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New insights in GMRES-like methods with variablepreconditionersKees VuikFaculty of Technical Mathematics and Informatics,Delft University of Technology,Mekelweg 4, 2628 CD DelftThe NetherlandsAbstractIn this paper we compare two recently proposed methods, FGMRES [5] and GMRESR[7], for the iterative solution of sparse linear systems with an unsymmetric nonsingularmatrix. Both methods compute minimal residual approximations using preconditioners,which may be di�erent from step to step. The insights resulting from this comparisonlead to better variants of both methods.Keywords: FGMRES, GMRESR, non symmetric linear systems, iterative solver.AMS(MOS) subject classi�cation. 65F101 IntroductionRecently two new iterative methods, FGMRES [5] and GMRESR [7] have been proposed tosolve sparse linear systems with an unsymmetric and nonsingular matrix. Both methods arebased on the same idea: the use of a preconditioner, which may be di�erent in every iteration.However, the resulting algorithms lead to somewhat di�erent results.In [5] the GMRES method is given for a �xed preconditioner. Thereafter, it is shown that aslightly adapted algorithm: FGMRES can be used in combination with a variable precondi-tioner. Finally a wide class of possible preconditioners is given.In [7] GMRESR is presented as a slightly adapted version of the GCR method [2]. Again avariable preconditioner can be used. A special choice of the preconditioner, m steps of GM-RES [6] or one LSQR step [4] , is investigated in more detail. In [9] GMRESR is comparedwith other iterative methods. For the given class of problems in [9] GMRESR is feasible ifthe matrix vector product is expensive with respect to a vector update and the number ofiterations is not too large. 1



A short comparison of FGMRES and GMRESR has been given in [9]. The results of this com-parison may be summarized as follows. FGMRES may break down, and can only be restartedin the outer loop. GMRESR does not break down and can be restarted and truncated. Ingeneral, the search directions used in both methods are di�erent, but the convergence be-haviour is approximately the same. The required amount of memory and work for a givennumber of iterations without restarting or truncation are comparable.In this paper we give a more detailed comparison of FGMRES and GMRESR. We describeboth methods in Section 2, and compare them in Section 3.1. In Section 3.2 we specify an-other method called FFOM and show that the FGMRES search directions are constructedfrom the FFOM residuals. This relation can be used to avoid breakdown and to stop in theinner loop. In Section 4 an FGMRES variant is given which is equal to GMRESR. In Section5.1 the reverse is shown: a GMRESR variant, which is equal to FGMRES. Finally in Section5.2 a cheaper implementation of GMRESR is given.2 FGMRES and GMRESRIn this section we describe the FGMRES [5] and the GMRESR method [7]. These are iterativesolution methods for the non singular linear system Ax = b. Furthermore we give somede�nitions to facilitate comparison of both methods in the following sections.In ([5]; Algorithm 2.2) the Flexible GMRES algorithm (FGMRES) is de�ned as follows:FGMRES algorithm1. Start: Select x0, tol, and compute r0 = b� Ax0,� = kr0k2; v1 = r0=� and set k = 0;2. Iterate: while krkk2 > tol dok = k + 1; zk = Mk(vk); w = Azk ;for i = 1; :::; k dohi;k = wTvi; w = w � hi;kvi;hk+1;k = kwk2; vk+1 = w=hk+1;k;3. Form the approximate solution:De�ne Zk := [z1; :::; zk] en �Hk := fhi;jg 1 � i � j + 1;1 � j � k;Compute xk = x0 + Zkyk where yk = arg miny2IRk k�e1 � �Hkyk2and e1 = [1; 0; :::; 0]T 2 IRk+1:In this algorithm the non-linear operator Mk is an approximation of A�1. Mk can be seenas a variable preconditioner of the system Ax = b. Comparing GMRES and FGMRES itappears that, besides the variable preconditioner Mk , the only further change is that the2



