|SNaS - incompressible flow solver
Mathematical manual

Report 93-96

Guus Segal
Kees Vuik
William Kuppen
Marcel Zijlema

I U D e I f‘t Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft

Delft University of Technology

ISSN 0922-5641

Copyright © 1993 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone +3115784568.

A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They arelocated in the directory /pub/publications/tech-reportsat ftp.twi.tudeft.nl

ISNaS - incompressible flow solver

Mathematical manual

Guus Segal
Kees Vuik
William Kuppen
Marcel Zijlema

version 1.0 23-12-1992

Contents

1 Introduction

2 Some basic notations from tensor analysis

3 Discretization of the metric tensors

3.1
3.2

2D-case e e e
3D-case e e

4 Space discretization of the differential equations

4.1

4.2
4.3

The momentum equations and continuity equation
411 2D-case e e e e e e e e
4.1.2 3D-case e e e e e e e e
The convection-diffusion equation,
Turbulence models Lo
43.1 Thek—Lmodel
432 Thek—cemodel
4.3.3 2D implementation of turbulence models

5 Implementation of the boundary conditions

5.1

5.2

5.3

5.4

5.5

5.6

5.7
5.8

Prescribed velocities L o
5.1.1 2D implementationo
5.1.2 3D implementation Lo
Stresses prescribed oL oL oL
5.2.1 2D implementation L L Lo
5.2.2 3D implementation L L Lo
Semi-natural outflow condition L L L Lo oo
5.3.1 2D implementation oL
5.3.2 3D implementation Lo
Slip boundary condition L Lo oL
5.4.1 2D implementation oL Lo
5.4.2 3D implementation L L oL
Transition of types of boundary conditions
5.5.1 2D implementation L L L o
5.5.2 3D implementation Lo L Lo
Treatment of boundary conditions at the corners of the region
B5.6.1 2D Lo
5.6.2 3D .o
Boundary conditions for the convection-diffusion equations
Wall functions oo
5.8.1 Introduction
5.8.2 Boundary conditions for the momentum equations
5.8.3 Boundary conditions for the turbulence equations

13

17
17
17
19
22
23
23
23
24

6 Time-discretization
6.1 Introduction
6.2 The 6-method
6.3 Time discretization of turbulence equations

7 Pressure correction
7.1 Introduction L Lo e
7.2 The pressure-correction methodo Lo L oL

8 The linear solver
8.1 Imtroduction oL
8.2 Survey of iterative methods L o oo
8.3 Preconditioning L
8.4 Concluding remarks L L

9 Post-processing
9.1 Interpolation of scalarsin 2D oo oo
9.2 Interpolation of the velocity in 2D oo,
9.3 Computation of the stream function

A Proof of (5.6) and (5.7)

B Proof of (5.22) and (5.23)

52
52
53
54

56
56
56

58
58
61
62
63

64
64
66
66

70

74

1 Introduction
In this manual we describe the mathematical techniques that are used in the ISNaS incom-
pressible program. We do not give any derivation; for the mathematical theory we refer to

the literature used.
This manual is meant for ISNaS developers only.

2 Some basic notations from tensor analysis

In the ISNaS incompressible code we are dealing with curvilinear boundary fitted grids.
These grids are mapped (by an unknown transformation) onto a rectangular computational
grid. Figure 2.1 gives a typical example of the mapping from physical (i.e. curvilinear) to
computational grid. All computations are performed in the computational grid and hence the

—>

Figure 2.1: Boundary fitted co-ordinates and computational grid

differential equations are transformed from physical grid to computational grid. The resulting
solution is transformed backwards.

In the sequel we shall use the following notations:
x (2!, 22, 27%) is the Cartesian co-ordinate system,
£ = (£1,¢%,8%) is the general co-ordinate system,
i.e. the co-ordinate system corresponding to the computational grid.

The mapping T from Cartesian to computational domain is given by
G (2.1)
We assume that the Jacobian J:
oz
7 =192
o€
is unequal to zero.

