New insights in GMRES-like
methods with variable
preconditioners

Report 93-10

Kees Vuik

s

I U D e Ift Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft
Delft University of Technology



ISSN 0922-5641

Copyright © 1993 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone +3115784568.

A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They arelocated in the directory /pub/publications/tech-reportsat ftp.twi.tudeft.nl



New insights in GMRES-like methods with variable

preconditioners

Kees Vuik
Faculty of Technical Mathematics and Informatics,
Delft University of Technology,
Mekelweg 4, 2628 CD Delft
The Netherlands

Abstract

In this paper we compare two recently proposed methods, FGMRES [5] and GMRESR
[7], for the iterative solution of sparse linear systems with an unsymmetric nonsingular
matrix. Both methods compute minimal residual approximations using preconditioners,
which may be different from step to step. The insights resulting from this comparison
lead to better variants of both methods.
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1 Introduction

Recently two new iterative methods, FGMRES [5] and GMRESR [7] have been proposed to
solve sparse linear systems with an unsymmetric and nonsingular matrix. Both methods are
based on the same idea: the use of a preconditioner, which may be different in every iteration.
However, the resulting algorithms lead to somewhat different results.

In [5] the GMRES method is given for a fixed preconditioner. Thereafter, it is shown that a
slightly adapted algorithm: FGMRES can be used in combination with a variable precondi-
tioner. Finally a wide class of possible preconditioners is given.

In [7] GMRESR is presented as a slightly adapted version of the GCR method [2]. Again a
variable preconditioner can be used. A special choice of the preconditioner, m steps of GM-
RES [6] or one LSQR step [4] , is investigated in more detail. In [9] GMRESR is compared
with other iterative methods. For the given class of problems in [9] GMRESR is feasible if
the matrix vector product is expensive with respect to a vector update and the number of
iterations is not too large.



A short comparison of FGMRES and GMRESR has been given in [9]. The results of this com-
parison may be summarized as follows. FGMRES may break down, and can only be restarted
in the outer loop. GMRESR does not break down and can be restarted and truncated. In
general, the search directions used in both methods are different, but the convergence be-
haviour is approximately the same. The required amount of memory and work for a given
number of iterations without restarting or truncation are comparable.

In this paper we give a more detailed comparison of FGMRES and GMRESR. We describe
both methods in Section 2, and compare them in Section 3.1. In Section 3.2 we specify an-
other method called FFOM and show that the FGMRES search directions are constructed
from the FFOM residuals. This relation can be used to avoid breakdown and to stop in the
inner loop. In Section 4 an FGMRES variant is given which is equal to GMRESR. In Section
5.1 the reverse is shown: a GMRESR variant, which is equal to FGMRES. Finally in Section
5.2 a cheaper implementation of GMRESR is given.

2 FGMRES and GMRESR

In this section we describe the FGMRES [5] and the GMRESR method [7]. These are iterative
solution methods for the non singular linear system Az = b. Furthermore we give some
definitions to facilitate comparison of both methods in the following sections.

In ([5]; Algorithm 2.2) the Flexible GMRES algorithm (FGMRES) is defined as follows:

FGMRES algorithm

1. Start:  Select zg, tol, and compute rg = b — Azy,
B =||rol|lz, v1 = 7o/ and set k = 0;

2. Tterate: while ||rg||2 > tol do
k=k+1, zp = Mp(v), w= Azg;
fore=1,...,k do
hig = whvg, w=w— h; v
b1k = |w]l2, Vo1 = w/hpg

3. Form the approximate solution:

Define Z, := [21, ..., 2] en Hy := {h; ;} l<i<jtl
1<) <k,

1<J

<<

Compute 2 = xg + Zgpyr where y, = arg min ||Se; — Hyyl|2
yERk

and e; = [1,0,...,0]T € R**!,

In this algorithm the non-linear operator M), is an approximation of A~'. M), can be seen
as a variable preconditioner of the system Az = b. Comparing GMRES and FGMRES it
appears that, besides the variable preconditioner My, the only further change is that the



search directions zx should be kept in memory. Many relations used in GMRES can also be
proved for FGMRES, for instance: the computation of y; and the estimate of ||ry||2 during
the iteration process. In Section 3 we shall show that FGMRES and GMRES have different

properties with respect to breakdown.
In [7] the GMRES Recursive algorithm (GMRESR) is proposed:

