Mn+1un+1 = fn+1; un+1 =  un+11un+12 ! ; (1)and the pressure equation: P�pn+1 = gn+1; where �pn+1 = pn+1 � pn: (2)For more details on the discretization we refer to [4] and [13]. More details on iterative so-lution methods to solve these systems of equations are given in: [17] using Krylov subspacemethods, and [5], [8] using multigrid methods. A comparable discretization of the incom-pressible Navier-Stokes equations in general coordinates is given in [10]. They use a multigridmethod to solve their linear systems of equations [9].Other iterative methods to solve the incompressible Navier-Stokes equations are:- the SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations) [7], [6],- the distributive Gauss-Seidel smoothing method [1], [2],- the symmetric coupled Gauss-Seidel method [16],- the distributive ILU smoothing method [20].For more details on these methods used in combination with the mutigrid method we alsorefer to [19].In Section 2 we specify a test problem, which will be used throughout this paper. We considersome quantities to measure the convergence of the time dependent solution to the stationarysolution. These quantities are used in a termination criterion. The section is illustrated withsome numerical experiments for di�erent Reynolds numbers (Re) and timesteps (�t).In Section 3 the momentum equations are solved with an iterative solution method.We discusssome termination criteria. From numerical experiments we obtain relations between the ter-mination criteria of the sections 1 and 2. Furthermore, these experiments show the behaviourof GMRES, an iterative solution method proposed in [11], for di�erent choices of Re and �t.Thereafter we approximate the eigenvalues of the discretized momentum equations. We showthat these approximations can be used to study the stability of the time integration, and the2



convergence behaviour of the iterative solution method.The pressure equations are solved in Section 4 with a new variant of GMRES: GMRESR. Oneof the given termination criteria relates the accuracy of the approximate pressure solution tothe divergence of the resulting velocity �eld. Initially we start GMRESR with a start vectorequal to zero. It appears that other start vectors give a faster convergence of GMRESR.Our experiments show that a clever combination of starting, postconditioning and termina-tion strategies may result in a considerable saving in CPU time.Finally, in Section 5 we consider the case of a transport equation, coupled with the Navier-Stokes equations. The structure of the discretized transport equation is the same as thestructure of the pressure equation, whereas the convergence behaviour of GMRES is thesame as for the momentum equations. Starting vectors and termination criteria are given.2 The time integrationIn this section we describe the geometry and initial and boundary conditions for the testproblem that is used in the remainder of this paper. We specify some quantities to observethe convergence of the time dependent solution to the stationary solution. Furthermore, thesequantities are used to de�ne a termination criterion, which implies that the distance betweenthe calculated solution and the stationary solution is less than a prescribed quantity. Finally,we give some theoretical and practical properties of the termination criterion.The test problem describes the 
ow through a curved channel. The physical domain is dis-played in Figure 1. As initial condition we take the velocities equal to zero. The followingboundary conditions are used: a parabolic velocity pro�le, with the maximum velocity equalto one at the in
ow boundary (Boundary 1), a no slip condition on Boundary 2 and 4, andthe normal stress and tangential velocity given on the out
ow boundary (Boundary 3). Thetotal number of �nite volumes in our example is 16� 64 = 1024.In this paper we are interested in the stationary solution. To compute this solution we usethe time-dependent equations, and try to obtain the stationary solution in a cheap way. Thismeans that we stop the time integration as soon as possible, and choose a large time step �t.In the following we state some theoretical results, which are used to obtain a practical termi-nation criterion. If this criterion holds we expect that the solution no longer depends on thetime variable, and is a good approximation of the stationary solution.We de�ne �iu as follows: �iu = kui�ui�1k2kui�1�ui�2k2 . To obtain a termination criterion we assume that�u exists such that: �iu � �u < 1 for all i: (3)Under certain conditions it is possible to prove that �u exists, however, in practice these con-ditions can be too severe. In such a case it is always possible to inspect �iu after n timesteps,and look, for a �u > 0 such that j�iu � �uj < � � 1 � �u; for i 2 [n � m;n]. For large m,3