We define the covariant base vector a(,) as the tangent vector to the surface (&), hence

o=

(l(a) = @ (23)

The subscript « is placed between parentheses to emphasize that a(,) is not a component
but one of the three base vectors a1, as, as.
Contravariant base vectors a(®) are defined as normal vectors to the £ = constant surfaces:

a'®) = grad £ (2.4)

It can be shown that

al®) = %a(ﬁ) Aa(,y for a, 3,7 cyclic (2.5)

where A denotes the outer product.

The correspondence between vector and tensor notation for a rank one tensor is expressed by
u="U% = U,al®) (2.6)

For a tensor of rank two the correspondence between the two notations is given by, for example
in the case of a mixed tensor:
U = Uga(a)a(ﬁ) (2.7)

The covariant and contravariant components of a vector u can be obtained from
Up=a@y-u, U"= a® .y (2.8)
For a rank two tensor we have for example

Uﬁa = (l(a) U - a(ﬁ) (29)

The metric tensor The covariant and contravariant metric tensors ¢, and ¢°P are defined
as follows:
Jop = @) Q) g% = a(®) . q® (2.10)

The name metric tensor is related to the fact that the length ds of a small line-segment
satisfies

ds? = da®dz® = gopdede” (2.11)
The determinant of g,g is called ¢, and is given by

VI =aq)-(ap) Aag) (2.12)
The two-dimensional version of (2.12) is given by
VI = apyaly — afyagy (2.13)

By writing out the right-hand side one sees that

Ji=J (2.14)

The covariant derivative A covariant derivative is a tensor which reduces to a partial

derivative of a vector field in Cartesian coordinates. For a scalar, the covariant derivative is

the same as the partial derivative, and is denoted by

O
M,Of 8£a
The covariant derivative of a contravariant tensor of rank one is given by

o 0U” Oy
b= Tl

where {’yaﬁ} is the so-called Christoffel symbol of the second kind given by

(o) _ 0¢° 9%a°

[8])
Lt =2 e = g oo~ sy

It can be shown that

_ 1 oas, 095y | 0955 Ogys
{ b= (I - §)
187 =27 Vae SENYS
The covariant derivative of a covariant tensor of rank one is given by the expression:
oU,
Ua7ﬁ afﬁ } Y

It can be shown that
7o _ 1 0/qU°
fle \/g 850{
The covariant derivative of a contravariant tensor of rank two is defined as follows:
af
b _ oT
Y 85’)/

LTy

oy

It can be shown that 5
1 5\/_Ta a

Taﬁ T’Vﬁ

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and

g5 =0
The covariant derivative of a scalar density (i.e. a relative scalar of weight 1) is defined as

dp

P = afa { }
It can be shown that op) /i
PIVY
p,O[= \/g 850{

Hence

V0, =0

)

(2.25)

(2.26)

The volume element The infinitesimal volume element df2 in d dimensions is given by
dQ = /gdetde?...d¢? (2.27)

The divergence theorem in vector and tensor notation Let V C Q, and let 5 be the
boundary of V. The divergence theorem says, in vector notation,

/div udV =]{u -drI (2.28)
Q r

Here dI' stands for the vector ndl', with n the outward unit normal on I', and dI' the
(physical) surface element. In tensor notation the divergence theorem is given by

/Uf;dQ -]{Uadra (2.29)
Q I

For a derivation and further references see van Kan et al (1991).

3 Discretization of the metric tensors

Since we assume that the transformation T is not explicitly known, but only implicitly by
the mapping of the co-ordinates of the vertices, it is necessary to discretize the geometrical
quantities mentioned in section 2. In the ISNaS incompressible code there are several ways
of computing these quantities. The choice of which of these methods is used is defined by the
input parameter geotype. In this section we shall treat the various possibilities as function of
geotype. We distinguish between 2D and 3D.