GMRESR algorithm

1. Start:  select xq, tol;
compute ro = b — Azg, and set k = 0;
2. Tterate: while ||rg||2 > tol do
k=Fk+1, ugﬂl) = My(rk-1), cg) = Aug);
fori=1,...,k—1do ' ' '
o = c?cg), cgﬂ) = cg) — ¢, ugjﬂ) = ugj) — o
k k k k
i = o ez, wi = uffllef s
Tp = Tpo1 + URCE rro1;
Tk =Tg—1— CkC%Tk_l;

Again the operator M} is an approximation of A71.

In [7] this method is analysed for a special choice of My:
(1)

The search direction u; ' is obtained as an approximation to the solution of Ay = rr_;
using m steps of GMRES. This inner iteration is always started with yg = 0 as

initial guess. In order to avoid breakdown we use an LSQR switch: if ugﬂl) = 0 then
ugﬂl) = ATr;_y (compare [9]).
In the remainder of this paper we compare FGMRES with GMRESR where both use the
same choice of M. In order to avoid confusion, we distinguish vectors by a superscript if

necessary. For instance rkFG denotes the FGMRES residual, and TI?R denotes the GMRESR
residual.

3 Comparing the search directions used by FGMRES and
GMRESR

3.1 Differences between FGMRES and GMRESR

In this subsection the comparison of FGMRES and GMRESR is started by choosing the
operators Mj equal to a linear operator M for every k. Thereafter we show that if M,
and My are different then, in general, after the first iteration the residuals of FGMRES and
GMRESR are different. Further we specify an example, where FGMRES breaks down. We
end this subsection with an application of FGMRES and GMRESR to a testproblem.

In this paragraph we choose M} = M where M is a linear operator. It is easily seen [5] that



for this choice FGMRES is equal to GMRES applied to
AM(M™'z) = b, (3.1)

and GMRESR is equal to GCR (for GCR see [2]) applied to (3.1). For a comparison of
GMRES and GCR we refer to [6]. Note that for this choice the computed solutions are the
same. However even for this choice there are differences between FGMRES and GMRESR,
because GCR can have a breakdown in contrast with GMRES. Furthermore, GCR costs
more work and memory than GMRES. An advantage for GCR is that it can be restarted
and truncated whereas GMRES can only be restarted. We shall see that for variable M} the
comparison is more favourable for GMRESR.

In general the operators My vary from step to step and are non-linear. From the algorithms

it follows that for every choice of My, u; € span {z} so ri'@

= r{R. However in the second
step zg = M3(vy), where vy is the component of Az perpendicular to rg and u(Ql) = My(r GR)
where TGR is the component of ry perpendicular to Auy € span {Az }. Since My and M,
are different and/or nonlinear, in general, the span of {zy, 22} is different from the span of
{ugl), u(Ql)}. This is illustrated by the following examples, where always ||ri'%||y = ||r7F||, but

1752 # 7572

In the Example 1 we show that FGMRES and GMRESR have different properties with respect
to breakdown. In this example FGMRES breaks down in the second iteration, whereas
l757 |2 = 0.

Example 1
0 0 1 0 0
Take A = 10 01, x= 0 | and 29 = 0 |. Further we choose M; = I, and
0 1 0 1 0
= A%. Note that M, is equal to A~! and AT,
Applying FGMRES leads to:
1 1 1
vm=|01],x2=1]01, and r{’ 0 |, in the second step
0 0 0
0 1 0 0
vo=|11],2=10]|,H,=| 1 1 | and v3is undefined. Since acFG =xgtaz + 52
0 0 0 0

is follows that 25'“ # . so this is a serious breakdown.

Applying GMRESR we obtain:

1 0 0 1
=10 |,aq=|11],20F=| 0 [and rfF = 0 [, in the second step
0 0 0 0
0 1 0 0
up=101],e2=1 0|, acg;R =1 0| and rg;R =1 0 |. So GMRESR has computed
1 0 1 0



the exact solution after two iterations.

