Solution of the incompressible
Navier-Stokes equations in general
coordinates by Krylov subspace and
multigrid methods

Report 93-64

S. Zeng
C. Vuik
P. Wesseling

I U D e I f‘t Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft

Delft University of Technology

ISSN 0922-5641

Copyright © 1993 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone +3115784568.

A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They arelocated in the directory /pub/publications/tech-reportsat ftp.twi.tudeft.nl

Solution of the Incompressible Navier-Stokes Equations
in General Coordinates by
IKrylov Subspace and Multigrid Methods

S. Zeng C. Vuik P. Wesseling

June 21, 1993

Abstract

In this paper three iterative methods are studied: preconditioned GMRES with ILU
preconditioning, GMRESR with multigrid as inner loop and multigrid for the solution of the
incompressible Navier-Stokes equations in general coordinates. Robustness and efficiency of
the three methods are investigated and compared. Numerical results show that the second
method is very promising.

1 Introduction

In this paper we investigate three iterative methods for the solution of the incompressible
Navier-Stokes equations discretized by a finite volume method on a staggered grid in general
coordinates.

The resulting algebraic equations are solved by using a pressure correction scheme [3],
which at each time step gives rise to two systems of equations: one for the momentum equa-
tions and one for the pressure equation. These systems are usually very large, and in general,
the matrices are non-symmetric. For the solution of such non-symmetric large problems,
GMRES type methods ([5],[7],[9]) are popular. They are robust and have relatively good rate
of convergence. Multigrid methods, have developed rapidly during the past decade. For in-
formation on multigrid, see [2] and [11]. Multigrid methods are very suitable for solving large
systems of equations resulting from discretization of partial differential equations. Multigrid
methods are efficient and are able to solve problems to the accuracy of truncation error at
O(N) computational cost, where N is the number of unknowns.

It is desirable that a method is both robust and efficient. A method is robust if it can
be applied to a large class of problems, and a method is efficient if it needs little CPU time
(in comparison with other methods, of course). The original GMRES method, introduced
in [5], is relatively expensive, since CPU time per iteration and memory grow as the num-
ber of iterations increases. An effective way to improve performance of iterative methods
is preconditioning. Some investigations on the improvement of performance of GMRES by
preconditioning can be found in, for example, [9] and [10]. Another variant, called GMRESR,
is proposed in [7]. This method uses GMRES twice in an inner loop and an outer loop, with
the inner loop providing a good search direction for the outer. With this method, one can
easily use a different preconditioner at each iteration. The performance of GMRESR, is inves-
tigated in [7] and [8] by numerical experiments. Results show that GMRES with ILU type
preconditioners and GMRESR are satisfactorily robust and efficient. GMRES type methods
can be rather easily implemented on vector computers, because most of the arithmetic op-
erations concerned in these methods are matrix-vector multiplications, vector updates and
inner products. So numerical experiments show that preconditioned GMRES type methods
have satisfactory efficiency. For multigrid methods, the performance depends highly on the
performance of smoothers. Often simple smoothers are efficient but not robust, whereas com-
plicated smoothers are not easily efficiently implemented on vector computers, but are robust.
For difficult problems, as for example Navier-Stokes in general coordinates, simple smoothers
like those of point Jacobi type often fail. Therefore complicated smoothers like ILU should
be used. However, vectorization and parallelization potential of such smoothers is not great.
It is observed that with refinement of grids, GMRES type methods become less efficient, as
the number of iterations required increases. But multigrid methods, as long as they work,
preserve the property of computational cost proportional to O(N). This fact suggests that a
combination of GMRES type methods with multigrid methods could give good results.

The combination can be realized through GMRESR, in which the inner loop is replaced
by a multigrid method.

In this paper, three methods are studied numerically and compared, which are a precon-

ditioned GMRES method (Method 1), the GMRESR method with a multigrid method as its

inner loop (Method 2) and a multigrid method (Method 3). The outline of this paper is as
follows. In section 2, the discrete systems are discussed. The three iterative methods are
described in section 3. Section 4 deals with test problems and presents results. Finally, in
section 5 we draw conclusions.

