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Abstract

As a sequel to [7], a further study is carried out. Three iterative methods, that is, GMRESR,
which consists of GCR with GMRES as inner loop, GCR with multigrid as inner loop and
a multigrid method, are investigated by means of numerical experiments. The multigrid al-
gorithm in the second and the third methods uses an ILU smoother. Numerical experiments
are performed on a workstation and a vector mini supercomputer, and robustness and effi-
ciency of the three methods are studied. Efficiency of the second and the third methods are
compared with the corresponding two methods discussed in [7], where an alternating Jacobi
line smoother is used in the multigrid algorithm. It appears that good methods would come
out of some suitable combinations of GCR type methods and multigrid methods.



1 Introduction

In [7] three iterative methods, i.e., GMRES ([2]) with ILU preconditioning (Method 1*),
GCR ([1]) with multigrid as its inner loop (Method 2*) and a (standard) multigrid method
(Method 3%), are investigated for the solution of the incompressible Navier-Stokes equations
discretized by a finite volume method on staggered grids in general coordinates. Concerning
robustness and computational efficiency of the three methods, the following observations are
obtained. Method 1* and Method 2* are equally robust; Method 3* is the least robust one.
On a scalar computer, Method 1* is the most efficient on coarser grids, while Method 2*
and Method 3* become more efficient as the grid is refined. Combining the advantages of
Method 1* and Method 3*, Method 2* seems very promising.

The above conclusions, however, are drawn from results obtained on a scalar machine; on
vector computers, results may be different. The reason is that most arithmetic operations
involved in a GMRES and GCR type method are matrix-vector multiplications and vector-
vector additions, which are easily vectorizable. As a consequence, such methods would have
higher efficiency, especially when the grid is fine, which leads to larger vector lengths. But
for a multigrid method, use of vectors of shorter lengths is inevitable, since use of coarser
grids is necessary. This hampers multigrid efficiency on vector computers. Combination of
a GCR type method with multigrid, using multigrid as inner loop, will suffer from the same
disadvantage. On the other hand, a good multigrid method, in general, has a reduction
factor (almost) independent of grid size, whereas the performance of GMRES and GCR type
methods deteriorates as the grid is refined, due to the fact that the number of iterations is
increased. This raises the question whether for GMRES and GCR type methods the gain from
increasing computational speed due to better vectorization can balance the loss due to the
growth of number of iterations when refining the grid, and whether multigrid methods as well
as combinations of GCR and multigrid can still achieve high efficiency on vector machines as
they do on scalar machines when the grid gets finer. To tackle these questions is the purpose
of this paper.

Apart from efficiency, robustness is also an important aspect of a numerical method. For a
multigrid method, using powerful smoothers such as those of ILU type makes it robust and this
is necessary for difficult problems as in general coordinates, where simple smoothers do not
work very well and often fail. Furthermore, more robust smoothers can give smaller reduction
factors and so need fewer iterations. But this does not simply imply higher efficiency, because
usually robust smoothers have less vectorization potential than simpler smoothers and one
iteration is therefore more costly. Efficiency consideration cannot be ignored for a practical
method. So this brings us back to the consideration of efficiency: whether more powerful
smoothers can still be acceptably efficient while improving robustness.

In this paper, based on the above considerations, we investigate three methods: a GM-
RESR method which uses a preconditioned (with RILU) GMRES method as inner loop
(Method 1), and GCR using multigrid as inner loop (Method 2), and a multigrid method
(Method 3). In the multigrid algorithm used in Methods 2 and 3, an ILU smoother is em-
ployed. The three methods differ from the three methods studied in [7] as discussed above.
The reason for this change is that Method 1 is more efficient and usually more robust than
Method 1*, and the same is true for Methods 2, 3 and Methods 2*, 3*, as will be seen later.



It is thought better to let the best methods available compete.

The outline of this paper is as follows. For principles of the methods, we refer to [7] and
the references therein; here only those that have not been described in [7] will be presented
in section 2. The results as well as analyses and comparisons are given in section 3. Section 4
summarizes the observations.