search directions zk should be kept in memory. Many relations used in GMRES can also beproved for FGMRES, for instance: the computation of yk and the estimate of krkk2 duringthe iteration process. In Section 3 we shall show that FGMRES and GMRES have di�erentproperties with respect to breakdown.In [7] the GMRES Recursive algorithm (GMRESR) is proposed:GMRESR algorithm1. Start: select x0, tol;compute r0 = b� Ax0, and set k = 0;2. Iterate: while krkk2 > tol dok = k + 1; u(1)k = Mk(rk�1); c(1)k = Au(1)k ;for i = 1; :::; k� 1 do�i = cTi c(i)k ; c(i+1)k = c(i)k � �ici; u(i+1)k = u(i)k � �iui;ck = c(k)k =kc(k)k k2; uk = u(k)k =kc(k)k k2;xk = xk�1 + ukcTk rk�1;rk = rk�1 � ckcTk rk�1;Again the operator Mk is an approximation of A�1.In [7] this method is analysed for a special choice of Mk :The search direction u(1)k is obtained as an approximation to the solution of Ay = rk�1using m steps of GMRES. This inner iteration is always started with y0 = 0 asinitial guess. In order to avoid breakdown we use an LSQR switch: if u(1)k = 0 thenu(1)k = ATrk�1 (compare [9]).In the remainder of this paper we compare FGMRES with GMRESR where both use thesame choice of Mk. In order to avoid confusion, we distinguish vectors by a superscript ifnecessary. For instance rFGk denotes the FGMRES residual, and rGRk denotes the GMRESRresidual.3 Comparing the search directions used by FGMRES andGMRESR3.1 Di�erences between FGMRES and GMRESRIn this subsection the comparison of FGMRES and GMRESR is started by choosing theoperators Mk equal to a linear operator M for every k. Thereafter we show that if M1and M2 are di�erent then, in general, after the �rst iteration the residuals of FGMRES andGMRESR are di�erent. Further we specify an example, where FGMRES breaks down. Weend this subsection with an application of FGMRES and GMRESR to a testproblem.In this paragraph we choose Mk = M where M is a linear operator. It is easily seen [5] that3



for this choice FGMRES is equal to GMRES applied toAM(M�1x) = b; (3.1)and GMRESR is equal to GCR (for GCR see [2]) applied to (3.1). For a comparison ofGMRES and GCR we refer to [6]. Note that for this choice the computed solutions are thesame. However even for this choice there are di�erences between FGMRES and GMRESR,because GCR can have a breakdown in contrast with GMRES. Furthermore, GCR costsmore work and memory than GMRES. An advantage for GCR is that it can be restartedand truncated whereas GMRES can only be restarted. We shall see that for variable Mk thecomparison is more favourable for GMRESR.In general the operators Mk vary from step to step and are non-linear. From the algorithmsit follows that for every choice of M1; u1 2 span fz1g so rFG1 = rGR1 . However in the secondstep z2 = M2(v2), where v2 is the component of Az1 perpendicular to r0 and u(1)2 = M2(rGR1 ),where rGR1 is the component of r0 perpendicular to Au1 2 span fAz1g. Since M1 and M2are di�erent and/or nonlinear, in general, the span of fz1; z2g is di�erent from the span offu(1)1 ; u(1)2 g. This is illustrated by the following examples, where always krFG1 k2 = krGR1 k2 butkrFG2 k2 6= krGR2 k2.In the Example 1 we show that FGMRES and GMRESR have di�erent properties with respectto breakdown. In this example FGMRES breaks down in the second iteration, whereaskrGR2 k2 = 0.Example 1Take A = 0B@ 0 0 11 0 00 1 0 1CA ; x = 0B@ 001 1CA and x0 = 0B@ 000 1CA. Further we choose M1 = I , andM2 = A2. Note that M2 is equal to A�1 and AT .Applying FGMRES leads to:v1 = 0B@ 100 1CA ; z1 = 0B@ 100 1CA ; xFG1 = 0B@ 000 1CA and rFG1 = 0B@ 100 1CA, in the second stepv2 = 0B@ 010 1CA ; z2 = 0B@ 100 1CA ; �H2 = 0B@ 0 01 10 0 1CA and v3 is unde�ned. Since xFG2 = x0+�z1+�z2is follows that xFG2 6= x, so this is a serious breakdown.Applying GMRESR we obtain:u1 = 0B@ 100 1CA ; c1 = 0B@ 010 1CA ; xGR1 = 0B@ 000 1CA and rGR1 = 0B@ 100 1CA, in the second stepu2 = 0B@ 001 1CA ; c2 = 0B@ 100 1CA ; xGR2 = 0B@ 001 1CA and rGR2 = 0B@ 000 1CA. So GMRESR has computed4