Finally we apply FGMRES and GMRESR to a linear system obtained from a discretization

of the following pde:
v 0%u Ju  Ju
‘(@*a—yz)”(a—ﬁa—y) = fon g,

ulag = 0,

where  is the unit square. The exact solution w is given by u(z,y) = sin(7z)sin(7y). In the
discretization we use the standard five point finite difference approximation. The stepsizes
in z- and y-direction are equal to h. As innerloop we take one step of GMRES(10) in both
methods. The results for 5 = 1 and h = 1/50 are given in Figure 3.1. As expected only
||7o|l2 and ||r1||2 are the same for both methods. Note that the convergence behaviour is
approximately the same.

0
2 i
-4 |
= i
g
B
L=
S 8 ’
10l -. FGMRES
1l -- GMRESR
_14 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
i
Figure 3.1: The norm of the residuals for 5 =1 and h = 1/50
Conclusions

We have seen that if the operators M} are all equal to the same linear operator M, then
FGMRES is equal to GMRES and GMRESR is equal to GCR. In this case the computed
solutions are the same but GCR may have a breakdown and is more expensive than GMRES
with respect to work and memory.

In the general case, My variable and nonlinear, the results are different for £ > 2. Moreover



the costs of FGMRES and GMRESR are approximately the same. From the given example
it appears that FGMRES breaks down, whereas GMRESR converges. In [7] it is proved that
GMRESR (with LSQR switch) does not breakdown. So for variable M} the comparison is
more favourable for GMRESR.

3.2 The search directions of FGMRES are constructed from FFOM resid-
uals

In this subsection we define the FFOM method. The relation with FGMRES is comparable
with the relation between FOM [6] and GMRES (see [6], [1], [8], and [3]). It appears that
the vector vg4q is equal to a constant times the k-th FFOM residual. This relation gives us a
better insight in the FGMRES method and the differences with the GMRIESR method. These
insights are used to avoid breakdown of FGMRES and to determine a termination criterion
for the innerloop iteration such that the required accuracy is obtained.

Below we describe the FFOM method. Vectors related to the FFOM method are denoted
by a superscript FF. We define the FFOM approximation by xij =z0+ Zky,fF and Vi, =
[v1, ..., vk]. The vector y,fF € IR* is chosen such that rkFF =70— AZkyf:F is perpendicular to
span {vy,...,vr}. Using the relation 7o = fvy it follows from

Vil (ro — AZyf") =0,

that VkTAZky,fF = fey, where e1 € IR*. Define Hy € IR*** by Hy = {h;;

The relation

AZy = Viy1 Hi, (3.2)

given in ([5]; equationl.1) implies that:

0
VkTAZkIVkTVk_HgkI I HkIHk.
0

So the vectors y,fF satisfy Hky,fF = fey. If Hy is non singular then xij exists and is given

by x{:F =20+ Zkﬂk_lﬁel.

In order to prove that vyy; € span {rff} we give some definitions. The matrix Hj can be
factorized by Givens rotations into Hy = QI Ry where @ € IRFHIXAHT QTQy = I141 and
Ry, € IRFTY% is an upper triangular matrix. The matrix @}, is formed by the product Fj,...F}



here the matrix F}; € IRF1Xk+1 g the following Givens rotation

1
9
1
Fj = N
J J
1
9
L 1 -
* * *
The product Fj_q...FiH}, = 0 * * , where an asterisk stands for a non zero
0 pi
0 A1k

element, implies that ¢; and s; should be chosen as follows:
cr = pr/r/PE+ hi+17k and sp = —hgy1k/1/Pr + hi+17k )
Lemma 1

If ¢ # 0 then the FFOM residual satisfies the relation:

FF
T = (81...5k]|7oll2/ck) Vit -
Proof
The relation rf¥ = ro — AZ,yl" combined with (3.2) gives
FF
FF 7 FF Hyy
et =10 = Ve eyt =ro=Vipr |, 8 e
b1k €1 Yk
Since Hyyf ¥ = ||rol|2e1 we obtain
FF T FF
T = ek €5 YL Uk -

Multiplication of Hkyf:F = ||rol|2 €1 with Q1 gives

*
LI ZlifF = Qk—1||7‘0||2€1 .
*
Pk

Since Ryp_q is upper triangular the last equation is equivalent to:

prebyb T = si.si|roll: -



The assumption ¢; # 0 implies that pg # 0 so

Pyt i
P = s s = o llavker = (s1eesi|7oll2/ cr)vrg
which proves the lemma. O
Remarks

- An overview of related results for Krylov subspace methods, with a constant preconditioner,
is given in [3].