2 The Discrete Systems

2.1 The Discrete Systems

We consider the discrete systems resulting from finite volume discretization of the incompress-
ible Navier-Stokes equations in general boundary fitted coordinates on a standard staggered
grid. For details about our discretization method, see [4], [6] and [12]. With the so-called
f-method for time discretization, we obtain the following discrete systems:

Vn—l—l N VA

A POV 0GP ™ 4 (1-6)Q(V") + (1 - 6)Gp”

= 6B" +(1-6)B",
DVl = ¢

~~
N DN
[\

for the momentum equations and the continuity equation, respectively. Here V and p are
discrete grid functions, representing velocity components and pressure. The variable ¢ is the
time. The superscripts indicate the time level, and At is the time interval. The parameter 6
is in [0,1]. The operator Q' is nonlinear, and is linearized, for instance for a typical nonlinear
term (VU)"t in Q' at time level n + 1 by using Newton’s method:

(VU)yrtt = yrttgn ¢ yrgett (v, (2.3)

This gives

Q/(Vn-l—l) — len-l—l + QQ(Vn) (24)
with Q linear and both Q; and Q3 calculated at time level n. Central differencing is used
in space discretization.

2.2 The Pressure Correction Scheme

The system of equations (2.1) and (2.2) is solved by using the pressure correction method [3],
as follows. Let us denote a generic system to be solved by

Ax = b. (2.5)

First the momentum equations are solved. So (2.5) with

1
A=—I+94 =V*
AL + Q17 X 9

b= 6B" 1 (1— 6)B" + évn _0Qu(VM) = (1- 0)Q(V") = Gp" (2.6)

is solved to give V* which is an intermediate result for the velocity. Then the pressure
equation, which is derived from the momentum equations and the continuity equation, is

solved: DV~
A =60DG, x=p"" —p", b=— . (2.7)
At
Now p"*! is obtained. V1! is easily computed from V* and p”*! by means of
Vn—l—l _ V*
— = 4G(p"T — p"). 2.8
N (p p") (2.8)

In our numerical experiments, the parameter 8 will be fixed at 1, which leads to the backward
Euler method.

3 Algorithms

3.1 GMRES with ILU Preconditioning

If the linear equation system to be solved is represented as (2.5), then the original GMRES
algorithm with restart after every m iterations is denoted as GMRES(m) and is given by:

Algorithm GMRES(m)
begin
Choose: m, initial x
restart = .false.

10 r=b - Ax
r= |z
if (not.restart) ro = r
if (r/ro > tol) then
u =r/r
for 1< j<mdo
c=Au;
Uj+1 =€

for1<:<jdo
hi; = cl oy
Wit 1= Wi — fgjug
od
hivri = l[wjl
Wiy = Wi /g
od
x:=x+ U,y : Yy, minimizes ||re; — H,y||,y € R™
restart = .true.
goto 10
end if
end Algorithm GMRES(m)

Here, U,, is a matrix whose columns consist of the [y-orthonormal basis {uy,ug,- -, u,},
H,, is an (m 4 1) X m matrix whose non-zero elements are hijfor i =1,2,---,m+ 1 and
Jj=1,2,---,m. e is the first column of the (m + 1) X (m + 1) identity matrix. tol is the
accuracy tolerance factor. How to compute y,, such that y,, minimizes ||re; —H,y||,y € R™
is described in [5], where also practical implementation of the algorithm is discussed. So we
do not get into further details. When incorporating preconditioning, GMRES(m) solves the
preconditioned system

A'x =b (3.1)

instead of (2.5), where A’ = C71A and b’ = C~'b, with C being the preconditioner. The
RILU preconditioning (cf. [9],[10]) is used, combining the ILUD preconditioning with the
MILUD preconditioning for the momentum equations and the standard ILU preconditioning
with the MILU preconditioning for the pressure equation, as follows:

for the momentum equations,

RILUD = aILUD + (1 — a)MILUD:; (3.2)

for the pressure equation,

RILU = olILU 4 (1 — a)MILU. (3.3)

The ILUD preconditioner is constructed as follows:

1. C=LD'U;

2. diag(L) = diag(U) = D;

3. the off-diagonal parts of L and U = the off-diagonal parts of A;

4. diag(LD™1U) = diag(A).
MILUD is obtained by using

4a. the sum of the row elements of LD~!U = the sum of the row elements of A.

instead of the last line for ILUD. The standard ILU preconditioner is obtained by requiring

1. C = LU;

2. diag(L) =1T;

3. the non-zero structure of L + U = the non-zero structure of A;

4. the non-zero part of A = the corresponding non-zero part of LU
We have MILU by replacing the 4-th line for standard ILU by

4a. the non-zero off-diagonal part of A = the corresponding non-zero off-diagonal part of
LU;

4b. the diagonal elements of U are modified such that for a row, the sum of the row elements
of LU = the sum of the row elements of A.

Details about GMRES combined with preconditioning and applications to the solution of
the incompressible Navier-Stokes equations can be found in [9] and [10]. In our experiments,
m = 20 and @ = 1 for the momentum system and m = 40 and a = 0.975 for the pressure
system.