it is reasonable to assume that inequality (3) holds for all i � n � m. In Figure 2 we show�iu and �u = 0:81 for Re = 10;�t = 0:0625 and n = 40. Note that k�iu � �uk2 � 1 � �u fori 2 [15; 39].The stationary solution is denoted by u = limi!1 ui. Using (3) we obtain the following inequal-ities for k � i+ 1 > n�m:kuk � uik2 � k�1Xj=i kuj+1 � ujk2 � k�iXj=1 �jukui � ui�1k2= �u 1� �k�i�1u1� �u kui � ui�1k2;which implies ku�uik2 � �u1��u kui�ui�1k2: This leads to the following termination strategy:compute �iu, estimate �u such that (3) holds, and stop if�u1� �u kui � ui�1k2kuik2 � ": (4)Using this termination criterion it follows thatku� uik2kuk2 �= ku� uik2kuik2 � �u1� �u kui � ui�1k2kuik2 � ";so the relative error in ui is less than ". For the pressure we de�ne �ip = kpi�pi�1k2kpi�1�pi�2k2 and usean equivalent termination strategy (see also [12]; p.13).Some topics for further research are:- how to obtain a good choice of �t,- is it a good idea to take �t as a function of the time variable?- the behaviour of �u and �p in relation with �t; Re, etc,- the convergence behaviour to the stationary solution.In the following paragraphs we describe some experiments to illustrate the above mentionedtopics. Figure 3 and 4 show the quantities:10 log � �u1��u kui�ui�1k2kuik2 � respectively 10 log � �p1��p kpi�pi�1k2kpik2 � ;for our testproblem with �t = 0:125; T = 10 and various choices of Re. For Re � 10 weobserve a reasonably smooth convergence behaviour. Note that Re = 10 converges muchfaster than Re = 1. Considering the convergence of ui+1 for Re = 50 or 100 we see thatinitially convergence is much slower for Re = 50 or 100 than Re � 10, but after some timeconvergence is faster. Comparing Re = 50 and 100 we note that Re = 100 converges slower4



than Re = 50. A possibility to obtain a smoother behaviour for Re = 50 and 100 is to startwith a smaller timestep �t and after some steps to enlarge it.Figures 5 and 6 show the same quantities for Re = 10;�t = 0:25; 0:125 and 0.0625. Note that�t = 0:25 shows a bad convergence behaviour especially in the convergence of the pressure.With respect to the choice �t1 = 0:125 and �t2 = 0:0625 we note that one time step with�t2 is cheaper than with �t1, because the starting solutions are better and the momentumequations have a better convergence behaviour. It appears from the following examples that atoo large choice of �t leads to much CPU-time to obtain a stationary solution. For instance,if we choose " = 10�3:8 for the momentum equations than it follows from Figures 3 and 5 thatwe need 45 steps for �t2 = 0:0625 and 64 steps for �t1 = 0:125. For the pressure equationwe choose " = 10�2:5 and need 24 steps with �t2 and 36 steps with �t1. For both choices of" using the small time step �t2 costs much less work than the choice �t1.ConclusionsIn this section we specify termination criteria to stop the time integration. The terminationcriteria are shown to be correct if the assumption �iu � �u < 1 holds for all i. Although we arenot able to prove that in our examples this assumption is satis�ed, we note that in many cases�iu converges to a quantity �u < 1 and thus the assumption is correct for i large enough. Insome experiments �iu does not converge or � � 1. This gives useful information too, becauseit indicates that the computed solution ui does not converge to a stationary solution u. Inmany cases this defect is cured if we take a smaller timestep �t. In Section 3.5 we shallanalyse a problem where also for a smaller timestep �t there is no �u < 1 such that �iu ! �u.It appears that in this experiment the Euler backward integration scheme is unstable.3 The momentum equationsIn this section we solve the momentum equations with an iterative solution method: GMRES.It is necessary to stop the iterative method if a certain accuracy is obtained. In the �rst part ofthis section we discuss several termination criteria. In the second part we give the Ritzvalues,which are approximations of the eigenvalues of the momentum equations, for di�erent choicesof the Reynolds number and the timestep.3.1 Termination criteriaConsider the linear system Ax = b. If xj is an approximation obtained with an iterativesolution method, the following termination criteria are usually applied. De�ne rj = b� Axjthe residual of the iteration process.Criterion 1: krjk2 < ".The main disadvantage of this criterion is that it is not scaling invariant. So a correct choiceof " depends on properties of the matrix A.Criterion 2: krjk2=kr0k2 < ". 5