the exact solution after two iterations.Finally we apply FGMRES and GMRESR to a linear system obtained from a discretizationof the following pde: � @2u@x2 + @2u@y2!+ � �@u@x + @u@y� = f on 
;uj@
 = 0;where 
 is the unit square. The exact solution u is given by u(x; y) = sin(�x) sin(�y). In thediscretization we use the standard �ve point �nite di�erence approximation. The stepsizesin x- and y-direction are equal to h. As innerloop we take one step of GMRES(10) in bothmethods. The results for � = 1 and h = 1=50 are given in Figure 3.1. As expected onlykr0k2 and kr1k2 are the same for both methods. Note that the convergence behaviour isapproximately the same.
-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10 12 14 16 18 20

i

10
lo

g(
re

s(
i)

)

-. FGMRES

-- GMRESRFigure 3.1: The norm of the residuals for � = 1 and h = 1=50.ConclusionsWe have seen that if the operators Mk are all equal to the same linear operator M, thenFGMRES is equal to GMRES and GMRESR is equal to GCR. In this case the computedsolutions are the same but GCR may have a breakdown and is more expensive than GMRESwith respect to work and memory.In the general case, Mk variable and nonlinear, the results are di�erent for k � 2. Moreover5



the costs of FGMRES and GMRESR are approximately the same. From the given exampleit appears that FGMRES breaks down, whereas GMRESR converges. In [7] it is proved thatGMRESR (with LSQR switch) does not breakdown. So for variable Mk the comparison ismore favourable for GMRESR.3.2 The search directions of FGMRES are constructed from FFOM resid-ualsIn this subsection we de�ne the FFOM method. The relation with FGMRES is comparablewith the relation between FOM [6] and GMRES (see [6], [1], [8], and [3]). It appears thatthe vector vk+1 is equal to a constant times the k-th FFOM residual. This relation gives us abetter insight in the FGMRES method and the di�erences with the GMRESR method. Theseinsights are used to avoid breakdown of FGMRES and to determine a termination criterionfor the innerloop iteration such that the required accuracy is obtained.Below we describe the FFOM method. Vectors related to the FFOM method are denotedby a superscript FF. We de�ne the FFOM approximation by xFFk = x0 + ZkyFFk and Vk =[v1; :::; vk]. The vector yFFk 2 IRk is chosen such that rFFk = r0�AZkyFFk is perpendicular tospan fv1; :::; vkg. Using the relation r0 = �v1 it follows fromV Tk (r0 � AZkyFFk ) = 0;that V Tk AZkyFFk = �e1, where e1 2 IRk. De�ne Hk 2 IRk�k by Hk = fhi;jg 1 � i � j1 � j � k .The relation AZk = Vk+1 �Hk; (3.2)given in ([5]; equation1.1) implies that:V Tk AZk = V Tk Vk+1 �Hk = 264 0Ik ...0 375 �Hk = Hk:So the vectors yFFk satisfy HkyFFk = �e1. If Hk is non singular then xFFk exists and is givenby xFFk = x0 + ZkH�1k �e1.In order to prove that vk+1 2 span frFFk g we give some de�nitions. The matrix �Hk can befactorized by Givens rotations into �Hk = QTkRk where Qk 2 IRk+1�k+1; QTkQk = Ik+1 andRk 2 IRk+1�k is an upper triangular matrix. The matrix Qk is formed by the product Fk:::F16