- From this relation, it appears that if the operators M}, are scaling invariant

(My.(av) = aMy(v)) then the search directions zj, = My(vy,) are elements of span { My (rf*))}.
Now the difference between FGMRES and GMRESR is clear: in FGMRES one calculates in
the outer loop the minimal residual using search directions constructed from the FFOM
residuals, whereas in GMRESR one calculates in the outer loop the minimal residual using
search directions constructed from the GMRESR residuals. Note that the FGMRES and
GMRESR residuals are the same if one uses the same search directions.

- Combination of Lemma 1 and the relation ||rf“||ly = |s1]...|sk| ||7o]]2 leads to the relation
(compare [1]):
75 ll2 = lexl 5 1l2 -

This suggests that if there is a fast convergence (¢; ~ 1) then rkFG ~ rkFF, so we expect that

the convergence behaviour of FGMRES and GMRESR, are approximately the same. This is
studied in more detail in Section 4.

The relation given in Lemma 1 can be used to specify a termination criterion for the innerloop,
such that the outer loop residual has a prescribed accuracy.

Lemma 2
Suppose that Hj, is non singular and ||7‘kFG||2 > 0. If the search direction zpy1 = Myy1(vit1)
satisfies the inequality

| Azkt1 — vsall2 < eps |exl /|| |2

rG : rG
and 23 exists then [[r; 7 [[2 < eps.
Proof
FF

Since Hy, is non singular z;,“ exists. Using the auxiliary vector
Tpy1 = fo + s1...5k||70l|2/ ckzx41 it follows from Lemma 1 that:

16— Ayl = |75 " = (s1.-5k][roll2/ ) Az |2
Fly
= eps.

1 Fk+1ll2
eps |ex| ||rf
[EeIP

1P 2l et — Azigallz <

Using the optimality property for the outer loop residual of FGMRES the result
||7‘kF_|€;1||2 < |IFr41ll2 < eps is proved. O

Note that |cx| and [|rf'“]||; are available, so this leads to a cheap termination criterion for



the innerloop iteration. This termination criterion prevents too much iterations in the final
innerloop.

We know that FGMRES only breaks down if fpyy = 0. In the case that hy4q = 0 and
Hy, is non singular we have a lucky breakdown: xij = fo = z [5] Proposition 2.2 (compare
[6], p. 864). So serious breakdown is only possible if H}, is singular and hgiy; = 0. This is
illustrated by Example 1, where I, is singular, h3 2 = 0 and serious breakdown occurs. In
GMRESR breakdown is avoided by choosing one LSQR step. If the current choice of z; in
FGMRES leads to breakdown a first idea could be to choose z; = ATv;,. However this is not
a good idea. A counterexample is again Example 1 where M; = A? = AT and breakdown

occurs.

In the following lemma we shall give a sufficient condition such that FGMRIES has no break-
down. Before stating the lemma we note that the equation:

*

Hy = Q;{—l L
*

Pk
implies that if 219 # @ and ¢j # 0 then Hy is non singular ([6], p. 864).
Lemma 3
Suppose that ¢; # 0,...,cx # 0 and 25'“ £ 2. If the search direction 2y is such that
[Azkp1 = vegall2 < el

then Hy4q is non singular.