This criterion is scaling invariant. However, the number of iterations is independent of theinitial estimate x0. This can be a drawback, because we expect that after some time, thesolution of the preceding timestep is a good starting solution.Criterion 3: krjk2=kbk2 < ".This is a good criterion, because it is scaling invariant, and if the iteration process is startedwith an accurate solution vector the number of iterations is less than using an inaccuratestart vector.Criterion 4: K2(A)krjk2=kbk2 < ".From the inequality kx�xjk2kxk2 � K2(A)krjk2kbk2 , it follows that if the iteration process is stopedusing Criterion 4 then kx�xjk2kxk2 � ".So this is the best termination criterion, since the iteration process stops if the norm of theerror with respect to the norm of the solution is less than a prescribed accuracy. However, ingeneral, K2(A) is not known.The foregoing discussion motivates us to use the GMRES method [11] combined with thecriterion K2(Mn+1)krjk2kfn+1k2 < "uto solve the momentum equations Mn+1un+1 = fn+1. To obtain an estimate for K2(Mn+1)we calculate the singular values of Rj 2 IR(j+1)�j . The matrix Rj is automatically computedin the GMRES method and hence there is no overhead (see [11], p. 861). An underestimateof K2(Mn+1) is given by the ratio �(j)1 =�(j)j where �(j)1 is the largest and �(j)j the smallestsingular value of Rj . It appears that in many applications �(10)1 =�(10)10 is a good approxima-tion of K2(Mn+1) ([17], p. 11). So we use the following termination strategy, which is acombination of Criterion 3 and 4: the GMRES method is stopped if j < 10 and krjk2kfn+1k2 < "u,or �(10)1�(10)10 krjk2kfn+1k2 < "u.3.2 Numerical experimentsAlthough a good choice of "u is unknown and subject of further research, we use "u = 10�5,which appears to be a reasonable choice in our experiments. In the following paragraphs wediscuss the results of our experiments.In
uence of the starting solutionIn Figure 7 and 8 the number of GMRES iterations to approximate the solution of the momen-tum equations are shown. Note that after some timesteps the number of iterations decreasesconsiderably. An explanation of this behaviour is that after some time the initial approxima-tion becomes better and better, so it costs fewer iterations to satisfy our termination criterion.We have also tried to make a better initial estimate by using the following extrapolation:un+1 ' un +�tdundt ;6



and approximating dundt by un�un�1�t . In this way we get the following initial estimate un+10 =un + �tun�un�1�t = 2un � un�1. The decrease in the number of iterations was small (a gainof one or two iterations). For that reason we have decided to limit ourselves to the case inwhich we start with un+10 = un.In
uence of �tFrom Figure 3.2 it appears that a reduction of the timestep �t gives a faster convergence ofthe GMRES method. This is expected because if �t goes to zero, the eigenvalues of �t� Mn+1cluster around 1, and it is well known that GMRES converges very fast for matrices where theeigenvalues are clusteed. Moreover, if �t decreases the initial estimate un+10 = un becomesbetter.The choice of "uFor Re = 50;�t = 0:125 and Re = 10;�t = 0:0625 we see after some timesteps that thenumber of GMRES iterations is equal to zero. This means that the solution is constant in thetime variable, and no longer converges to the stationary solution. However the terminationcriterion for the time integration is not satis�ed. To get around this it seems a good idea toenforce a minimum number of GMRES iterations, say 3.Irregularities in the converence of the time integrationWe observe in Figure 3 some irregularities in the convergence of the time integration. Forinstance for Re = 10, there are disturbances at t = 3:6 and 6.0. Comparing this with Figure 7we see that the number of iterations jumps from 3 to 2 at t = 3:6 and from 2 to 1 for t = 6:0.So there is a connection between an irregularity in the time convergence and a jump in thenumber of GMRES iterations to solve the momentum equations. This relation can also beobserved for other choices of Re and �t. To explain this phenomenon we note that in Figure3 we plot �iu1� �iu kui � ui�1k2kuik2 with �iu = kui � ui�1k2kui�1 � ui�2k2 :The quantity �iu is estimated by �iu = kuin(i) � ui�1n(i�1)k2kui�1n(i�1) � ui�2n(i�2)k2 ;where uin(i) is the GMRES approximation of ui. If n(i) = n(i � 1) � 1, it is reasonable toexpect that kuin(i) � uik2 is considerably larger than kui�1n(i�1) � ui�1k2. This implies that �iuis a bad approximation of �iu if i is in the vicinity of a jump of n(i).3.3 A discussion of the termination criterionWe note that there should be a relation between "u and " where " is the required di�erencebetween the computed and the stationary solution as given in Section 2, e.g. it is necessarythat "u is less than ". Let us give some other open questions concerning the stopping criterionbelow: 7