3.2 GMRESR with Multigrid

The GMRESR algorithm introduced in [7] allows us to use various and different precondi-
tioners at each iteration and is given by:

Algorithm GMRESR
begin
Choose: tol, initial x
r=b— Ax
E=-1
comment Outer iteration
10 7=]
if(k=-1)ro=r
if (r/ro > tol) then

E=k+1
comment Inner iteration is in the procedure '
u, = C(A,r)
¢, = Au
for0<:<k-1do
T

a=c; -c
CL = ¢ — ag;
uy = Uy — aug

od
¢ = cx/||ex|l
uy, = ug/||ex|
0= c;‘f -r
X:=x+ fu
r:=r— fecg
goto 10

end if

end Algorithm GMRESR

C(A,r)is the preconditioning procedure, which is to be replaced by any algorithm that gives
an approximation for the solution, with r as the right-hand side. Here, it is a call to a linear
multigrid algorithm, and gives uy as return. Clearly, as k increases, the memory required
increases. So in [7], the truncated GMRESR algorithm is suggested, or better still the so-
called min o variant of truncated GMRESR ([8]). Here, we use the truncated GMRESR
algorithm (trunclast version, see [8]), which is given here for completeness:

Algorithm Truncated GMRESR

begin
choose nt, tol, initial x
r=b— Ax
k=-1
comment Outer iteration
10 7= ||
if(k=-1)ro=r
if (r/ro > tol) then
k=k+1

k1 =mod(k,nt)+ 1

comment Inner iteration is in the procedure '

up = C(A,r)
cip1 = Au
if (k > nt) then
is=k—nt+1
else
s =0
end if

foris<i<k-1do
k2 = mod(i,nt) + 1
o= C£1 - Cp2
Cr1 := Cp1 — QCp2
Ukl '= Ugp — QUg2

od

Cr1 = Ckl/HCle

Ug1 = ukl/”Cle

f= C;}F1 r

X=X+ fuy

r:=r— Jci

goto 10

end if
end Algorithm Truncated GMRESR

In this algorithm, the vectors from the last nt — 1 outer iterations are used. This truncated
GMRESR algorithm is the algorithm used in our numerical experiments. The number nt = 15
(which, however, is not exceeded in our experiments, meaning that in this case the truncated

GMRESR is equivalent to full GMRESR).

3.3 The Linear Multigrid Algorithm

The linear multigrid algorithm called in GMRESR is as follows. The F-cycle is used, with one
pre- and one post-smoothing. The smoother performs an alternating Jacobi line smoothing,
which consists of one horizontal line iteration followed by one vertical line iteration. The

momentum equations are smoothed in a decoupled way, i.e., the alternating line smoothing
is applied sequentially to the momentum equation in successive directions. Variables are
updated after each line Jacobi iteration with damping:

X 1= X + wéx, (3.4)

where w is an underrelaxation factor. Now we restrict ourselves for brevity temporarily to
two dimensions. The coarsest grid in the numerical experiments is fixed at 2 X 2 and exact
solution is obtained by using a direct solver. The underrelaxation factor w is taken to be 0.7
for both the momentum equations and the pressure equation.
Coarse grid equation systems are formulated by using Galerkin coarse grid approximation
(GCA):
Al =RA™MP, bl =RbH, (3.5)

where [is the grid level index, which is 1 for the coarsest grid, and R and P are the restric-
tion and prolongation operators. The momentum equations (2.6) in two dimensions can be

represented by
All A12 Vl bl
A* A Vv b?

and the pressure equation by
A%p =Db®. (3.7)

Therefore, Galerkin coarse grid approximation is carried out from grid level /41 to grid level {
as follows:

All(l) A12(l) RlAll(l—I—l)Pl R1A12(l—|—1)P2
(A21(l) A22(l)) = (R2A21(l—|—1)P1 R2A22(l—|—1)P2) ’ (38)
bl R1pl+1)
b2() = R2p2(i+1) (3.9)
for the momentum equations and
A33(l) — R3A33(1+1)P3, b3(l) — R3b3(l-|—1) (310)

for the pressure equation. An algorithm is presented in [16] for efficient implementation of
GCA for systems of equations. The restriction operators R' and R? use the so-called hybrid
interpolation, which, for example for R!, takes place by using the adjoint of bilinear interpo-
lation for V! in direction 1 but the adjoint of piecewise constant interpolation in direction 2.
R? uses the adjoint of piecewise constant interpolation. The prolongation operators P!, P?
and P2 use bilinear interpolations for V!, V2 and p. Near boundaries, R and P need to
be modified. For restriction operators, we use Dirichlet boundary conditions. But for pro-
longation operators, we employ Neumann boundary conditions. These prolongations and
restriction are also applied to the prolongation of coarse grid corrections and the restriction
of residuals. See [15] for more detailed descriptions of transfer operators.