here the matrix Fj 2 IRk+1�k+1 is the following Givens rotationFj = 2666666666666664 1 .. . =
1 cj �sjsj cj 1=
 . . . 1 3777777777777775 :The product Fk�1:::F1 �Hk = 26666664 � : : : � �. . . ... ...=
 � �0 �k0 hk+1;k 37777775, where an asterisk stands for a non zeroelement, implies that ck and sk should be chosen as follows:ck = �k=q�2k + h2k+1;k and sk = �hk+1;k=q�2k + h2k+1;k :Lemma 1If ck 6= 0 then the FFOM residual satis�es the relation:rFFk = (s1:::skkr0k2=ck)vk+1 :ProofThe relation rFFk = r0 �AZkyFFk combined with (3.2) givesrFFk = r0 � Vk+1 �HkyFFk = r0 � Vk+1  HkyFFkhk+1;k eTk yFFk ! :Since HkyFFk = kr0k2e1 we obtainrFFk = �hk+1;k eTk yFFk vk+1 :Multiplication of HkyFFk = kr0k2 e1 with Qk�1 gives266664 �Rk�1 ...��k 377775 yFFk = Qk�1kr0k2e1 :Since Rk�1 is upper triangular the last equation is equivalent to:�keTk yFFk = s1:::sk�1kr0k2 :7



The assumption ck 6= 0 implies that �k 6= 0 sorFFk = �s1:::sk�1hk+1;k�k kr0k2vk+1 = (s1:::skkr0k2=ck)vk+1 ;which proves the lemma. 2Remarks- An overview of related results for Krylov subspace methods, with a constant preconditioner,is given in [3].- From this relation, it appears that if the operators Mk are scaling invariant(Mk(�v) = �Mk(v)) then the search directions zk = Mk(vk) are elements of span fMk(rFFk�1)g.Now the di�erence between FGMRES and GMRESR is clear: in FGMRES one calculates inthe outer loop the minimal residual using search directions constructed from the FFOMresiduals, whereas in GMRESR one calculates in the outer loop the minimal residual usingsearch directions constructed from the GMRESR residuals. Note that the FGMRES andGMRESR residuals are the same if one uses the same search directions.- Combination of Lemma 1 and the relation krFGk k2 = js1j:::jskj kr0k2 leads to the relation(compare [1]): krFGk k2 = jckj krFFk k2 :This suggests that if there is a fast convergence (ck ' 1) then rFGk ' rFFk , so we expect thatthe convergence behaviour of FGMRES and GMRESR are approximately the same. This isstudied in more detail in Section 4.The relation given in Lemma 1 can be used to specify a termination criterion for the innerloop,such that the outer loop residual has a prescribed accuracy.Lemma 2Suppose that Hk is non singular and krFGk k2 > 0. If the search direction zk+1 = Mk+1(vk+1)satis�es the inequality kAzk+1 � vk+1k2 < eps jckj=krFGk k2;and xFGk+1 exists then krFGk+1k2 < eps:ProofSince Hk is non singular xFFk exists. Using the auxiliary vector~xk+1 = xFFk + s1:::skkr0k2=ckzk+1 it follows from Lemma 1 that:k~rk+1k2 = kb�A~xk+1k2 = krFFk � (s1:::skkr0k2=ck)Azk+1k2= krFFk k2kvk+1 � Azk+1k2 < eps jckj krFFk k2krFGk k2 = eps:Using the optimality property for the outer loop residual of FGMRES the resultkrFGk+1k2 � k~rk+1k2 < eps is proved. 2Note that jckj and krFGk k2 are available, so this leads to a cheap termination criterion for8