2 Solution Methods

2.1 GMRESR with GMRES as Inner Loop
The GMRESR method is described in [3]. Let the linear system to be solved be
Ax = b. (2.1)

The inner loop in GMRESR, which is briefly denoted as C'(A, r)in [7], gives an approximation
of the solution to the equation system

Au=r, (2.2)

where r = b — Ax is the residual. C'(A,r) is regarded as preconditioning. Here C'(A,r) is
obtained by K GMRES iterations with RILU preconditioning, as explained in [5] and [6], with
K = 5. The maximum number nt — 1 of outer iterations is taken to be 10 for the solution of
the momentum equations and 20 for the solution of the pressure equation. When the number
of outer iterations is reached and the required accuracy is not yet obtained, the so-called min
alfa version ([4]) of the truncated GMRESR method is used, and computation is continued,
until the required accuracy is obtained.

2.2 GCR with Multigrid as Inner Loop

In this method, the approximation u of (2.2) is given by applying one F-cycle of multigrid
iteration, as explained below. Here we use the trunclast version (see also [4]) of the truncated
GCR and set nt equal to 15, which is never reached, however, for the accuracy requirement
that we set. Thus the outer loop of GCR is not truncated and is actually the full GCR.

2.3 The Multigrid Method

An ILU smoother is used, using the standard 9-point non-zero pattern. The momentum
equations are smoothed in a decoupled way, successively in all directions. Update of variables
is carried out with damping; the damping factor w is fixed at 0.8, based on numerical exper-
iments. The F-cycle is employed. The coarsest grid is fixed at 2 X 2, on which a direct solver
is used to solve the equation system.

3 Numerical Experiments

The four test problems of [7], namely the square driven cavity problem, the non-uniform square
driven cavity problem, the skewed driven cavity problem and the L-shaped driven cavity



problem, are used in numerical experiments. For convenience of reference, these problems
are designated as Problems 1 to 4, respectively. Three time intervals, namely At = 0.0625,
0.125, 0.25, are considered, but the number of time marching steps is fixed at 40. We solve
the equation systems at each time step until the ratio of the present norm ||r|| of the residual
to the norm ||rg|| of the initial residual at the beginning of the present timestep satisfies
l|le|l/lrol| < tol, with tol = 10™* for the momentum equations and tol = 107° for the pressure
equation. Computations are carried out on an HP 735 workstation and a Convex 3840 mini
supercomputer. When operating in scalar mode, the Convex is slower than the HP.

In Tables 3.1 to 3.4 are presented the total CPU time t;, the CPU time ¢, for the solution
of the momentum equations and the CPU time ¢, for the solution of the pressure equation, on
the HP machine. All CPU times are measured in seconds. At the final time step, the number
of outer iterations for Method 1 and Method 2 and the number of multigrid iterations for
Method 3 are counted and are denoted as k, and %, for the solution of the momentum
equations and the pressure equation, respectively. The corresponding reduction factors, p,
and p, of the multigrid algorithm, used in Method 2 and Method 3, are also listed for the
last iteration at the final time step.

From these tables it is obvious that all three methods have better robustness and efficiency
than the corresponding three methods studied in [7]. It is easier to compare the performance
of the three methods by means of figures instead of tables of data. So in Figure 3.1 through
Figure 3.8, the CPU times #; and ¢, are plotted for n X n grids, with n along the abscissas
and the ordinates indicating the CPU time per grid point for the 40 time steps. We see that
for the solution of the pressure equations, the curves (in the figures on the right columns) for
different At are almost identical in each method. This is natural since the pressure matrix
does not change with At for a problem. The minor differences are probably caused by not
very accurate measurement of the CPU times.