- What is the in
uence of "u on the time convergence of the pressure correction method?- Is it a good idea to choose "u as a function of n? A possibility could be: take "nurelatively large for small n and small for large n, because for small n the exact solutionhas a large distance to the stationary solution, so it makes no sense to approximate theexact solution with an accurate solution of the discrete problem.- From the foregoing it seems that the termination criterion: krjk2=kr0k2 � "u, therelative precision of the residual with respect to the initial residual can be a goodalternative. Advantages of this criterion: the number of iterations is approximately thesame for every n (no minimum number of iterations required, and a good approximationof �u and �p), and the required accuracy varies with n in a natural way. Initially onehas a bad initial guess and so the computed solution has a low accuracy, whereas aftersome time the starting solution becomes better and thus the computed solution has ahigh accuracy.- The best criterion seems a combination: choose "u1 larger that "u2 and stop if j < 10and krjk2 � "u1kr0k2 + "u2kfn+1k2, orkrjk2 � "u1kr0k2 + "u2�(10)10�(10)1 kfn+1k2:3.4 Ritzvalues of the momentum equationsIn this subsection we study the behaviour of the eigenvalues of Mn and discuss the conse-quences of this behaviour for the convergence of the linear solver and the convergence of thetime integration.We note that the momentum equations Mn+1un+1 = fn+1 comes from an Euler backwarddiscretization of �dudt = �M(u)u:So Mn+1 can be written as Mn+1 = ��tI � �Mn+1, where the matrix Mn+1 is an approxima-tion of M(un+1). Using the GMRES method we calculate the eigenvalues of the Hessenbergmatrix Hj (for de�nition of Hj see [11], p. 858), which are called Ritzvalues. These Ritzvaluesare approximations of the eigenvalues of Mn+1. In general, there is a fast convergence to theextreme eigenvalues. So the convex hull of the calculated Ritzvalues gives a good approxima-tion of the convex hull of the eigenvalues.To obtain the Ritzvalues of Mn+1 we solve the linear system without preconditioning. TheDirichlet boundary equations are included as an identity in the momentum equations. So wealways get a Ritzvalue equal to one, which does not approximate an eigenvalue of M(un+1)(see [17], p. 9, 10). To get rid of this "wrong" Ritzvalue our startvector un+10 is such that itsatis�es the boundary conditions.In the following �gures we plot Ritzvalues of Mn1, where n1 = T�t , for di�erent choices of8



the Reynolds number Re, the timestep �t, the space discretization and the endtime T . ARitzvalue � of Mn is obtained from a Ritzvalue � of Mn using the relation� = 1�t � ��: (5)Accurate Ritzvalues are plotted with the symbol x, whereas inaccurate Ritzvalues are plot-ted with the symbol 0. In Figure 9 to 13 we choose �t = 0:125; T = 0:25 and Re =1; 5; 10; 50; 100(Re = 2� in these examples). Note that for Re = 1 all Ritzvalues are real, forRe = 5; 10 some Ritzvalues are complex, whereas for Re = 50; 100 nearly all Ritzvalues arecomplex. If Re increases the spectrum of M2 converges to the imaginary axis. In Table 3.1we specify some additional information. In this table we specify the condition number ofM2, the maximal (minimal) real part of the Ritzvalues of M2 : �max(�min), and the maximal(minimal) real part of the Ritzvalues of M2 : �max(�min). Note that an increase of Re leadsto a decrease of the condition of M2, and an increase of �min; �max and �min. We make thefollowing observations with respect to the spectrum of M2 and the convergence behaviourof GMRES: for Re = 1; 5; 10 the spectrum of M2 is in the vicinity of the real axis. Forincreasing Re from 1 to 10 the ratio �max�min and the number of GMRES iterations decrease.For Re = 50; 100 the spectrum of M2 has large imaginary components. The increase fromRe = 10 to Re = 100 leads to an increase of the number of