When the multigrid algorithm is used as the inner loop in GMRESR (Method 2), only
one multigrid iteration (one F-cycle) is performed. When it is used as a multigrid solver
(Method 3), the maximum number of cycles is limited to 20.

4 Numerical Experiments

4.1 Test Problems

Four test problems are considered, which are the square driven cavity problem with uniform
and non-uniform grids, the skewed driven cavity problem and the L-shaped driven cavity
problem, as illustrated in figure 4.1. For convenience, we refer to these problems as Problem 1,
Problem 2, Problem 3 and Problem 4, respectively. These problems give rise to different
difficulties. We study these problems for two Reynolds numbers Re = 1, 1000, three time
intervals At = 0.0625, 0.125, 0.25, and three grid sizes 32 x 32, 64 X 64, 128 x 128. The number
of time steps is 40. Solution at each time step terminates if the ratio of the residual norm to
the initial residual norm ||r||/||ro|| < tol, where tol = 10~* for the momentum equations and
tol = 107° for the pressure equation. Computations are performed on an HP 730 workstation.

4.2 Results

Tables 4.1-4.4 give the total CPU time ¢;, the CPU times ¢, and ¢, spent on the solution of the
momentum equations and the pressure equation, respectively, and the numbers of iterations
k, and k, at the final time step. For Method 1 (GMRES), the number of iterations is the
number of GMRES iterations; for Method 2 (GMRESR with multigird), it is the number of
GMRESR iterations; for Method 3 (multigrid), it is the number of Multigrid iterations. Also
presented are the reduction factors p, and p,, which for Method 2 are the reduction factors
of the multigrid algorithm in the last GMRESR iteration at the final time step, and for
Method 3 are the reduction factors of the multigrid algorithm in the last multigrid iteration
at the final time step, for the solution of the momentum equations and the pressure equation,
respectively. CPU time is given in seconds. Note that t; # t, 4+ ¢,, because t; includes
generation of matrices and some other things. The CPU time spent on the computation of
GCA is not counted in 7, and ?,,, and is small and negligible. In the columns for #;, ‘d’ means
that the method does not converge. A number following a ‘d’ indicates the time step when
the computation is broken down. These numbers with a star ‘+’, indicate that the limit of
number of iterations is reached before the accuracy requirement ||r||/||ro|| < tol is satisfied,
but the corresponding methods still work.

We first discuss efficiency. On the 32x 32 grids, Method 1 is the fastest one. Method 2 and
Method 3 are approximately equivalent. On the 64 X 64 grids, Method 2 becomes competitive
with Method 1. Method 3 now is the slowest. On the 128 x 128 grids, Method 2 turns to
be the most efficient one in most of the cases. Method 3 surpasses Method 1 in many cases.
As grids are refined, computational cost for Method 1 grows significantly, since the number
of iterations needed to solve the pressure equation is largely increased. Method 3 can keep
about a factor of 4 increasement of computational cost from a coarse grid to the next fine
grid, which conforms the multigrid theory that computational cost is proportional to O(N).
Method 2 is somewhat superior to Methods 1 and 3, combining the advantages of the two
methods. Method 2 also seems to have O(N) computational complexity, and needs less CPU
time than Method 1 in most cases and than Method 3 in almost all cases, on the 128 x 128
grids. The solution of the pressure equation consumes most of CPU time in Method 1, while

T

C. d.

Figure 4.1: The four test problems and the 32 x 32 grids: a. The square driven cavity problem;
b. The non-uniform square driven cavity problem; c. The skewed driven cavity problem; d.
The L-shaped driven cavity problem

in Methods 2 and 3, solution of the momentum equations is more expensive than the pressure
equation. With larger time step At, the solution of the momentum equations needs more
time. For Method 2, the number of (outer) iterations for the solution of the pressure equation
is almost independent of At and grid size. Method 2 is faster than Methods 1 and 3 on fine
grids. Method 2 is a method to accelerate Method 3, and is indeed faster than Method 3.
For the pressure Method 2 is significantly faster than Method 1. It might be worthwhile to
use Method 2 for the pressure and Method 1 for the momentum, when the Reynolds number
is large.