It is clear that for Method 2 and Method 3, the CPU time per grid point is almost con-
stant, independently of grid size and Reynolds number. However for Method 1, the CPU
time increases significantly as the grids are refined, especially for the solution of the pressure
equation and for the low Reynolds number cases. There is an exception for Problem 2 at
Re = 1000, where Method 1 does not loose efficiency when the grid becomes finer (see the
left-top figure in Figure 3.4); the reason is not clear. In this figure, there are some test points
missing due to divergence. Usually on coarser grids Method 1 is the most efficient, but on
finer grids Method 2 and Method 3 are more economical. So for a computation case there
exists a cross-over point with respect to grid size, beyond which Method 2 and Method 3 are
more efficient than Method 1. It seems that Method 1 is more suitable for solving the mo-
mentum equations, especially at high Reynolds numbers where some superlinear convergence
occurs, and Methods 2 and 3 are preferable for solving the pressure equation. Compared
with Method 3, Method 2 seems not to be so superior, and sometimes gives even somewhat
worse performance. But the loss of efficiency in Method 2 for some cases is very small. This
indicates that when a multigrid algorithm is sufficiently powerful, the gain by accelerating it
with GCR type methods is small, but still helpful, as we will see when Methods 2 and 3 are
compared on the Convex. On the other hand, when a multigrid algorithm is not so strong,
as in the case of Method 3*, combination of it with GCR, leading to Method 2*, turns out
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Figure 3.1: Problem 1 at Re = 1 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.2: Problem 1 at Re = 1000 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plut marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.3: Problem 2 at Re = 1 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.4: Problem 2 at Re = 1000 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.5: Problem 3 at Re = 1 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.6: Problem 3 at Re = 1000 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.7: Problem 4 at Re = 1 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.8: Problem 4 at Re = 1000 on the HP: CPU time per grid point on different grids for
the solution of the momentum equations (left) and for the solution of the pressure equation
(right). Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125;
dotted lines and circles: At = 0.25
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Figure 3.9: CPU time per grid point against grid size for the solution of the momentum
equations for Problem 1 on the HP. The Left column: Re = 1; the right column: Re = 1000.
Solid lines and plus marks: At = 0.0625; dashdot lines and x-marks: At = 0.125; dotted lines
and circles: At = 0.25

to be much better than multigrid itself. In Figure 3.9, we demonstrate the performance of
Methods 2*and 3* for the solution of the momentum equations for Problem 1, and see clearly
that the combination helps a lot indeed, especially for the high Reynolds number case.
Next, we will see what happens on the Convex. The results are presented in Table 3.5.
The k,’s, ks, py’s and p,’s are the same as in Tables 3.1 to 3.4, of course, and therefore are
not given again. Only the cases with Re = 1 and At = 0.0625 are considered; the other cases
do not add new insights. Again, we plot the CPU times per grid point against grid size in
Figure 3.10. In order to bring out better the effect of vector length on this vector computer,
computations on a 256 x 256 grid are included for Problem 4. Figure 3.10 show the same
behaviour as on the HP: the efficiency of Method 1 deteriorates and that of Methods 2 and 3
improves with grid refinement, but cross-over points when Method 2 and Method 3 surpass
Method 1 move to finer grids. On the 32 x 32 grids, on the Convex Methods 2 and 3 are

12



Problem 1

0.05 0.05
0.04 0.04
N N
£ 003 5\__\ £ 003
E .:‘\""\ E o.
% 0.02 e % 0.02 %o
0.01 %H)E 0.01 el
0 0
20 40 60 80 100 120 140 20 40 60 80 100 120 140
n n
Problem 2
0.05 0.05
0.04 0.04
N N
£003 B £003
E \ 8 @\.
% 002 S % 002 .
0.01 0.01 ‘
TR
0
20 40 60 80 100 120 140 20 40 60 80 100 120 140
n n
Problem 3
0.05 0.05
0.04f X 0.04
N N ~ X
< 0.03 N, < 0.03 NI
= = N
AN
go.oz go.oz X
0.01 0.01 X
0 0
20 40 60 80 100 120 140 20 40 60 80 100 120 140

n

n

Figure 3.10: (Continued on the next page)

13



(Continued)
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Figure 3.10: CPU time per grid point against grid size for the solution of the momentum
equations (left column) and for the solution of the pressure equation (right column) by the
multigrid using an ILU smoother on the Convex. Plus marks and solid lines: Method 1; x-
marks and dashdot lines: Method 2; circles and dotted lines: Method 3, Re = 1, At = 0.0625