GMRES iterations.Re 1 5 10 50 100condition 255 91 51 12.5 7�max 2296 2308 2310 2150 2200�min 9 27 52 224 465�max -10 -2.9 -2.3 -0.95 -1.3�min -4585 -915 -454 -78 -36Table 1: Properties for M2 and M2 for �t = 0:125.In Figure 14 and 15 we plot results for Re = 10;�t = 0:125; T = 5 and 10. Note that theRitzvalues do not di�er much, which agrees with the fact that this is a stationary problem,so Mn+1 ! M(u) for n large enough. A consequence of this is that it is possible, that aftersome timesteps a �xed preconditioning saves some computing time.In Figure 16, 11 and 17 we choose Re = 10;�t = 0:25; 0:125, and 0.0625. As can be seenfrom the formula Mn = ��tI � �Mn (6)and the fact that Mn does not depend (much) on �t it is expected that �max is constant fordi�erent choices of �t, and thus �min is given by �min = 5�t � 5�max. Using �max = �2:3from Table 1 we obtain Table 2.There is a good correspondence between the observed �min and the expected value of �min9



�t 0.25 0.125 0.0625�min 31.5 52.0 89.0�exp 31.6 51.5 91.5Table 2: Dependence of �min on �t.given by �exp. From this we conclude that for n large enough the eigenvalues of Mn are onlyshifted along the real axis for di�erent choices of �t. This implies that if �t decreases theeigenvalues of �t� Mn cluster around 1, so the convergence of the GMRES method should befaster. This agrees with our observations given in Figure 8.In Figure 18 we show the Ritzvalues for Re = 10;�t = 0:125 and T = 5 on an 8� 32 grid.From this it seems that the imaginary part of the convex hull of Mn grows like O( 1h) andj�minj grows as O( 1h2 ) for decreasing h.ConclusionsIn this subsection we have calculated Ritzvalues (approximate eigenvalues) of Mn, and indi-cated how the Ritzvalues depend on Re;�t and the space discretization. This dependenceagrees with practical and theoretical results known for the eigenvalues of the momentumequations. This increases our con�dence in the correctness of the discretized momentumequations. Furthermore, the Ritzvalues give useful information to understand and predictthe convergence behaviour of the iterative solution method (GMRES).3.5 The time integration and RitzvaluesIn this subsection we give an application of the Ritzvalues with respect to the convergenceof the time integration. We solve a small test problem, which has a large jump in the�nite volumes in the x1-direction. The mesh of this problem is given in Figure 19. Startingwith u0 = 0 we try to calculate the stationary solution u = 1. We observe that for large�t(�t = 0:1) the time integration converges, whereas for small �t(�t = 0:01) the timeintegration diverges.To understand this strange behaviour we calculate the Ritzvalues of Mn; which are givenby: -11.7, -11.2, -1.64 �3:2i;�1:58� 3:2i;�1:4� 3:2i;�0:56;�0:18; 33:1; 33:5:Note that someRitzvalues of Mn positive. This indicates that the discretization of the momentum equationsis incorrect, since we expect that the real parts of the eigenvalues are negative. Furthermore,this enables us to understand that the choice �t = 0:1 leads to convergence, whereas �t = 0:01leads to divergence. It is known that Euler backward applied to dudt = �u has as stabilityregion j1 � ��tj > 1. This implies that only Ritzvalues with a positive real part can causeinstability. For Ritzvalues 33.1 and 33.5 and �t = 0:1 we obtain 33:1 � 0:1 = 3:31 and33:5�0:1 = 3:35 and so Euler backward is stable, whereas �t = 0:01 gives 33:1�0:01 = 0:331and 33:5� 0:01 = 0:335 and Euler backward is instable. This agrees with our observations.10



Our research shows that in this case the �nite volume discretization described in [13] is notstable for large jumps in the meshes, and hence can only be applied for relatively small ratiosin gridsize. In fact our testproblem motivates a subject of further study: to construct adiscretization such that eigenvalues of the discretized momentum equations with a positivereal part are avoided, also if there is a (large) jump in the �nite volume mesh.4 The pressure equationThe pressure equation is solved with a variant of the GMRES method. In this new method,named the GMRESR(m) method (see [14], [17], and [18]), we take a di�erent preconditionerin each iteration. As preconditioner we choosem steps of GMRES. In this section we considerthe following termination criteria, which can be combined with an iterative solution method,e.g. GMRESR: stop the iterative solution method if- the ratio of the norm of the �nal and initial residual is less than a given accuracy, or- the estimated norm of the