the innerloop iteration. This termination criterion prevents too much iterations in the �nalinnerloop.We know that FGMRES only breaks down if hk+1;k = 0. In the case that hk+1;k = 0 andHk is non singular we have a lucky breakdown: xFFk = xFGk = x [5] Proposition 2.2 (compare[6], p. 864). So serious breakdown is only possible if Hk is singular and hk+1;k = 0. This isillustrated by Example 1, where H2 is singular, h3;2 = 0 and serious breakdown occurs. InGMRESR breakdown is avoided by choosing one LSQR step. If the current choice of zk inFGMRES leads to breakdown a �rst idea could be to choose zk = ATvk . However this is nota good idea. A counterexample is again Example 1 where M2 = A2 = AT and breakdownoccurs.In the following lemma we shall give a su�cient condition such that FGMRES has no break-down. Before stating the lemma we note that the equation:Hk = QTk�1 266664 �Rk�1 ...��k 377775implies that if xFGk�1 6= x and ck 6= 0 then Hk is non singular ([6], p. 864).Lemma 3Suppose that c1 6= 0; :::; ck 6= 0 and xFGk 6= x. If the search direction zk+1 is such thatkAzk+1 � vk+1k2 < jckjthen Hk+1 is non singular.ProofFor ~xk+1 = xFFk + (s1:::skkr0k2=ck)zk+1 we obtain k~rk+1k < krFGk k2 (compare the proof ofLemma 2). This together with the optimality property of FGMRES givesAzk+1 =2 span fAz1; :::; Azkg:We shall now prove that the assumption "Hk+1 is singular" leads to a contradiction. If Hk+1is singular, there is a vector u 2 IRk+1 such that u 6= 0 and Hk+1u = 0. From the de�nitionof Hk+1 it follows that V Tk+1AZk+1u = 0: (3.3)Since Hk is non singular and Azk+1 =2 span fAz1; :::; Azkg the vector ~u := AZk+1u 2span fv1; :::; vk+1; Azk+1g is not equal to zero. Equation (3.3) implies vTi ~u = 0 for i =1; :::; k + 1, so there is a nonzero vector ~u 2 span fv1; :::; vk+1; Azk+1g perpendicular tospan fv1; :::; vk+1g, and thus hk+2;k+1 6= 0. This implies that xFGk+1 exists andkrFGk+1k2 � k~rk+1k2 < krFGk k2. This leads to sk+1 < 1, and thus ck+1 6= 0. So Hk+1 is non-singular, which is a contradiction. 2This inequality implies that the norm of the �nal residual of the inner loop is jckj times thenorm of the initial residual. Choosing GMRES in the inner loop, this inequality is easilysatis�ed for a large class of problems. 9



4 FGMRES with the search directions of GMRESRIn this section we show that it is possible to compute the GMRESR search directions in a cheapway during the FGMRES process. A consequence of this is that we can use a combination ofFGMRES and GMRESR search directions in the FGMRES method.De�nition 1The vectors wk are de�ned by the following recurrencew1 = v1and wk+1 = skwk + ckvk+1; k � 1;where fvkg is given in the FGMRES algorithm.It follows from De�nition 1 that wk 2 span fv1; :::; vkg. Since vk+1 ? spanfv1; :::; vkg thenorm of wk+1 is given by kwk+1k2 = (s2kkwkk22 + c2kkvk+1k22)1=2 = 1:Note that the vectors wk can be calculated in the FGMRES algorithm by one extra vectorup-date.In the following lemma we give a relation between the vector wk+1 and the FGMRES residualrFGk (compare [3]).Lemma 4If the FGMRES approximation xFGk exists then the equationrFGk = s1:::skkr0k2wk+1 holds :ProofFrom [5] it follows that rFGk = r0 �AZkyFGk = r0 � Vk+1 �HkyFGk :This can also be written as: rFGk = r0 � Vk+1QTkQk �HkyFGk :The vector yFGk is computed such that (compare [6], p. 862):Qk �HkyFGk = Qkkr0k2 e1 � eTk+1Qkkr0k2 e1 ek+1:Combination of these expressions givesrFGk = eTk+1Qkkr0k2e1Vk+1QTk ek+1:10



