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Abstract

In this paper we consider symmetric and antisymmetric periodic boundary condi-
tions for flows governed by the incompressible Navier-Stokes equations. Classical periodic
boundary conditions are studied as well as symmetric and antisymmetric periodic bound-
ary conditions in which there is a pressure difference between inlet and outlet. The
implementation of this type of boundary conditions in a finite element code using the
penalty function formulation is treated and also the implementation in a finite volume
code based on pressure correction. The methods are demonstrated by computation of a
flow through a staggered tube bundle.

1 Introduction

In many papers and text books ([1] - [8]) discretizations of the incompressible Navier-Stokes
equations are described. However, in general not much attention is paid to the incorporation
of boundary conditions. But for engineering applications the implementation of adequate
boundary conditions is equally important for accuracy as the formulation and discretization
of the differential equations itself. In this paper we shall consider three types of periodic and
anti-periodic boundary conditions, namely

- periodicity in velocity and pressure
- periodicity in velocity and periodicity in pressure gradient
- antisymmetric periodicity in velocity and pressure gradient
The last two boundary conditions are combined with prescription of a given flow rate.

Pure periodic boundary conditions arise for example in the case of an artificial cut in a region.
Such artificial cuts naturally arise in the computation of a flow around an obstacle by finite
volume techniques.

Periodicity in velocity and pressure gradient in combination with a prescribed flow rate nat-
urally arises in the case of a periodically repeated configuration.



For example, experiments in a bundle of 7 horizontal staggered pipes (Figure 1) by Simonin
and Barcouda (1988) [7], show that for water flowing upwards at an average velocity of 1.06
m/s the flow becomes periodic around the fourth row from the bottom. Hence for the flow
in the interior it suffices to compute the flow in the dashed computational region only. In
this example the boundaries I'y, 'y and I's are symmetry boundaries, whereas I'y and I's are
periodic boundaries. In order to have a flow it is necessary that the pressures at left-hand
side and right-hand side differ a constant. This unknown constant may be given implicitly
by prescribing the flow rate ).
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Figure 1: Computational region in array of staggered pipes with periodic boundary conditions.

In this particular problem it is possible to reduce the computational domain still further by
halving, as shown in Figure 2. In that case the boundary conditions at the boundaries I'y
and I's are antisymmetric periodic instead of symmetric.

Periodic boundary conditions with a given flow rate in combination with finite element meth-
ods have been treated by Fortin [2]. He uses an Uzawa-type scheme to solve the incompressible
Navier-Stokes equations. We shall extend his ideas to antiperiodic boundary conditions in
combination with a penalty function formulation.

Peri¢ [5] treats anti-symmetric periodic boundary conditions in combination with a finite vol-
ume method. He uses artificial cells at the inlet and outlet which are copies of the cells at the
other side. Starting with some initial field, the flow at the next time-step is computed. As
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Figure 2: Computational region in array of staggered pipes with anti-periodic boundary
conditions.

boundary conditions at inlet and outlet the computed velocities at the corresponding other
sides are copied from the preceding iteration. By iterating this process converges to the cor-
rect values. However, this process requires approximately 2 to 3 times the usual number of
iterations.

2 Formulation of the problem

We consider the instationary incompressible Navier-Stokes equations in general co-ordinates

0 o N
5 (PUS) + (pUU) 5+ (9°7p) 5 =7 = of (1)

Us =0 (2)
where 77 represents the deviatoric stress tensor
rab — Iu(gong —I—‘(]WﬁU%), (3)

with p the viscosity, p the pressure, U® the contravariant velocity component and p the density
of the fluid. In this formulation the standard tensor notation with summation convention is



used. ¢°” represents the metric tensor. See Segal et al [6], Oosterlee and Wesseling [4],
Wesseling et al [11], and Mynett et al [3] for the details. In our present study we restrict
ourselves to laminar, stationary flow although the work is motivated by a turbulent problem.

For the sake of argument we restrict ourselves to a rectangular domain as shown in Figure 3
with periodicity at the inlet and outlet boundaries I'y and I's. We consider the following
types of periodicity:

r
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Figure 3: Periodicity at a rectangular domain.
- pure periodicity
In this case the boundary conditions are given by
Wleft = UWright » Pleft = Pright,
Ju Ju
a_n|left = _a_n|right7 (4)

which u the velocity vector, and n the outward directed normal. The subscript left
and right indicate that the values at the left respectively right-hand side are meant. Of
course . and p may vary along these boundaries.

- periodicity with unknown jump in pressure

The boundary conditions for the velocity are the same as in (4) however there is a
constant pressure difference between left-hand side and right-hand side.