Now we discuss robustness. Method 3 has more cases in which it fails than the other
two methods. It is known that even if an operator on the finest grid has the K-matrix
property, which is necessary for good smoothing, it gradually looses the property on coarser
grids under GCA (cf. [13],[14],[17]). Furthermore, because of central differencing, diagonal
dominance disappears when the time step and the Reynolds number are too large, which also
deteriorates smoothing. With this Jacobi line smoother, Method 3 is not very robust. But
when it is incorporated with GMRES, yielding Method 2, robustness is improved very much;
Method 2 is of the same robustness as Method 1. Although Method 2 has 4 failure cases and
Method 1 has 6, it is hard to say now which one is the most robust. It is surprising that when
the inner loop of Method 2, which uses Method 3 with only one cycle, fails (p > 1), Method 2
still sometimes works rather well, within the 40 time steps used, and the number of outer
iterations is smaller than for Method 1. It seems that the low Reynolds number cases are
harder to solve for Method 1, but for Method 3, the high Reynolds number cases are harder.
Both the high and low Reynolds number cases become easier for Method 2, combining the
advantages of Method 1 and Method 3.

5 Conclusions

Three iterative solution methods, namely GMRES with ILU preconditioning, GMRESR com-
bined with multigrid and a multigrid method, are applied to solve the incompressible Navier-
Stokes equations in general curvilinear coordinates. Their efficiency and robustness are inves-
tigated numerically for four test problems. On coarser grids, Method 1 is the most efficient.
With grid refinement, it is surpassed by Method 2, and also by Method 3 in many cases.
Method 2 is most efficient on larger grids. Method 1 and Method 2 are equally robust.
Method 3 is less robust one.

Computing time are reported for a scalar machine. On vector computers, the conclusions
for efficiency may be different, because, as pointed out earlier, Method 1 has greater potential
of vectorization than Method 3 and therefore than Method 2 as well. A subject of future
research is whether for Method 1 the gain from increasing computation speed can compensate
the loss due to the significant growth of number of iterations as the grid gets finer. For
Method 3, we used a rather weak smoother. If we use more powerful smoothers such as ILU,
its robustness will certainly be improved. Another benefit from using smoothers like ILU
is the reduction factor can be reduced. However, for the reasons stated before, more time
is needed to carry out one iteration, which deteriorates efficiency. So whether application
of more powerful smoothers can be made efficient while enhancing robustness is another

10

subject of future research. It might pay off to use different methods for the pressure and the
momentum.

Method 2 is very promising. Our future research, therefore, will pay equal attention to
Method 2.

Acknowledgement

The authors would like to thank their colleagues C.W. Qosterlee and I5. Brakkee for help in
generating the grids and for useful discussions.

11

Table 4.1: Problem 1: the total CPU time ¢;, the CPU times ¢, and ?,, the numbers of
iterations k, and £, at the final time step, and the reduction factors p, and p, of the multigrid
algorithm in the last iteration at the final time step

Re=1 Re = 1000
Grid | At t, toty | koky | puipy t toty | koky | puipp
Method 1
32 | .0625 18 7, 4| 13,17 131 2, 5] 417
x | 125 19 8, 4| 15,17 4] 3, 5] 6,18
32 | .25 20 9, 516,17 15| 4, 5| 816
64 | .0625 || 141 | 68, 41 | 21,25 85 | 15, 41| 6,26
x | 125 154 | 84, 42 | 24,25 88 | 18,42 | 7,26
64 | .25 171 | 99, 42 | 29,26 94 | 25, 41| 10,25
128 | .0625 || 1405 | 820,463 | 31,45 669 | 97455 | 745
x | .125 | 1635 | 1044467 | 40,45 730 | 142,470 | 11,50
128 | .25 1811 | 1218467 | 49,47 811 | 232,460 | 18,50
Method 2
32 [0625 || 62] 33, 12] 3, 4[.0908,.0495 | 59| 31, 12| 4, 4| .145,.0486
x | 125 64 | 35, 12| 4, 4] 1370512 | 73] 44, 12| 5,4 [.269,.0423
32 | .25 65| 35 12| 4, 4] .126,0525 | 91| 60, 12| 7,4 | .348,.0476
64 | 0625 || 228 | 131,44 | 4, 4| .131,0523 || 241 | 143, 44 | 4, 4 | .257,0456
x | 125 || 228 131,44 | 4, 4| .139,.0539 || 274 [170, 44 | 5, 4 | .355,.0469
64 | .25 226 | 131, 44 | 4, 4 | .145,0554 || 309 | 205, 44 | 6, 4 | .360,.0511
128 | .0625 || 948 | 573197 | 4, 4| .140,0553 || 938 | 562,197 | 3, 4 | .158,.0444
x | 125 || 948 | 571,197 | 4, 4 | .150,.0565 || 1023 | 676,197 | 4, 4 | .261,.0464
128 | .25 949 | 572,197 | 4, 4| .162,0574 | 1050 | 703,197 | 5, 4 | .250,.0500
Method 3
32 [0625 || 63] 37, 14] 4,5 1280592 || 56| 29, 14| 3,5 | .135,.0690
x | 125 67 | 40, 14 | 4, 5| .152,0607 || 111 | 84, 14 | 9, 5 | .540,.0709
32 | .25 70| 43,14 | 5, 5| .188,0617 || 188 | 161, 14 | 20% 5 | .993,.0704
64 | .0625 || 252 | 162,52 | 5, 5| .184,0617 || 278 | 189, 52 | 5, 5 | .451,.0702
x | 125 || 258 | 168, 52| 5, 5| .202.0619 || 452 | 363, 52 | 12, 5 | .666,.0675
64 | .25 266 | 176, 52 | 5, 5| .221,0620 || 689 | 600, 52 | 20%, 5 | .806,.0643
128 | .0625 || 1099 | 725224 | 5, 5| .218,0619 || 968 | 595,223 | 3, 3 | .159,.0617
x | 125 [[1147 | 774224 | 5, 5| .232.0617 || 1191 | 821,220 | 6, 5 | .408,.0637
128 | .25 1162 | 788,224 | 6, 5 | .252,0616 || 1352 | 978,223 | 7, 5 | .434,.0662