slower than on the HP, while Method 1 keeps the same speed. The results for Problem 4
show, that on fine grids, the solution of the pressure equation dominates computing time for
Method 1. For Problems 1, 2 and 4, Methods 2 and 3 are equally efficient, although for some
cases Method 3 does a little better job; but for Problem 3, Method 2 is obviously better.
Now we investigate further the efficiency of Method 2 and Method 3, and Method 2*
and Method 3* as well, by making some comparisons. The four methods have been used on
the HP machine. Results show that Methods 2 and 3 are more efficient than Methods 2*
and 3" on the HP, in addition to being obviously more robust. Because the smoother in
Methods 2* and 3* uses a simple alternating Jacobi line smoothing, which is thought to have
greater vectorization potential than the ILU smoothing used in Methods 2 and 3, whether
Method 2 and Method 3 still possesses higher efficiency on the Convex remains a question.
Before making any comparisons, we note that the efficiency of an algorithm depends not only
on the portion of code that can be vectorized in theory, but also on many practical factors
such as how vectorization is realized and how memory is accessed. Here we avoid discussions
of these matters, and just present numerical results in Table 3.6 for Problem 1, obtained by
running the same code on the Convex. In this table, the speed-up factors, defined here as
the ratio of the CPU time on the HP to the CPU time on the Convex, are also given. For
example, s; = t;(HP)/t;(Convex). Comparing the results here with the data for Methods 2
and 3 in Table 3.1, we may conclude that Methods 2* and 3* are less efficient than Methods 2
and 3 on the 128 x 128 grid, although on coarser grids they seem to be the same. But it
is hard to say from the results that Methods 2* and 3* will be less efficient with further
grid refinement, since, the speed-up is larger than for Methods 2 and 3, which implies that
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Figure 3.11: Efficiency comparison of Methods 2* and 3* with Methods 2 and 3 on the Convex
for the solution of the momentum equation for Problem 4. Left column: Re = 1; right column:
Re = 1000. Solid lines and plus marks: Method 2* or Method 3*; dashdot lines and x-marks:
Method 2 or Method 3. At = 0.0625

Methods 2* and 3* indeed have better vectorization properties. The test problem used is
simple perhaps, because the numbers of iterations for these methods do not differ very much.
Going to more difficult problems, say Problem 3, Methods 2* and 3%, in spite of their larger
speed-up factors, will be less efficient since they require a larger number of iterations than
Methods 2 and 3 (cf. [7]). In this case, the speed-up can hardly balance the loss of efficiency
resulting from the increase of number of iterations. This is verified by carrying out a further
test, for example for Problem 4. The results are plotted in Figure 3.11, which shows clearly
that Methods 2* and 3* are not able to beat Methods 2 and 3. Although for the low Reynolds
number Methods 2* and 2, Methods 3* and 3 have similar performance, for the high Reynolds
number Methods 2 and 3 are superior to Methods 2* and 3*. Method 3* does not work well
on finer grids and even fails on the 256 x 256 grid. The curves become flat when going to finer
grids, which indicates that the efficiency gain from vectorization is exhausted. In this case,
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further improvement of efficiency must rely on improvement of the mathematical efficiency
(for example, smaller reduction factor) of the algorithm. Looking carefully at Method 2~
going from the grid 128 x 128 to the grid 256 x 256 for the case of Re = 1000, we see that
the efficiency on the finer grid is slightly lower than on the coarser one. The reason is that
the reduction factor grows with refinement of the grid.

4 Conclusions

We have investigated numerically three iterative methods, namely, Method 1: GMRESR:
GCR with GMRES as inner loop, Method 2: GCR with multigrid as inner loop and Method 3:
a multigrid method, in the context of application to the solution of the incompressible
Navier-Stokes equations in general coordinates. The smoother in the multigrid algorithm
for Method 2 and Method 3 is an ILU smoothing.

Numerical experiments are carried out on a sequential computer and on a vector machine.
Numerical results demonstrate that the three methods have different numerical behaviour.
In particular, Method 1 is different from Method 2 and Method 3; Method 2 and Method 3
show similar performance. On the sequential computer, some facts observed in [7] also apply
here. On coarser grids, Method 1 is much more efficient than Method 2 and Method 3. When
going to finer grids, Method 1 becomes less efficient due to a considerable increase of the
number of iterations. For Method 1, it seems that the pressure equation is harder to solve
than the momentum equations, but for Methods 2 and 3, none of the equations causes special
difficulties and both methods show a typical convergence property of multigrid methods, i.e.,
convergence being (almost) independent of grid size. When moving to the vector computer,
Method 1 always benefits from vectorization, while Method 3 and therefore also Method 2
loose efficiency if the grid is not sufficiently fine (here the 32 x 32 grids). But the tendency is
that Methods 2 and 3 are still more efficient than Method 1 if the grid is fine enough, as in
the case on the 128 x 128 grid.

It is found that when the smoother is strong enough, combination of GCR type methods
with multigrid does not pay off a lot and actually sometimes gives slightly poorer perfor-
mance than multigrid itself, but it does help in general. When the smoother is rather weak,
combination of both methods improves both robustness and efficiency of the methods. We
think that combination of GCR with multigrid would lead to better algorithms than either
one of them alone.

Although methods 2 and 3 vectorize less well than methods 2* and 3*, we still expect them
to be faster on most vector computers, because of their significantly faster rate of convergence.