Proof
For 11 = ol 4 (sy..si||roll2/ck)zk1 Wwe obtain |71 < ||rE€||2 (compare the proof of
Lemma 2). This together with the optimality property of FGMRES gives

Azpy1 € span {Azy, ..., Az},

We shall now prove that the assumption ” Hy4q is singular” leads to a contradiction. If Hyyq
is singular, there is a vector u € IR*! such that u # 0 and Hpyyu = 0. From the definition
of Hy4q it follows that

VL AZpu = 0. (3.3)
Since Hj is non singular and Azpyy ¢ span {Azy,..., Az} the vector @ := AZpiju €
span {v1,...,vp41, Azpy1} is not equal to zero. Equation (3.3) implies v/'@ = 0 for i =
1,...;k + 1, so there is a nonzero vector @ € span {vy,..., V541, Azky1} perpendicular to

span {v1, ..., 041}, and thus hgio g1 # 0. This implies that xffl exists and

Irtillz < IlFrgallz < [|7g 2. This leads to sppq < 1, and thus cxpq # 0. So Hjqq is non-
singular, which is a contradiction. |
This inequality implies that the norm of the final residual of the inner loop is |cg| times the
norm of the initial residual. Choosing GMRES in the inner loop, this inequality is easily
satisfied for a large class of problems.



4 FGMRES with the search directions of GMRESR

In this section we show that it is possible to compute the GMRESR, search directions in a cheap
way during the FGMRES process. A consequence of this is that we can use a combination of

FGMRES and GMRESR search directions in the FGMRES method.

Definition 1
The vectors wy are defined by the following recurrence

wp =M

and
Wht1 = SEWk + CkVky1, k > 1,

where {v;} is given in the FGMRES algorithm.

It follows from Definition 1 that wy € span {vy,...,v}. Since vgyy L span{vy,...,vr} the
norm of w1 is given by

lwrsillz = (sEllwell3 + eRlloxralI3)'/? = 1.

Note that the vectors wy can be calculated in the FGMRES algorithm by one extra vectorup-
date.

In the following lemma we give a relation between the vector wi4q and the FGMRES residual

rE'@ (compare [3]).

Lemma 4

If the FGMRES approximation fo exists then the equation
rkFG = S1...5||r0||2wk4+1 holds .

Proof
From [5] it follows that

rkFG =7rg— AZky,fG =7rg— Vk_|_1f{ky£G.
This can also be written as:
rf S =10 — Vi Qr QrHyyl .
The vector y'“ is computed such that (compare [6], p. 862):
Qg = Qullrollz er — 1 Qllrollz ex ensa-

Combination of these expressions gives

119 = el 1Qkllroll2e1 Vig1 QF et -

10



It is easy to see that Vk+1Q;€ek+1 = wg41 and eg_l_leHTOHQ €1 = S1...5k||70||2- This proves
the lemma. O

In the original FGMRES scheme ||rf||; is known but rI'“ is not available. Using Lemma
4 (which is also valid for GMRES) rkFG can be calculated, so it is possible to inspect the
residual during the computation, or to use other norms in the termination criterion.

Note that as a consequence of Lemma 4 we can use the GMRESR search directions in

FGMRES by choosing z;, = My(wy). This again follows from the fact that the FGMRES and
GMRESR residuals are the same if one uses the same search directions. So FGMRES can use
a combination of FGMRES and GMRESR search directions. Using zr = My(s1...s5||ro||2wk)

we can use the same termination criterion in the inner loop as GMRESR ([7]; Lemma 3).

In the following lemma we show that breakdown of FGMRES can be avoided by using an
LSQR switch (for LSQR see [4]).

Definition 2
The LSQR switch is defined as follows: if the FGMRES search direction z;y1 leads to a
singular matrix Hgyq1, then use the following search direction zp4q = Aka-I—l-

Lemma 5

FGMRES with LSQR, switch does not breakdown.