12

Table 4.2: Problem 2: the total CPU time ¢;, the CPU times ¢, and ?,, the numbers of
iterations k, and £, at the final time step, and the reduction factors p, and p, of the multigrid
algorithm in the last iteration at the final time step

Re=1 Re = 1000
Grid | At t, toty | koky | popp t toty | koky | puipp
Method 1
32 | .0625 [22 6, 912, 28 26| 10, 917, 28
x | 125 22 6, 912, 29 390 23, 939, 28
32 [.25 21 6, 912, 28 d(18)
64 |.0625 [189 | 52, 100 | 19, 58 184 | 63, 91|22 51
x | 125 || 184 | 54, 100 | 20, 58 d(15)
64 | .25 186 | 58, 99| 21, 58 d(4)
128 | .0625 || 2563 | 1022,1402 | 52,137 1617 | 340,1149 | 21,103
x | 125 | 2774 | 1211,1422 | 67,137 1859 | 573,1160 | 31, 96
128 | .25 || 3328 | 1745,1442 | 78,143 2201 | 898,1172 | 49,108
Method 2
32 [.0625 [58] 30, 16] 3, .0561,.0669 71 43, 16| 4, 5] .364,0737
x| 125 69 | 40, 16| 4, 175,.0693 90 | 62, 16| 6, 5| .574,.0690
32 | .25 68| 39, 17| 4, 238,.0682 || 138 | 110, 16 [12, 4 | 10,0824
64 | .0625 [204 | 107, 60| 3, 0566,.0860 || 267 | 172, 58 | 4, 5| 1.59,.0743
x | 125 | 203 106, 59 0572,.0819 || 516 | 423, 55 | 14, 4 | 1.65,.0802

64 | .25 204 | 107, 60
128 | .0625 859 | 467, 243
X 125 882 | 467, 266

10684,.0808 || d(9)
0961,.0701 || 1767 | 1351, 266 | 8, 5 | 1.08,.0765
0963,.0781 || d(9)

W W W[W W| W || W
O O b= | O O O O O] Ot

128 | .25 883 | 467, 266 , .0961,.0809 d(4)
Method 3
32 .0625 53 26, 16 | 3, 6| .0770,.0949 113 86, 15 | 10, 5 | .660,.0954
X 125 d(6) d(9)
32 .25 d(2) d(4)
64 .0625 213 117, 57| 4, 6 110, .110 d(6)
X 125 212 117, 57| 4, 6 110, .110 d(4)
64 .25 212 117, 57| 4, 6 120, .110 d(3)
128 | .0625 931 527, 252 | 4, 6 156, .128 d(6)
X 125 930 | 527,252 | 4, 6 156, 127 d(4)
128 | .25 931 526, 253 | 4, 6 156, .125 d(3)

13

Table 4.3: Problem 3: the total CPU time ¢;, the CPU times ¢, and ?,, the numbers of
iterations k, and £, at the final time step, and the reduction factors p, and p, of the multigrid
algorithm in the last iteration at the final time step