relative error is small, or- the norm of the divergence of the velocity is small enough.Until now the solution of the pressure equation is the most time-consuming part. So it isimportant to have a good termination criterion, which means that the accuracy of the �naliterate is su�cient, whereas the number of required iterations is as small as possible. Weillustrate the stopping strategies by some numerical experiments.The residual criterionTo obtain an approximation of the pressure pn+1 we solve the linear systemP�pn+1 = gn+1; (7)where �pn+1 is an approximation of pn+1 � pn. We start with �pn+10 = 0 and stop if theinequality kgn+1 � P�pn+1j k2kgn+1k2 � "p (8)holds, where "p is a given quantity. Note that the linear system originates from a discretizationof the following equation [17]; equation (5):@2(pn+1 � pn)@x21 + @2(pn+1 � pn)@x22 = 1�t  @ûn+11@x1 + @ûn+12@x2 ! : (9)Since ûn+1 ! u; n ! 1 and div u = 0 we expect and observe that kdiv ûn+1k2 ! 0.Using the given stop criterion, this implies that the required accuracy of pn+1 � pn growsconsiderably. This can be a disadvantage, suppose that kdiv ûn+1k2 ' 10�15 and kun+1k2 ' 1then GMRESR stops if kgn+1 � P�pn+1j k2 � "p � 10�15:11



However due to rounding errors (using a computer with a relative machine precision equalto 10�15) we obtain that kdiv un+1k2=kun+1k2 ' 10�15. In such a case the solution of thepressure equation is a waste of computing time.The error criterionTo overcome the above mentioned disadvantage we can use the following termination criterion:stop if the inequality k�pn+1 ��pn+1j k2kpn+1k2 � "p; (10)holds. Using this termination criterion we are able to obtain an idea of the error in thepressure. Since the exact solution �pn+1 is not known we use the following stopping strategy.In the �rst timestep we compute 1=�(10)10 (as for the momentum equations), which is anapproximation of kP�1k2, and stop ifkgn+1 � P�pn+1j k2 � �(10)10 kpnk2 "p:This termination criterion implies thatk�pn+1 ��pn+1j k2kpn+1k2 � kP�1k2kgn+1 � P�pn+1j k2kpn+1k2 ' 1�(10)10 kgn+1 � P�pn+1j k2kpnk2 � "p:The divergence criterionA third idea is to stop if the kdiv un+1k2 is small enough. To achieve this, we note that ([17];equation (5)) un+1i = ûn+1i +�t@(pn � pn+1)@xi ; i = 1; 2;and thus div un+1 = @ûn+11@x1 + @ûn+12@x2 +�t(@2(pn � pn+1)@x21 + @2(pn � pn+1)@x22 ) :Comparing this with equation (7) and (8) we observe thatkdiv un+1k2 = �t kgn+1 � P�pn+1j k2:This implies that if we stop whenkgn+1 � P�pn+1j k2 � kunk2�t "div (11)then kdiv un+1k2kun+1k2 � "div .Note that the norm of the residual approximates kdiv un+1k2. In this respect GMRES has theadvantage that it computes the residual with minimal norm in the current Krylov subspace.It is possible to precondition the pressure equation in order to obtain a fast convergence.12



However, this implies that the relation between the residual and the div un+1 is lost. So ifwe use this termination criterion it is better to postcondition the pressure equation.In depends on the problem which criterion should be used. Use (10) as a stop criterion inorder to obtain an accurate approximation of the pressure. On the other hand if one wantsa small norm of div un+1, (11) is the best choice. A combination of (8) and (11) seems agood idea too, because initially it is not necessary to have a small norm of div un+1, it isonly necessary to compute the pressure (satisfying (8)) such that pressure correction schemeconverges. Only in the �nal time step(s) it is necessary to use condition (11). A possibilityto achieve this: (rj := gn+1 � P�pn+1j ) stop if krjk2 � max("pkr0k2; "div kunk2�t ); n � Nt � 2,and stop if krjk2 � "div kunk2�t in the �nal timestep (n = Nt � 1).We use the start solution �pn+10 = 0 because we expect that k�pn+1k2 = 0(�t) is small.Note that �pnj approximates �tdpndt . If p is a slowly varying function of t then �pnj is alsoa good approximation of �tdpn+1dt . This motivates us to use the startvector �pn+10 = �pnj .In our numerical experiments the choice �pn+10 = �pnj gives slightly better results than thechoice �pn+10 = 0.An open question is: what are the relations between the termination criteria given in thissection, the termination criteria for the momentum equations and the convergence behaviourand termination criteria of the time integration.Numerical experimentsIn [14] it is shown that an optimal choice of m in the GMRESR(m) method is given bym = 3p3mg, where mg is the number of full GMRES iterations. Since mg � 180 in thisproblem (see [17]; p.6) we use GMRESR(10) to