The results suggest that the following solution strategies are advantageous for the future
implementation of algorithms:

1. To switch to Method 2 or Method 3 from Method 1 if the grid is fine enough. This
depends on the specific computer being used and the problem.

2. A more dynamic way is to first carry out a few GMRES type iterations, for exam-
ple, a few iterations of Method 1. If the problem is found to be difficult to solve by,

16



say, checking convergence rate, then the solution procedure switches to Method 2 or

Method 3.

. A further combination, in addition to combination of GCR with multigrid as in Method 2,
may be to use GMRES type methods like Method 1 in multigrid on coarser grids such
that the coarsest grid is not too coarse, making use of the property that GMRES type
methods may be more efficient on coarser grids than multigrid algorithms.
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Table 3.1: Problem 1 on the HP: the total CPU time ¢;, the CPU times ¢, and t,, the
numbers of iterations %k, and k, at the final time step, and the reduction factors p, and p, of
the multigrid algorithm in the last iteration at the final time step, the underrelaxation factor
w=10.8

Re =1 Re = 1000
Grid | At || & | tty [kiky | pupy | tty [ kky | pups
Method 1
32 [ 0625 | 12| 4, 3| 3,4 91 1, 3[1, 4
x | 125 131 5, 3] 4,14 0] 2 32 4
32 | .25 131 6, 3] 4,4 0] 2 32 4
64 | .0625 | 88| 44,26 5, 6 58 | 13,27]2, 6
x | 125 | 94| 49,26 5, 6 60 | 15,262, 6
64 | .25 102 | 56, 27| 6, 6 64 | 19,262, 6
128 | .0625 || 697 | 366,252 | 7, 9 405 | 78,247 | 2, 10
x | 125 | 787 [ 446261 | 9, 9 438 | 106,251 | 3, 10
128 [ .25 || 870 | 521,268 | 10,11 481 | 154,247 | 4, 10
Method 2
32 [ 0625 [ 46 [ 22, 11| 3, 4].0804,0513 || 45| 21, 11 |3, 4] .0684,.0424
x | 125 | 46| 22, 11| 3, 4| .0814,.0512 || 46 | 22, 11 |3, 4 | .116 ,.0454
32 | .25 46 | 22, 11| 3, 4].0902,0491 || 52| 29, 11 | 4, 4| .130 ,.0486
64 | .0625 || 161 | 81,43 | 3, 4| .0851,.0509 || 160 | 80, 43 | 3, 4 | .0907,.0418
x | 125 | 160 | 80, 43 | 3, 4 | .0955,0530 || 181 | 100, 43 | 3, 4 | .0938,.0440
64 | .25 161 | 80,43 | 3, 4 | .115 ,.0534 || 185 | 105, 43 [ 4, 4 | .105 ,.0463
128 | .0625 || 705 | 361,193 | 3, 4 | .109 ,.0547 || 703 | 361,193 | 3, 4 | .0812,.0445
x | 125 | 703 [ 361,192 | 3, 4 | .118 ,.0563 || 813 | 470,193 | 4, 4 | .106 ,.0452
128 [ .25 || 703 | 360,193 | 3, 4 | .129 ,.0565 || 814 | 472,193 | 4, 4 | .115 ,.0463
Method 3
32 [ 0625 [ 46 21, 12| 3, 5].0877,.0687 || 43| 20, 11 |3, 4] .0829,0504
x |25 | 46| 21,12 3, 5| .0871,0700 || 46 | 22, 11 [ 3, 4 | .120 ,.0553
32 | .25 A7 | 22, 12| 3, 5(.0927,0709 || 51| 26, 12 |4, 5| .156 ,.0568
64 | .0625 || 163 | 79,46 | 3, 5] .0913,.0710 || 157 | 76, 43 | 3, 5| .106 ,.242
x | 125 | 167 | 83,46 | 3, 5| .0997,0714 || 172 | 89, 45 [ 3, 5| .122 ,.244
64 | .25 175 | 92,46 | 3, 5[ .113 ,.0719 || 180 | 96, 46 | 4, 5 | .173 ,.0579
128 | .0625 || 749 | 399,200 | 4, 5 | 124 0719 || 700 | 358,192 | 3, 4 | .111 ,.0574
x | 125 | 748 [ 401,197 | 4, 5 | .135 ,.0721 || 737 | 394,193 | 4, 4 | .140 ,.0559
128 [ .25 || 746 | 405,191 | 4, 5 | .148 ,.0725 || 750 | 397,203 | 4, 5 | .143 ,.0615
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Table 3.2: Problem 2 on the HP: the total CPU time ¢;, the CPU times ¢, and ¢,, the
numbers of iterations %k, and k, at the final time step, and the reduction factors p, and p, of
the multigrid algorithm in the last iteration at the final time step, the underrelaxation factor
w=10.8