Re =1 Re = 1000
Grid | At t, toty | koky | puipp t toty | koky | puipy
Method 1
32 [.0625 [30| 12, 1120, 33 21 2, 12| 4,33
x | 125 31 13, 11| 22, 33 21 3, 12| 7,32
32 [.25 32 [14, 11| 23, 32 23| 5, 11|12, 32
64 | .0625 [293 | 141,122 | 35, 69 161 | 17, 116 | 7, 65
x | 125 || 306 | 156,119 | 41, 69 169 | 23, 117 | 11, 59
64 | .25 309 | 159,117 | 44, 67 185 | 39, 117 | 19, 58
128 | .0625 || d(1) 1677 | 130,1421 | 10,133
x | 125 | d(1) 1758 | 195,1439 | 15,107
128 | .25 (1) 1915 | 373,1415 | 28,120
Method 2
32 | .0625 | 83| 36,26 | 4, 9.265.326 | 69| 27, 26| 3, 9| .0586,.331
x| 125 80| 36,27 | 4, 9] .259,291 || 79| 32, 26| 4, 9] .131,290
32 | .25 80| 36,26 4, 9] .243,.204 || 89| 43, 26| 6, 9| .210,301
64 |.0625 || 286 | 131,100 | 4, 9| .240,302 || 252 99, 99| 3, 9] .0642,308
x | 125 || 286 | 132,100 | 4, 9| 214,310 || 285 [130, 99| 4, 9| .138,.314
64 | .25 287 | 132,100 | 4, 9| .196,.350 || 291 | 131, 100 | 4, 9 | .264,.343
128 | .0625 || 1217 | 598,470 | 4, 9 | .200,.328 || 1250 | 613, 483 | 4, 9| .191,.313
x| 125 | 1217 | 597,469 | 4, 9| .189,326 || 1209 | 594, 465 | 4, 9| .213,307
128 | .25 || 1216 | 597,469 | 4, 9 | .185.310 || 1215 | 598, 468 | 4, 9 | .209,.297
Method 3
32 | .0625 || 106 | 42, 51| 6,20 | 329,519 [83| 23, 48| 3, 17| .0607,.453
x | 125 | 106 | 43, 51| 5,20% | 283,519 | 87| 26, 49| 4, 18| .149,516
32 [.25 107 | 45,50 | 520% | 263,519 || 97| 36, 48| 6, 17 | .235,511
64 | .0625 || 394 | 171,179 | 6,20* | 297,519 || 306 | 90, 177 | 3, 17 | .0680,.497
x | 125 || 383 | 175,170 | 6, 19 | 276,519 || 312 | 105, 169 | 3, 16 | .0873,.491
64 | .25 380 | 176,166 | 6, 18 | .267,519 || 338 | 119, 181 | 4, 17 | .271,510
128 | .0625 || 1595 | 741,702 | 6, 18 | .270,.519 || 1451 | 508, 792 | 4, 17 | .202,.511
x | 125 | 1561 | 741,668 | 6, 17 | 272,519 | 1511 | 536, 824 | 4, 19 | .226,513
128 [.25 || 1536 | 741,643 | 6, 16 | .277,.518 || 1599 | 619, 828 | 4,20% | .237,.516

14

Table 4.4: Problem 4: the total CPU time ¢;, the CPU times ¢, and ?¢,, the numbers of
iterations k, and £, at the final time step, and the reduction factors p, and p, of the multigrid
algorithm in the last iteration at the final time step

Re=1 Re = 1000
Grid | At t, toty | koky | puip t ty, 1y ke, b v, Pp
Method 1
32 [0625 21| 7, 813 25 16 2, 8| 4,25
x | 125 21 8, 8|14, 25 18 3, 8| 8 25
32 [.25 23] 9, 8|15, 25 20 6, 8] 15, 25
64 | .0625 | 165 | 57, 79 | 19, 40 123 16, 78| 6, 41
x | 125 | 180 | 65, 80| 20, 42 130 | 23, 79| 12,43
64 | .25 180 | 73, 79 23, 42 154 | 47, 79| 24, 40
128 | .0625 || 2244 | 655,1414 | 29,102 1548 | 113,1258 | 9,105
x | 125 | 2626 | 803,1688 | 32,145 1738 | 198,1371 | 19,150
128 [.25 || 2923 | 925,1864 | 40,164 2098 | 528,1440 | 43,117
Method 2
32 [.0625 [70] 36, 17] 4, 5| .129,139 60 29, 15| 3, 5].0661,135
x| 125 71 36, 17| 4, 6] .127,.141 700 38 15| 5, 5] 173,123
32 | .25 72| 36, 18| 4, 6] .131,.122 92 | 57, 15| 7, 6] .348,116
64 |.0625 || 245|134, 47| 4, 5| 130,115 || 238 | 130, 57| 4, 6| .166,155
x | 125 || 249 [131, 58| 4, 5 |.147,133 || 332 | 214, 61| 7, 6| .489,157
64 | .25 253 | 132, 61| 4, 5| .156,168 || 486 [357, 62| 12, 6| .910,.160
128 | .0625 || 1051 | 623, 271 | 4, 5| .176.108 || 1232 | 820, 261 | 5, 6| .786.160
x | 125 | 1007 | 598, 259 | 4, 5 | .194,106 || 2129 | 1690, 285 | 13, 6| .825,163
128 [.25 || 1006 | 597, 258 | 4, 5| .205,116 || d(6)
Method 3
32 [0625 69| 37, 20] 4, 144,.159 571 26, 19| 3, 7] .0648,168
x | 125 70 38, 20| 4, 147,157 71 38, 20| 4, 8] .154,195
32 [.25 721 39, 20| 4, 161,178 || 110 | 77, 20| 12, 8| 472,197
64 | .0625 [253 | 145, 71| 4, 148,435 || 265 153, 74| 4, 8| .264,199
x | 125 || 266 | 158, 71 166,408 || 627 | 512, 77 | 20%, 8| .736,228