So
Uleft = Upight » (5&)
ou ou
e = TS r ) 5b
8n|l st 8n| ght (5b)
Dieft = DPright T¢ (5¢)



To fix the unknown constant ¢ an extra condition is necessary. It is quite natural to
prescribe the flow rate @:

Q:—/u-ndf (6)

I
- anti-symmetric periodicity with unknown jump in pressure

This boundary condition very much resembles that of (5a - 5c¢), (6). However, the
tangential velocity component and the tangential direction get opposite signs. Hence:

u - n(y)|left = u- n(ytop - y)|right7 (7&)
u - t(y)|left = —Uu- t(ytop - y)|right7 (7b)
Ju-n Ju-n
W(y)heft = _W(ytop - y)|right7 (7C)
ou -t Ju -t
on (y)|left = 8—n(ytop - y)|right7 (7d)
p(y)|left = p(ytop - y)|right + ¢, (76)

where t is the tangential vector, which is taken from bottom to top.
Furthermore, condition (6) holds.

3 Solution by finite element techniques

To solve the incompressible Navier-Stokes equations, the standard Galerkin approach (SGA)
is applied in this section. We restrict ourselves to extended quadratic triangles of Crouzeix
Raviart type (see Cuvelier et al [1]). Hence the velocity per element is approximated by
an extended quadratic polynomial, and the pressure per element is a linear discontinuous
polynomial.

With respect to the boundary conditions of section 2 we have to deal with two problems. One
is the incorporation of periodic or anti-symmetric periodic boundary conditions. The other
one is the incorporation of the given flow rate and corresponding unknown pressure constant
c.

To implement the periodicity the unknowns at left-hand side and right-hand side are identified,
which means that they refer to the same unknown. In the case of anti symmetric periodicity
the sequence of the unknowns along the sides is reversed. Furthermore, the nodal points
at left-hand side and right-hand side are coupled by so-called connection elements. These
connection elements are nothing but dummy elements which indicate that with respect to
the topology elements at the left-hand boundary are connected to elements at the right-hand
boundary, although the co-ordinates are different.

If we denote the discretized velocities at the left-hand boundary by w; and at the right-hand
boundary by wu,, the relations (5a) or (7a) and (7b) may be written as:

w; = Du, , (8)



where D is a diagonal matrix containing diagonal elements 1 and -1 in the case of anti-
symmetric boundary conditions and D is equal to the identity matrix in case of a symmetric
periodic boundary condition. In fact our approach allows for general diagonal matrices D.
Now suppose that the system of equations to be solved is denote by

Su=f (9)

We split the vector w into three parts w;, u, and u;, where u; denotes all unknowns not
present at left-hand or right-hand boundary. The matrix S and the right-hand-side vector f
are split correspondingly. Then system (9) can be written as:

S Sa Si u; fi
Si Su Si u; I (10)
Sri Srl STT Uy -fT

If we substitute relation (8) into (10), multiply the second equation by D and add the third
equation to the second one, equation (10) reduces to:

S + (SuD + Sip)u, = fi (11a)
(DS + Spi)ui + (DSuD + (SyD + DSpy) + Sy )ur = D fi + f (11b)

The multiplication is performed in order that the new matrix is still symmetric if the original
matrix 5 is symmetric.

The implementation of (11a) and (11b) is straightforward in a finite element context. Before
constructing the large matrix, it is sufficient to multiply the rows and columns corresponding
to unknowns positioned at the left-hand boundary by the appropriate diagonal element. In
the same way the element vector must be updated.

Finally in the post-processing stage relation (8) must be incorporated in order to get the
overall velocity vector.

The implementation of the constraint (6) is done in penalty variant of the method described
by Fortin [2].
Discretization of (6) gives a linear relation:

Ru =0, (12)

where R has non-zero contributions for all normal components of the velocity at the boundary.
In case of a stationary Stokes equation the discretization of the equations (1) - (3) under the
constraint (12) may be regarded as a minimization problem of the form:

: 1 T T
min S Su—u'F, (13a)
under the constraints
Lu = 0, (13b)
Ru = Q, (13c)



Here Swu represents the discretization of the stress tensor, F the discretization of the right-
hand side and Lu = 0 the discretization of the continuity equation.

One immediately shows that the Kuhn-Tucker relations associated with (13a-13c) can be
formulated as:

Su+ LTp+ RTA=F, (14a)
Lu = 0, (14b)
Ru = Q. (14c)

In the case of a continuous pressure approximation with pressure unknowns at the boundary
of the element (Taylor-Hood element), the parameter A may easily be identified with the
unknown constant ¢ in (7e). In the case of a discontinuous pressure approximation, such an
identification is no longer clear, although one may expect a strong relation between A and c.