Re=1 Re = 1000
Grid | At t, toty | kokp | puip | ety | kiky | puips
Method 1
32 | .0625 15 4, 6| 3,8 31 20, 612, 7
x | 125 15 4, 6| 3, 7 d(9)
32 | .25 15 4, 6| 3, 7 d(3)
64 | .0625 || 111 ] 35, 56| 4,12 166 | 90, 56 | 14,12
x | 125 116 | 39, 57 | 5,12 d(5)
64 | .25 121 | 44, 57| 5,12 d(2)
128 | .0625 || 1268 | 574,608 | 13,21 848 | 204,558 | 5,18
x | 125 | 2039 | 1347,606 | 32,21 945 | 305,553 | 7,18
128 | .25 (1) 1126 | 468,572 | 11,21
Method 2
32 [ 0625 [ 48] 22, 13| 3, 4] .0838,.0577 || 46 | 22, 11| 3, 4 | .0774,.0470
x | 125 48 | 22, 13| 3, 5 .0846,0477 || 46 | 22, 11| 3, 4 | .0891,0560
32 | .25 AT | 22,13 | 3, 5.0968,0474 || 46 | 22, 11| 3, 4 | .0978,0492
64 | .0625 || 162 | 80,44 | 3, 4| .0679,.0608 || 161 | 80, 43 | 3, 4 | .0849,.0699
x | 125 162 | 80,44 | 3, 4 | .0681,.0647 || 161 | 80, 43 | 3, 4 | .0820,.0644
64 | .25 163 | 81,44 | 3, 4 | .0685.0631 || 161 | 80, 43 | 3, 4 | .0839,.0625
128 | .0625 || 713 | 360,202 | 3, 4 | .0633,0934 || 703 | 360,193 | 3, 4 | .0750,.0832
x | 125 | 720 [ 360,210 | 3, 4 | .0630,.0924 || 701 [ 359,192 | 3, 4 | .0719,.0858
128 | .25 733 | 360,223 | 3, 4 | .0627,.0818 || 703 | 360,192 | 3, 4 | .0719,.0808
Method 3
32 [ 0625 46| 20, 13| 3, 5].0935.0725 || 46 | 21, 12 3, 5| .103 ,.0606
x | 125 46 | 20, 13| 3, 5 .0925,.0766 || 46 | 21, 13| 3, 5| .104 ,.0742
32 | .25 46 |20, 13| 3, 5 .0942,0737 || 46| 21, 13 | 3, 5| .104 ,.0581
64 |.0625 | 155 | 70,47 | 3, 5| .0842,0774 || 159 | 75,46 | 3, 5| .0913,.0691
x | 125 156 | 70,48 | 3, 5.0838,.0852 [ 159 | 75, 46 | 3, 5 | .0885,.0619
64 | .25 156 | 70,48 | 3, 5 .0834,.0863 || 159 | 75, 46 | 3, 5 | .0876,.0722
128 | .0625 || 690 | 328212 | 3, 5| .0916,.107 | 679 | 329,200 | 3, 5 | .0854,.0694
x | 125 || 688 | 325213 | 3, 5|.0915.111 || 680 | 329,201 | 3, 5 | .0867,.0800
128 | .25 682 | 320211 | 3, 5 .0913,118 | 683 330,202 | 3, 5 | .0886,.103
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Table 3.3: Problem 3 on the HP: the total CPU time ¢;, the CPU times ¢, and ¢,, the
numbers of iterations %k, and k, at the final time step, and the reduction factors p, and p, of

the multigrid algorithm in the last iteration at the final time step, the underrelaxation factor
w=10.8