Proof

Suppose the current choice zz41 leads to a singular matrix Hi4q. Then the search direction is
replaced by zpp; = ATwyyq. Since rkFG has the minimal residual property rkFG is perpendic-
ular to span {Azq,..., Az;}. From (rkFG)TAzkH = 51...5k||r0||2wg+1AAka+1 # 0 it follows

that Azp11 € span {Az, ..., Azg}. This combined with
[75ll2 = e = ()T Az /)| Az |3 A2k ll2 < (1 l2

implies that Hy1 is non singular (compare the proof of Lemma 3) and so no serious breakdown
occurs. O

The relation rkFG = S1...5k||r0||wk+1 can be used to give a further explanation of the differences

between FGMRES and GMRESR. In the second iteration we have:
22 e span {M(ro), Ma(vs)}

and

acg;R € span {M1(ro), Ma(s170/||70l|2 + c2v2)},
where we use r{F = 1’0 = s1)|rollzwe = s1]|7ol|2(s1v1 + c1v2). Now it is clear that only if the
operators My, are all equal to the same linear operator M then the FGMRES and GMRESR

results may be the same.

Conclusions

11



If ¢ # 0 the relations rEF = spsp/er]rollavesr (Lemma 1),

FG
i = 51...5k||70||2wk41 (Lemma 4),
and W1 = SpWg + CpVk41 (Definition 1),
) FG  _ 2 .FG | 2. FF
can be combined to Tk = SETR TR

So if |s,,| < 1 then the FFOM and FGMRES residual are close together, independent of the
values of sq,...,5x—1. Furthermore if |s;| < 1 for all & > 1, then My(vg) and Mk(rkF_Gl) =
My (wy) are close together. So if the convergence of FGMRES is fast we expect that the
convergence behaviours of both methods (without restarting) are comparable. However, in
the case of slow convergence there may be a large difference between FGMRES and GMRESR
(this difference depends on sq, ..., sg).

5 New results for GMRESR

In Subsection 5.1 we consider a variant of GMRESR, where the search directions can be
chosen equal to the FGMRES search directions. Thereafter we specify in Subsection 5.2 a
slightly cheaper implementation of the GMRESR method.

5.1 GMRESR with the search direction of FGMRES

In this subsection the expression z ”is equal to” y means  # 0 and « € span {y}. Furthermore
we assume that no breakdown occurs. Considering the FGMRES algorithm we note that vgyq
"is equal to” the component of Az perpendicular to span {rg, Azy, ..., Azp_1}. If we choose

ugj) ”equal to” z it follows that ¢ ”is equal to” the component of Aug) = Az, perpendicular
to span {Azy,...,Azp_1}. Since r?ﬂ ”is equal to” the component of rg perpendicular to

span {Azy, ..., Azi_1} it is easily seen that the vector p; defined by
T.GR

. Tk-1 GR
S PR oy

"is equal to” vj,. So if we choose p; = r{F and

uf) = Mi(py) (5.2)

the algorithms FGMRES and GMRESR lead to the same results in exact arithmetic. Note
that the calculation of p; costs only one extra vector update per outer iteration.

Using the relations (5.1) and (5.2) it appears that GMRESR can also use a combination
of FGMRES and GMRESR search directions. GMRESR combined with (5.1), (5.2) and

truncation is a new method because there is no truncated FGMRES variant.

12



5.2 A faster implementation of GMRESR

Comparing FGMRES and GMRESR it appears that the number of vector updates in the
outer loop of GMRESR is two times as large as for FGMRES. In this subsection we give a
GMRESR version, where the number of vector updates in the outer loop is halved, and thus

comparable with FGMRES.

We give an implementation of GMRESR, such that in the outer loop only the vectors ugﬂl) and

¢y, are calculated. In the final iteration the approximate solution is calculated using the vectors
ug). This implementation can be used in combination with restarting and the truncfirst
truncation strategy (see [9]; Section 3). The number of vectors used in the truncation is

denoted by: ntrunc.

Definition 3
The following quantities are defined for the GMRESR algorithm:

Qg = c?cg), vk = 1/]|ckl|2 and 6 = c;‘frk_l.
We define 3, ; such that

k
ugf) = Zﬁmu;l) for k < ntrunc
7=1

and
. ntrunc—1 1
u;ﬂ ) — g + Z ﬁmu; ) for k > nlrunc,
=1

where t,rune—1 = 0 and

- (0)

Up = uy — Qg k-1 Yk—1 Ug—1 for k > ntrunc.