From (13a-13c) it is quit trivial that the penalty function formulation of the stationary Navier-
Stokes equations under the constraint (12) becomes;

Su+ N(u)u+ o1 L Lu+ 0;R"Ru = F + 0, RTQ, (15)

where o1 and oy are penalty parameters and N(u)u denotes the discretization of the con-
vection terms.

The matrix oo RT R and the right-hand-side term o, RTQ are built using an element con-
taining all normal components of the velocity at the inlet. The boundary conditions for the
pressure are satisfied implicitly by formulation (15).

4 Solution by finite volume techniques

Our finite volume discretization of the incompressible Navier-Stokes equations is based on
a boundary fitted staggered approach as described in [6], [4], [9], [3]. The curved grid is
mapped onto a rectangular domain and the invariant formulation (1) - (3) of the Navier-Stokes
equations is used. With respect to the mapping it is supposed that only co-ordinates of the
vertices of the cells are known. All geometrical coefficients including Christoffel symbols are
computed by finite differences of the co-ordinates. In order to decouple velocity and pressure
computation a standard pressure correction method as described by van Kan [9] is used. The
nonlinear equations are linearized by a standard Newton linearization and the systems of
linear equations are solved by a preconditioned GMRESR method [10].

The position of the unknowns in the staggered grid in the computational domain is sketched
in Figure 4.
In order to incorporate the periodic boundary condition (5a) or the anti-symmetric boundary
condition (7a) the equations for the normal velocity components at the inlet boundary are
replaced by trivial equations making velocity components at left-hand side and right-hand
side identical:

u - n|inlet =u- n|outlet- (16)
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Figure 4: Position of unknowns in staggered grid

In the anti-symmetric case of course the correct unknowns must be coupled. In order to
prescribe the other types of periodic boundary conditions, both at the left-hand side and
right-hand side a column of virtual cells is introduced, see Figure 5.
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Figure 5: Extension of computational domain with virtual cells
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The virtual unknowns in the virtual cells, however, are in fact the real unknowns at the
other side taking the possible anti-symmetry into account. Of course in the virtual pressure
unknowns it is necessary to incorporate the unknown pressure jump constant ¢ from equation
(5¢). The standard finite volume method is applied for all internal velocity unknowns, but
also for the normal components at the outlet boundary.

In this way we get the following system of instationary non-linear equations:

Mu—l—Su—l—N(u)u—l—GTp—l—G’Tc:F, (17a)

Du = 0, (17b)



Ru = Q. (17¢)

Su, N(u)u, Ru= Q and F have exactly the same meaning as in (14a-14c), although their
contents are completely different. GTp represents the discretization of Vp except for the
unknown constant, whose contribution is stored in G"c. Mark that the matrix G has only
non-zero entries in the points connected to inflow and outflow boundary. Du = 0 gives the
discretization of the continuity equation and Mw the discretization of the time derivative.
In fact M is a diagonal matrix containing the value of p multiplied by the area of the corre-
sponding control volume as diagonal elements.

In order to solve equations (17a-17c) the standard Newton linearization is applied. Fur-
thermore we extend the pressure correction method as described by van Kan [9] in order to
incorporate the unknown ¢ and the extra equation (17c).

If we apply a standard #-method to (17a-17c), we get the following system of non-linear

equations:
un—l—l —u” B B - -
M———— + 9Su"t + (1 - 0)Su"™ + G p"t + (1 - )G p"
+ G T L (1-0)G e = 9" (1 - 0)F" (18a)
Du"tt = o, (18h)
Ru"t! = 0. (18¢)

Here S denotes the contribution of § and the matrix part of the linearization of N(w)u. The
right-hand side part of the linearization is put into the term F'.

Now we follow the usual approach with respect to pressure correction, where we treat the
constant ¢ in exactly the same way as the pressure p. Hence in equation (18a) u™*! is replaced
by a predictor «* and p and ¢ are only introduced at the preceding time-level:

M%—I—HS’u*—I—(l—O)S'u”—I—GTp”—I—G’TC” = Fn-l_e , (19)
in which Fn-l_e — g™ +(1- H)Fn The velocity field u* does not only has to be projected
on the space of divergence-free vector fields but also on those fields satisfying (17¢). For that
reason (19) is subtracted from (18a) and all terms involving S are neglected just as in the
standard pressure-correction method. This yields:

u”t!