solve the pressure equation. Since we donot use a preconditioner the residual is related to div un+1. In our experiments we chooseRe = 10;�t = 0:125 and T = 5 (40 timesteps). The results are given in Table 3.Experiment 1Our usual choices are to stop if krkk2 � 10�6kr0k2 and start with �pn+10 = 0.Experiment 2In order to compare a di�erent choice of the start vector, we solve the pressure equation with�pn+10 = 0 and termination criterion krkk2 � 10�9.Experiment 3We take the same termination criterion krkk2 � 10�9 but start with �pn+10 = ��pnj where �is such that kr0k2 is minimal.In the following experiments we stop the GMRESR iteration if krkk2 � "1 + "2 kr0k2 with"1 = "div kunk2�t .Experiment 4Start vector �pn+10 = 0; "div = 10�6, and "2 = 10�6.13



Experiment 5Start vector �pn+10 = ��pnj ; "div = 10�6; and "2 = 10�6.Experiment 6Start vector �pn+10 = ��pnn; "div = 10�6, and "2 = 10�3 .experiment 1 2 3 4 5 6 7CPU (total) 49 50 46 36 32 28 17pressure CPU 36 38 34 24 20 16 4.8pressure iterations 688 732 667 468 395 323 466momentum CPU 4 4 4 4 4 4 4momentum iterations 149 149 149 149 149 149 149Table 3: Total CPU times and iterations after 40 timestepsExperiment 7Combining the solution strategy of Experiment 6 with full GMRES and a post conditioning,we obtain the results given in Table 3. As MILU postconditioner we take an incompletedecomposition LU = A�R, where L and U have the same non-zero structure as the pressurematrix P . To obtain L and U we require that (LU)ij = Pij if i 6= j and Pij 6= 0; Lii = 1 andUii is such that Pi (LU)ij =Pi Pij .We observe that the computed solutions at t = 5 are more or less the same in every experiment.This means that a good termination criterion saves CPU time. Comparing Experiment 1 and6 we observe that the amount of iterations and computing time to solve the pressure equationis halved. Comparing Experiment 6 and 7 we note that one GMRESR(10) iteration costs 10matrix vectorproducts. This explains the observation that the amount of pressure iterationsin Experiment 6 is less than the amount in Experiment 7, but the CPU-time in Experiment 6is much more than the CPU-time used in Experiment 7. Note that in Experiment 7 thesolution of the pressure equation costs 28% of the total CPU-time, whereas the constructionof the momentum equations costs 48% of the total CPU-time.ConclusionsIn this section we discuss some termination strategies for the pressure equation. One of ourtermination criteria relates the accuracy of the pressure solution with the divergence of theresulting velocity �eld. This relation only holds if the pressure equation is not preconditioned(postconditioning is allowed). Thereafter we give some choices of startvectors for the iterativesolution method. We end the section with some numerical experiments. From these experi-ments it appears that the solution strategy given in Experiment 7 is superior to the strategiesgiven in the other experiments. 14



5 The transport equationIn this section we give a short description of a transport equation. Such an equation canbe used to describe the transport of temperature, certain quantities occuring in engineeringmodels of turbulence, the concentration of salt in an estuary, etc. The property, whichis transported, is denoted by c, which is a function of the space- and time variable. Thefunction c satis�es the following convection-di�usion equation (in Cartesian coordinates):@c@t + k1u1 @c@x1 + k2u2 @c@x2 c�  k3 @2c@x21 + k4 @2c@x22! = 0;where ki; i = 1; 2; 3; 4 are given functions. Furthermore, c satis�es given initial and boundaryconditions.There are several di�erent applications using a transport equation. Firstly we consider thetransport of a so-called passive scalar. In this case the Navier-Stokes equations can be solvedindependently of the transport equation. Thereafter u1 and u2 can be used to solve thetransport equation. Secondly, there are applications where the Navier-Stokes equations arecoupled with the transport equation(s), e.g., the Boussinesque problem ([12]; p.30) or turbu-lence modelling [3] (transport of an active scalar).The discretization of the transport equation in general coordinates is analogous to the dis-cretization of the momentum equations, which is described in the introduction (for furtherdetails see [4] and [13]). The discretization leads to the following linear system of equations:Cn+1cn+1 = dn+1:The structure of the transport matrix Cn+1 is the same as the structure of the pressurematrix P (see [17]; Figure 2). As an iterative method we