Re =1 Re = 1000
Grid | At t, toty | ko kp | puspp t toty | ko by | puipp
Method 1
32 1.0625( 19| 7, 7| 5,9 13 1, 7]1, 8
x| 125 9| 7, 7] 5 8 |l 2, 7]2 8
32 | .25 9] 8 7] 5 8 15| 3, 73, 8
64 | 0625 | 151 | 74,57 | 8,13 90 | 14, 56 | 2, 12
x | 125 || 158 | 81, 57| 9,12 93 | 18,55 | 3, 11
64 | .25 162 | 86, 57 | 10,13 104 | 28, 56 | 4, 12
128 | .0625 || 1501 | 774,642 | 14,22 830 | 97,648 | 2, 22
x | 125 || 1617 | 879,653 | 18,22 870 | 132,652 | 4, 22
128 | .25 1655 | 917,653 | 20,23 951 | 213,653 | 6, 23
Method 2
32 10625 | 64| 29,22 4, 8].203,346 || 54| 22,193, 7].0792,214
x | 125 64 | 29,22 | 4, 8(.209,350 || 58| 26, 19 [ 4, 7 [ .117 ,233
32 | .25 64 | 29,22 | 4, 8] 213,357 || 63| 80,19 |5, 7| .201 ,231
64 | 0625 || 228 | 106, 84 | 4, 8 | .216,233 || 192 | 80, 74 | 3, 7 .0932,.247
x | 125 || 228 | 106, 85 | 4, 8 | 217,260 || 216 | 104, 74 [ 4, 7| .117 ,.232
64 | .25 227 | 106, 84 | 4, 8| .210,234 || 217 [ 106, 74 | 4, 7| .193 ,.244
128 | .0625 || 1003 | 474,378 | 4, 8 | .215,234 || 947 | 465,332 | 4, 7 | .142 ,.219
x | 125 | 1001 | 473,378 | 4, 8 | 202,231 || 957 | 471,335 [ 4, 7 | .156 ,.252
128 | .25 1004 | 474,379 | 4, 8 | 185,223 || 958 | 471,336 | 4, 7 | .169 ,.229
Method 3
32 | 0625 | 74| 26,35 ] 4,14 .246,371 || 63 ] 20, 30 | 3, 12| .0871,.366
x| 125 74| 27,35 | 4,14 | 240,373 || 66 | 24, 30 | 4, 11 | .142 ,313
32 | .25 74| 27,34 | 4,14 | 226,372 || 72| 29,30 |6, 11 | .250 ,.346
64 | 0625 || 257 | 97,122 | 4,14 | 220,370 || 224 | 76,110 | 3, 12 | .0933,.351
x | 125 || 255 | 98,120 | 4,14 | 215,371 || 240 | 91,111 |4, 11 | .138 ,.366
64 | .25 252 | 97,117 | 4,13 | .200,.370 || 240 [ 93,109 | 4, 11 | .214 ,.357
128 | .0625 || 1073 | 424,499 | 4,13 | .203,.370 || 1015 | 395470 | 4, 10 | .163 ,.354
x | 125 | 1058 | 425,484 | 4,13 | .194,.370 || 1056 | 410,496 | 4, 11 | .179 ,.338
128 | .25 1045 | 425470 | 4,12 | .190,.368 || 1099 | 417,532 [ 4, 12 | .191 ,.358
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Table 3.4: Problem 4 on the HP: the total CPU time ¢;, the CPU times ¢, and ¢,, the
numbers of iterations %k, and k, at the final time step, and the reduction factors p, and p, of
the multigrid algorithm in the last iteration at the final time step, the underrelaxation factor
w=10.8