It is easy to see that Vk+1QTk ek+1 = wk+1 and eTk+1Qkkr0k2 e1 = s1:::skkr0k2. This provesthe lemma. 2In the original FGMRES scheme krFGk k2 is known but rFGk is not available. Using Lemma4 (which is also valid for GMRES) rFGk can be calculated, so it is possible to inspect theresidual during the computation, or to use other norms in the termination criterion.Note that as a consequence of Lemma 4 we can use the GMRESR search directions inFGMRES by choosing zk = Mk(wk). This again follows from the fact that the FGMRES andGMRESR residuals are the same if one uses the same search directions. So FGMRES can usea combination of FGMRES and GMRESR search directions. Using zk = Mk(s1:::skkr0k2wk)we can use the same termination criterion in the inner loop as GMRESR ([7]; Lemma 3).In the following lemma we show that breakdown of FGMRES can be avoided by using anLSQR switch (for LSQR see [4]).De�nition 2The LSQR switch is de�ned as follows: if the FGMRES search direction zk+1 leads to asingular matrix Hk+1, then use the following search direction zk+1 = ATwk+1:Lemma 5FGMRES with LSQR switch does not breakdown.ProofSuppose the current choice zk+1 leads to a singular matrix Hk+1. Then the search direction isreplaced by zk+1 = ATwk+1. Since rFGk has the minimal residual property rFGk is perpendic-ular to span fAz1; :::; Azkg. From (rFGk )TAzk+1 = s1:::skkr0k2wTk+1AATwk+1 6= 0 it followsthat Azk+1 =2 span fAz1; :::; Azkg. This combined withk~rk+1k2 := krFGk � (rFGk )TAzk+1=kAzk+1k22Azk+1k2 < krFGk k2implies thatHk+1 is non singular (compare the proof of Lemma 3) and so no serious breakdownoccurs. 2The relation rFGk = s1:::skkr0kwk+1 can be used to give a further explanation of the di�erencesbetween FGMRES and GMRESR. In the second iteration we have:xFG2 2 span fM1(r0);M2(v2)gand xGR2 2 span fM1(r0);M2(s1r0=kr0k2 + c2v2)g;where we use rGR1 = rFG1 = s1kr0k2w2 = s1kr0k2(s1v1+ c1v2). Now it is clear that only if theoperators Mk are all equal to the same linear operator M then the FGMRES and GMRESRresults may be the same.Conclusions 11



If ck 6= 0 the relationsandcan be combined to rFFk = s1:::sk=ckkr0k2vk+1 (Lemma 1),rFGk = s1:::skkr0k2wk+1 (Lemma 4);wk+1 = skwk + ckvk+1 (De�nition 1);rFGk = s2krFGk�1 + c2krFFk :So if jsmj � 1 then the FFOM and FGMRES residual are close together, independent of thevalues of s1; :::; sk�1. Furthermore if jsk j � 1 for all k � 1, then Mk(vk) and Mk(rFGk�1) =Mk(wk) are close together. So if the convergence of FGMRES is fast we expect that theconvergence behaviours of both methods (without restarting) are comparable. However, inthe case of slow convergence there may be a large di�erence between FGMRES and GMRESR(this di�erence depends on s1; :::; sk).5 New results for GMRESRIn Subsection 5.1 we consider a variant of GMRESR, where the search directions can bechosen equal to the FGMRES search directions. Thereafter we specify in Subsection 5.2 aslightly cheaper implementation of the GMRESR method.5.1 GMRESR with the search direction of FGMRESIn this subsection the expression x "is equal to" y means x 6= 0 and x 2 span fyg. Furthermorewe assume that no breakdown occurs. Considering the FGMRES algorithm we note that vk+1"is equal to" the component of Azk perpendicular to span fr0; Az1; :::; Azk�1g. If we chooseu(i)k "equal to" zk it follows that ck "is equal to" the component of Au(1)k = Azk perpendicularto span fAz1; :::; Azk�1g. Since rGRk�1 "is equal to" the component of r0 perpendicular tospan fAz1; :::; Azk�1g it is easily seen that the vector pk de�ned bypk := ck � cTk rGRk�1krGRk�1k22 rGRk�1; (5.1)"is equal to" vk . So if we choose p1 = rGR1 andu(1)k = Mk(pk) (5.2)the algorithms FGMRES and GMRESR lead to the same results in exact arithmetic. Notethat the calculation of pk costs only one extra vector update per outer iteration.Using the relations (5.1) and (5.2) it appears that GMRESR can also use a combinationof FGMRES and GMRESR search directions. GMRESR combined with (5.1), (5.2) andtruncation is a new method because there is no truncated FGMRES variant.12