use GMRES. It appears that theconvergence properties of GMRES applied to the transport equation resembles the propertiesof GMRES applied to the momentum equations. This corresponds with the fact that thetransport equation looks like the momentum equations. Using this resemblance we suggestto take as starting vector the solution of the foregoing time-step: cn+10 = cnj . Furthermore weuse the following stopping strategy (rj = dn+1 � Cn+1cn+1j ): choose "c1 larger than "c2 andstop if i < 10 and krik2 � "c1kr0k2+ "c2kdn+1k2 or krik2 � "c1kr0k2+ "c2 �(10)10�(10)1 kdn+1k2, whichis the same strategy as we use for the momentum equations.As usual there remain some open questions. Firstly, how should one choose the timestep�t? Is it possible to use di�erent timesteps for the momentum equations and the transportequations? Or to change the timestep as a function of the time t. If the Navier-Stokesequations and the transport equation(s) are coupled, what is the relation between the stopcriteria in the time integration, the momentum-, the pressure- and the transport equations?15



ConclusionsWe analyse starting and stopping strategies for the transport equation. It appears that thestructure of the discretized transport equation is the same as the discretized pressure equation,whereas the convergence behaviour of the iterative method applied to the transport equationis comparabe with the momentum equations. This motivates us to propose the same type ofstart vector and termination criterion as for the momentum equations.6 ConclusionsIn this paper we have discussed some strategies to solve the discretized incompressible Navier-Stokes equations. We have restricted ourselves to equations which have a stationary solution.In every section we have proposed topics for further research.Time integrationIn Section 2 we have speci�ed a termination criterion for the time integration. This criterionis valid if the inequalities �nu � �u < 1 hold. We have shown how to check these conditionsin practice. If these inequalities are not satis�ed, the behaviour of �nu can be used to analyse(and enhance) the time integration.Momentum equationsIn Section 3 we have discussed termination criteria for the momentum equations. The in
u-ence of di�erent starting vectors, �t, and required accuracy on the convergence behaviour ofthe iterative method are analysed and illustrated with numerical experiments. These insightslead us to an optimal termination criteria (Section 3.3). Next, we have calculated Ritzvalues(approximate eigenvalues) for the momentum equations and compared these with the conver-gence of the iterative solution method and the time integration.Pressure equationIn Section 4, a new starting vector has been given for the pressure equation. Furthermorewe have discussed three termination criteria. One of these criteria relates the accuracy of thepressure solution to the divergence of the resulting velocity �eld. From numerical expirementswe have noted that we gain a considerable amount of CPU time, using the new starting vectorand termination criterion.Transport equationFinally, in Section 5 we have given starting and stopping strategies for the transport equation.References[1] A. Brandt and N. Dinar. Multigrid solutions to 
ow problems. In S. Parter, editor,Numerical methods for partial di�erential equations, pages 53{147, Academic Press, NewYork, 1979.[2] W. Hackbusch. Multi-grid methods and applications. Springer-Verlag, Berlin, 1985.16
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Figure 10: Ritzvalues of M2; Re = 5; � = 2:5;�t = 0:12523
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Figure 11: Ritzvalues of M2; Re = 10; � = 5;�t = 0:125
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Figure 12: Ritzvalues of M2; Re = 50; �= 25;�t = 0:12524
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Figure 13: Ritzvalues of M2; Re = 100; � = 50;�t = 0:125
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Figure 14: Ritzvalues of M 40; Re = 10; �= 5;�t = 0:12525
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Figure 15: Ritzvalues of M 80; Re = 10; �= 5;�t = 0:125
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Figure 16: Ritzvalues of M2; Re = 10; � = 5;�t = 0:2526
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Figure 17: Ritzvalues of M4; Re = 10; �= 5;�t = 0:0625
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Figure 18: Ritzvalues of M40; Re = 10; � = 5;�t = 0:125, and 8� 32 �nite volumes27
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