Combination of the relations given in Definition 3 leads to the following expressions for 3y ;:

Brr = 1
k—1

Br; = -— Z ap; v Bi; for j=1,.. k-1, k < ntrunc,
=7

whereas
nirunc—1
Br; = — Z ag; Vi Bi; — Ak k=1 Yh—1 Br—1,; for 7 =1,...,ntrunc -1, k > ntrunc.
=7

This enables us to calculate 3 ;. Finally we give a relation to calculate the approximation z;
from the vectors ugj). From the GMRESR algorithm it appears that

!
T = 20+ Z Ok Vk uﬁf).

k=1

13



Substituting the relation given in Definition 3 into this equation leads to:

ntrunc—1 k
r = xo+ Z Ok Yk Zﬁm ugl)
k=1 =1
{ ntrunc—1 |
+ > Gemlat DD Bra uf ),

k=ntrunc =1

This can be implemented using the following extra memory: one n-vector to store @y, three
vectors with length ntrunc for ay;, 7, and 0, and a 2-dimensional array with dimensions
ntrunc to store 3 ;. Besides the work to calculate ¢j in the outer loop we use for [ > ntrunc
two vectorupdates to calculate %y and update xg per outer iteration. Finally the approxima-
tion is formed by ntrunc vectorupdates. Note that the amount of memory and work of this

GMRESR variant is comparable with FGMRES.

This approach seems not feasible for other truncation strategies. To illustrate this we look at
the trunclast strategy ([9], Section 3). In this strategy u; and ¢; are discarded after ntrunc
iterations. However, since u; is used in the construction of wus, .., Upsrune these vectors should
be adapted. This costs ntrunc extra vectorupdates, which is as expensive as the original

GMRESR algorithm.

In the order to compare the original FGMRES method and both GMRESR variants (where
the original GMRESR search directions are used) we apply the methods to the test problem
given in Section 3.1. In the following experiments we take h = 1/50 and § = 1. The new
version, without calculation of the vectors ug, is denoted by GMRESR_new. We always apply
one GMRES(m) step as inner iteration process. The results are given in Table 5.1.

m | FGMRES | GMRESR | GMRESR_new
2 1.5 2.1 1.5
3 0.89 1.13 0.85
4 0.69 0.84 0.64
5 0.59 0.69 0.57
6 0.53 0.63 0.53
7 0.49 0.59 0.52
8 0.53 0.56 0.52
9 0.56 0.59 0.54
10 0.54 0.60 0.57

Table 5.1: CPU times for different methods and different values of m.
The CPU time is measured in seconds using 1 processor of a Convex C3820. It appears that

the CPU time of GMRESR_new is comparable with FGMRES. For small m the CPU time
is much less than for GMRESR. For m in the vicinity of the optimal value (m = 8) the
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difference in CPU time is small.

Finally we compare the truncfirst version of GMRESR and GMRESR_new, and the restarted
version of FGMRES. The results for different values of ntrunc or nstart are given in Figure

5.1. Note that GMRESR_new is again faster than GMRIESR, and restarted FGMRES.
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Figure 5.1: The CPU time and number of equations for GMRESR (..), GMRESR_new (-),
and FGMRES (-.).

In both experiments the number of iterations and the approximations of GMRESR and
GMRESR_new are the same.

6 Conclusions

We describe and compare the FGMRES and GMRESR methods. To facilitate the comparison
we describe a new method, FFOM, related to FGMRES. This method is used to show that
the FGMRES search directions are constructed from the FFOM residuals. This insight can be
used to avoid breakdown and to give a termination criterion for the inner loop. Furthermore
it enables us to give a detailed comparison of FGMRES and GMRESR. It appears that
if the convergence of FGMRES is fast then the convergence behaviour of both methods is
comparable.

A variant of FGMRES is given which uses the search directions of GMRESR and vice versa.
Both methods can also use a combination of search directions, for instance the first iterations
GMRESR search directions and then FGMRES search directions. Furthermore, if one method
is implemented then a small change is sufficient to obtain results for the other method.

In the original GMRESR method one uses two times as much vector updates in the outer
loop as FGMRES. We give a new implementation of GMRESR, which uses the same amount
of work in the outer loop as FGMRES. This implementation can be combined with restarting
and the truncfirst truncation strategy.
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