64 | .25 270 | 160, 72
128 | .0625 || 1033 | 617, 264
X 125 1030 | 616, 263
128 | .25 1032 | 617, 264

196,440 || d(11)
214,123 || 2445 | 2001, 292 | 20%, 8 | 1.01,489
236,126 || d(9)
243,129 || d(5)

ot o ov| ol s s | s s e
S| o oo | 1|~~~ ~1| ~

15

References

[1] Axelsson, O. and G. Lindskog, On the eigenvalue distribution of a clase of preconditioning
methods. Numer. Math., 48, 479-498, 1986.

[2] Hackbusch, W., Multi-grid methods and applications. Springer, Berlin, 1985.

[3] Kan, J.J.ILM. van, A second-order accurate pressure-correction scheme for viscous in-
compressible flow. STAM J. Sci. Stat. Comput., 7, 870-891, 1986.

[4] Mynett, A.E., P. Wesseling, A. Segal and C.G.M. Kassels, The ISNaS incompressible
Navier-Stokes solver: invariant discretization. Appl. Sci. Research, 48, 175-191, 1991.

[6] Saad,Y.and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7, 856-869, 1986.

[6] Segal, A., P. Wesseling, J. van Kan, C.W. QOosterlee and C.G.M. Kassels, Invariant dis-
cretization of the incompressible Navier-Stokes equations in boundary fitted co-ordinates.
Int. J. Numer. Methods in Fluids, 15, 411-426, 1992.

[7] Vorst, H.A. van der and C. Vuik, GMRESR: A family of nested GMRES methods. Re-
port 91-80, Faculty of Technical Mathematics and Informatics, TU Delft, The Nether-
lands, 1991. To appear in J. Numer. L. A. A.

[8] Vuik, C., Further experiences with GMRESR. Report 92-12, Faculty of Technical Math-
ematics and Informatics, TU Delft, The Netherlands, 1992.

[9] Vuik, C., Solution of the discretized incompressible Navier-Stokes equations with the GM-
RES method. Int. J. Num. Methods in Fluids, 16, 507-523, 1993.

[10] Vuik, C., The solution of the discretized incompressible Navier-Stokes equations with
iterative methods. Report 93-54, Faculty of Technical Mathematics and Informatics,
TU Delft, The Netherlands, 1993.

[11] Wesseling, P., An introduction to multigrid methods. John Wiley & Sons, Chichester,
1992.

[12] Wesseling, P., A. Segal, J. van Kan, C.W. Qosterlee and C.G.M. Kassels, Finite volume
discretization of the incompressible Navier-Stokes equations in general coordinates on
staggered grids. Comp. Fluid Dyn. J., 1, 27-33, 1992.

[13] De Zeeuw, P.M., Matriz-dependent prolongations and restrictions in a block multigrid
method solver. J. Comput. Appl. Math. 3, 1-27, 1990.

[14] De Zeeuw, P.M. and E.J. van Asselt, The convergence rate of multi-level algorithms
applied to the convection-diffusion equation. SIAM J. Sci. Stat. Comput., 6, 492-508,
1985.

16

[15]

[16]

[17]

Zeng, S. and P. Wesseling, Galerkin coarse grid approzimation for the incompressible
Navier-Stokes equations in general coordinates. Report 92-35, Faculty of Technical Math-
ematics and Informatics, TU Delft, The Netherlands, 1992.

Zeng, S. and P. Wesseling, An efficient algorithm for the computation of Galerkin coarse
grid approximation for the incompressible Navier-Stokes equations in general coordinates.
Report 92-40, Faculty of Technical Mathematics and Informatics, TU Delft, The Nether-
lands, 1992.

Zeng, S. and P. Wesseling, Galerkin coarse grid approzimation in multigrid for the in-
compressible Navier-Stokes equations. Report 92-103, Faculty of Technical Mathematics
and Informatics, TU Delft, The Netherlands, 1992. To appear in STAM J. Num. Anal.

17