MY 6T~ ) + 06T (- o) = 0 (20)

If we pre-multiply equation (20) by DM ™! respectively RM ™' and apply equations (18b)
and (18c) we get:

Du* ,
- Ali + DM GT(p"! — p™) + DM 'GT (! — ) = 0, (21)
— Ru* _

% FORM'GT(p" — p") + ORM'G (" — ) = 0. (22)



Since RM~'G" is a number ¢"+! — ¢" may be eliminated from (22) in order to get

n n -1 — n n Q — Ru*
= (ORMUGT () 4 ), (23a)
~1 —1~T
) G"RM'GT . Duw
DM~ (G ———)(p"' —p") =
RM™'G At

DM'G" Q - Rw
RM-'GT At

(23b)

Equation (23b) is a modified Laplacian-type equation to compute the pressure correction.
From this correction ¢t — ¢" is computed by (23a) and finally uw"*! — 4" from (20).

Since we use an iterative linear solver it is not necessary to compute the matrix DM_I(GT —
~T —1 ~T

%) explicitly. Tt is sufficient to program the corresponding matrix-vector multipli-
cation. This is an important observation since the computed matrix is a full matrix, whereas
each of its submatrices are very sparse. With respect to the preconditioning we limit ourselves
to an incomplete LU decomposition of the matrix DM ~!. The numerical experiments treated

in section 5 indicate that is a rather good preconditioner.

5 A numerical example

In order to test the methods described in sections 3 and 4 we consider a flow of water across
a bundle of staggered pipes as shown in Figure 1. The computational region as plotted in
Figure 2 is considered, which means that the anti-symmetric periodic boundary conditions
must be applied.

The diameter of the pipes is 10.85 mm, the distance between the centroids of neighbouring
pipes is 45 mm both in horizontal as in vertical directions. The mean velocity Vy (from
left to right) at the inlet is 1.06 m/s, which implies that the flow rate @) is given by @ =
0.01235 m?3/s. The Reynolds number Rep is related to the diameter D of the pipes. Following
Peri¢ [5], who solved a similar problem, the flow has been computed for three Reynolds
numbers: Rep = 15,45 and 140.

Figure 6 shows the finite element mesh used, including the connection elements, which were
introduced because of the antisymmetric periodicity. The corresponding finite volume grid is
given in Figure 7.

The finite element method has been solved by a penalty method and a direct linear solver
(profile method). In this stationary code 4 (Rep = 15) to 6 (Re = 140) Newton iterations
were necessary to converge to the final solution.
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Figure 6: Finite element mesh for staggered tube problem, including connection elements

Figure 8 shows the computed streamlines for Rep = 140 and Figure 9 the corresponding
isobars. In order to get a clearer view of the flow and pressure distribution the computed
results have been copied to a region consisting of 4 computational blocks.

[T

[T

Figure 7: Finite volume grid for staggered tube problem
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Figure 8: Streamlines in tube problem for Rep = 140

Of course in the p copying of the pressure the unknown constant ¢ is taken into account.
Figures 10 and 11 show the stream lines and isobars in the compound region. The expected
recirculation regions are clearly visible, just as is the case with regions of low and high pressure.

Jﬁ@@

Figure 9: Isobars in tube problem for Rep = 140
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Figure 10: Streamlines in compound region consisting of 4 computational blocks

The finite volume code is instationary and based on pressure correction. The linear systems of
equations were solved by a GMRESR iterative solver. The converged results were very similar
to the results of the finite element code. In fact the contour plots showed no visible difference.
The convergence of the constant ¢ showed exactly the same behaviour as the convergence of
the pressure to reach the stationary state. Figure 12 shows the constant ¢ as function of time.
It is clear that our algorithm gives a very good convergence.

Figure 11: Isobars in compound region consisting of 4 computational blocks
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To converge to steady state 75 time-steps At, with At = 0.001 s were necessary. The iterative
solver for the momentum equations needed approximately 80 iterations for each time-step.
The number of iterations for the pressure equations was about 100 per time-step, in the
non-preconditioned case. Preconditioning of the pressure matrix as described in section 5
decreased the average number of iterations to 7. This shows that preconditioning based on
the incomplete LU of the pressure part of (21) - (22) is an excellent preconditioner for the
complete system (23b).
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Figure 12: Convergence of the unknown constant ¢ as function of time. At = 0.001

Conclusions

Two algorithms to implement periodic and antiperiodic boundary conditions in combination
with a given flow rate and unknown jump in the pressure have been derived. It has been
demonstrated that these algorithms converge fast and are very well suited for their purpose.
Although both algorithms are completely different and must be applied in different techniques
for the solution of the incompressible Navier-Stokes equations they both converge to exactly
the same solution.
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