Re =1 Re = 1000
Grid | At t, toty | ko by | pupp | tty [ kky | pups
Method 1
32 | .0625 14| 4, 5[3, 6 121 1, 5] 1,6
x | 125 15| 5 5[3 6 12 , 5] 2,6
32 | .25 5] 5 53 7 14 . 5| 4,6
64 | .0625 [ 105 | 38,47 |4, 10 81| 13,47 2,11
x | 125 110 | 42, 48 [ 4, 11 87 | 18, 48| 3,11
64 | .25 113 | 45,48 | 5, 11 103 | 35, 48| 6,10
128 | .0625 || 992 | 305,599 | 6, 20 756 | 89,580 | 2,21
x | .125 | 1051 | 353,611 | 7, 21 814 | 135,592 | 4,21
128 | .25 1094 | 395,612 | 8, 22 979 | 300,591 | 12,21
Method 2
32 [ 0625 | 55 ] 29, 144, 5| 114,111 | 47| 22, 12| 3, 5] .0563,.105
x | 125 55 | 29, 14 |4, 5[ 117,111 || 54 | 28, 13| 4, 5 | .110 ,.0982
32 | .25 55 | 29, 14 |4, 5] .126.102 || 58 | 31, 14| 5, 5| .211 ,.0860
64 | .0625 || 195 | 104, 53 | 4, 5| .118,.131 | 176 | 87, 51 | 3, 5| .0893,126
x | 125 195 | 104, 53 [ 4, 5| .124,.130 || 195 | 106, 52 | 4, 5 | .187 ,.120
64 | .25 194 | 103, 53 [ 4, 5[ .131,.130 || 213 | 124, 52 | 6, 5 | .301 ,.133
128 | .0625 || 861 | 472,238 | 4, 5[ .124,.111 || 838 | 453,234 | 3, 5| .110 ,.129
x | 125 || 858 [ 470,238 [ 4, 5| .128,109 || 856 | 471,235 | 4, 5 | .0818,.132
128 | .25 859 | 471,238 | 4, 5| .136,125 || 855 | 470,234 | 4, 5 | .123 129
Method 3
32 [ 0625 || 54| 27,154, 6|.193,.110 || 47| 21, 14| 3, 6| .0746,117
x | 125 54 | 26,15 |4, 6] .192,.113 | 53| 25, 15| 4, 7] .148 ,.435
32 | .25 54 | 26,15 |4, 6] .189,.127 || 58 | 31, 14| 5, 6 | 214 ,.141
64 |.0625 | 186 | 96,53 | 4, 6 |.191,335 | 172 | 80, 55 | 3, 7 | .0954,.153
x | 125 186 | 96, 53 [ 4, 6 [.188,364 || 191 | 96, 58 | 4, 7 | .202 ,.178
64 | .25 184 | 94,52 (4, 6.184,400 || 213 | 118, 58 | 6, 6 | .387 ,.146
128 | .0625 || 773 | 420,203 | 4, 5 | .188,.0847 || 806 | 418,238 | 3, 7 | .117 ,.437
x | 125 || 774 | 419,205 [ 4, 5| .190,.0968 || 890 | 489,251 | 5, 7 | .198 ,.468
128 | .25 775 | 416,208 | 4, 5 | .194,.0819 || 881 | 489,243 | 5, 6 | .202 ,.178
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Table 3.5: CPU times measured on the Convex: the total CPU time t;, the CPU times ¢,
and 7, the underrelaxation factor w = 0.8, At = 0.0625, Re = 1

Problem 1 Problem 2 Problem 3 Problem 4
Grid to | toty te | oty te | oty te | oty
Method 1

32 x 32 12 5 3 14 4, 6 18 7,7 14 5 5
64 x 64 53 | 25, 15 65 | 20, 32 89 | 42, 33 68 | 23, 30
128 x 128 || 299 | 152, 97 || 520 | 238,231 || 606 | 314,242 || 421 | 133,236

Method 2
32 x 32 90 | 33, 19 93 | 33,23 | 110 | 41, 36| 105 | 44, 24
64 x 64 170 | 70, 40 || 171 | 70, 41 || 225 | 91, 78 || 199 | 90, 49

128 x 128 || 376 | 166, 95 || 384 | 167,100 || 523 | 221,187 || 452 | 218,118

Method 3
32 x 32 89 | 32, 22 92 | 32,23 | 131 | 40, 59 || 102 | 41, 26
64 x 64 168 | 68, 44 || 170 | 64, 47 || 262 | 86,120 || 200 | 86, b4

128 x 128 || 408 | 193,101 || 375 | 153,105 || 577 | 206,258 || 419 | 200,103

Table 3.6: CPU times measured on the Convex for Methods 2* and 3* and speed-up factors
for Methods 2%, 3*, 2 and 3, for Problem 1 with At = 0.0625

Grid H t: ‘ e, 1, H St ‘ SusSp H Sy ‘ SuySp ‘
Method 2* Method 2

32 x 32 831 37,15 | .75 | .89, .80 || .51 | .67, .58

64 x 64 170 | 85,33 | 1.3 | 1.5,1.3 | .95 | 1.2, 1.1

128 x 128 || 409 | 218,82 || 2.3 | 2.6,2.4 || 1.9 | 2.2, 2.0

Method 3* Method 3
32 x 32 89 | 39,18 || .71 | .95, .78 || .52 | .66, .55
64 x 64 187 | 98,37 || 1.3 | 1.7,1.4 | .97 | 1.2, 1.0

128 x 128 || 450 | 255,86 || 2.4 | 2.8,2.6 || 1.8 | 2.1, 2.0
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