5.2 A faster implementation of GMRESRComparing FGMRES and GMRESR it appears that the number of vector updates in theouter loop of GMRESR is two times as large as for FGMRES. In this subsection we give aGMRESR version, where the number of vector updates in the outer loop is halved, and thuscomparable with FGMRES.We give an implementation of GMRESR, such that in the outer loop only the vectors u(1)k andck are calculated. In the �nal iteration the approximate solution is calculated using the vectorsu(1)k . This implementation can be used in combination with restarting and the trunc�rsttruncation strategy (see [9]; Section 3). The number of vectors used in the truncation isdenoted by: ntrunc.De�nition 3The following quantities are de�ned for the GMRESR algorithm:�k;i = cTi c(i)k ; 
k = 1=kckk2 and �k = cTk rk�1:We de�ne �k;j such that u(k)k = kXj=1 �k;ju(1)j for k < ntruncand u(k)k = ~uk + ntrunc�1Xj=1 �k;ju(1)j for k � ntrunc;where ~untrunc�1 = 0 and~uk = u(0)k � �k;k�1 
k�1 ~uk�1 for k � ntrunc:Combination of the relations given in De�nition 3 leads to the following expressions for �k;j :�k;k = 1�k;j = � k�1Xi=j �k;i 
i �i;j for j = 1; :::; k� 1; k < ntrunc;whereas�k;j = � ntrunc�1Xi=j �k;j 
i �i;j � �k;k�1 
k�1 �k�1;j for j = 1; :::; ntrunc� 1; k � ntrunc:This enables us to calculate �k;j . Finally we give a relation to calculate the approximation xlfrom the vectors u(1)k . From the GMRESR algorithm it appears thatxl = x0 + lXk=1 �k 
k u(k)k :13



Substituting the relation given in De�nition 3 into this equation leads to:xl = x0 + ntrunc�1Xk=1 �k 
k kXi=1 �k;i u(1)i+ lXk=ntrunc �k 
k(~u+ ntrunc�1Xi=1 �k;i u(1)i ):This can be implemented using the following extra memory: one n-vector to store ~uk, threevectors with length ntrunc for �k;i; 
k and �k and a 2-dimensional array with dimensionsntrunc to store �k;j . Besides the work to calculate ck in the outer loop we use for l � ntrunctwo vectorupdates to calculate ~uk and update x0 per outer iteration. Finally the approxima-tion is formed by ntrunc vectorupdates. Note that the amount of memory and work of thisGMRESR variant is comparable with FGMRES.This approach seems not feasible for other truncation strategies. To illustrate this we look atthe trunclast strategy ([9], Section 3). In this strategy u1 and c1 are discarded after ntrunciterations. However, since u1 is used in the construction of u2; ::; untrunc these vectors shouldbe adapted. This costs ntrunc extra vectorupdates, which is as expensive as the originalGMRESR algorithm.In the order to compare the original FGMRES method and both GMRESR variants (wherethe original GMRESR search directions are used) we apply the methods to the test problemgiven in Section 3.1. In the following experiments we take h = 1=50 and � = 1. The newversion, without calculation of the vectors uk, is denoted by GMRESR�new. We always applyone GMRES(m) step as inner iteration process. The results are given in Table 5.1.m FGMRES GMRESR GMRESR�new2 1.5 2.1 1.53 0.89 1.13 0.854 0.69 0.84 0.645 0.59 0.69 0.576 0.53 0.63 0.537 0.49 0.59 0.528 0.53 0.56 0.529 0.56 0.59 0.5410 0.54 0.60 0.57Table 5.1: CPU times for di�erent methods and di�erent values of m.The CPU time is measured in seconds using 1 processor of a Convex C3820. It appears thatthe CPU time of GMRESR�new is comparable with FGMRES. For small m the CPU timeis much less than for GMRESR. For m in the vicinity of the optimal value (m = 8) the14



di�erence in CPU time is small.Finally we compare the trunc�rst version of GMRESR and GMRESR�new, and the restartedversion of FGMRES. The results for di�erent values of ntrunc or nstart are given in Figure5.1. Note that GMRESR�new is again faster than GMRESR, and restarted FGMRES.
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