3.1 2D-case

Geotype = 1

2D The following quantities are computed and stored in all points of the grid, i.e. the vertices,
the centroids and the midside points:

(87
a(a)vgaﬁv\/gv{ﬁ,y}

The quantities are computed in the following way:

Consider the p-cell with local numbering as shown in Figure 3.1. First a(y) is computed in

(0, 1)

|

Lot & T @O

|
I

O, -1)

Figure 3.1: local numbering in P-cell
(0,%£1) and a(y) in (£1,0) by:

an)(0,£1) = =(1,£1)—=z(-1,%1) (3.1)
a)(£1,0) = =(£1,1)—=z(£l,-1)

Next a(1) and a(y) are computed in all points where they are not available by linear or bilinear
interpolation, using the fewest number of interpolation points.

Hence:

a@)(0.0) = %{a(l)(o,l)—l—a(l)(o,—l)} (3.3)
a(0.0) = %{a(z)(l,O)—l—a(z)(—l,O)} (3.4)
agy(~1,0) = %{a(l)(o,l)—l—a(l)(O,—l)—I—al(—Q,l)—l—al(—Q,—l)} (3.5)
a@(0.-1) = %{a(z)(l,O)—l—a(z)(—l,O)—l-ag(—l,—Q)—|—a2(1,—2)} (3.6)
a(-L-1) = au(-1,0+au(-1,-2)) (3.7)
a@(~1,-1) = Lag(0,~1)+ag(-2,-1)) (3.8)

etc.
From a(;) and a(y) we compute the g,3 in centroid by
oy = Qo) " A(p) (3.9)

and g, in all other points is computed by linear or bilinear interpolation from these centroid
points.
For example:

Gos(~1,0) = S{as(=2,0) + 025(0,0)} (3.10)
Jos(—1,=1) = {0050, 0) + gap(=2,0) + 9ap(0,~2)+ gup(~2.-2)} (311

etc.
Next ,/g is computed in all points using the values of g, just computing by

VY = /ldet (gap)] (3.12)

To compute {ﬁa'y} formula (2.18) is applied in all points of the elements.

So:
1 1 15,0951 | 0951 B 911
bd = 30 (Ga T 9a — e
_ 1 n9u n 12(8921 B 18911)
27 ot! agrt 2 9¢2

1 g22 0911 912(3921 1 g1)

2 g 0¢! g o¢t 20€

(3.13)

10

1y 1 15(3951 dgs2 8!hz)
12 2 92 oLt 9L
_ L4y 0911 | 012 Ogiz, 1 45 0921 | 0922 Ogrz
= 39 @ Taa aa) Ty G taa o)
19220911 1912 0922
= S _feR 14
3 g 062 24 08 (3.14)
Ly _ 1 43,0012 0921 Ogaa, 1 150922 9922 0922
bt = 39 G toa ~aa) T30 g T og o)
_ 922 dg12 10922 1 g12 0922
B g (352 2 91) 2 g 02 (3-15)
2 _ 1y, 09n | 9912 Ogiz. 1 55,0021 0922 Ogrz
bph = 39 @ T g ~aa) T30 g T o~ ag)
_ _Llgndgn | 1gudgm
= 3, e + 3 ;o (3.16)
2 _ Loy 0gn | 99 Ogin, 1 55,0921 | Oga1 9gn
bd = 39 e T aa ~aa) T2 g T g o)
_ Lga1 0911 | 911,0921 10911
= T3g00 g lag " zoe) (3.17)
2 _ 15,0012 9912 0gaz. 1 55,0022 0922 g2
Ut = 39 Ga toa ~aa) T30 g T ag o)
= _921(%_1%)+1&% (318)

g 082 209V 2 g 0e2

In these expressions we have used that ¢®” is the inverse of Gag, SO

112
)) 1 922 —g12
== 3.19
l g g%] g l —912 911] ()
The derivatives 0-/9£® are approximated by central differences using two neighbouring points.

Geotype = 2

The same quantities as for geotype = 1 are computed and stored in the same points. How-
ever, there are some minor differences, which result in a more accurate discretization of the
differential equations.

The base vector a(,) are computed in exactly the same way as for geotype = 1, i.e. formulae
(3.1) and (3.2) are applied.

11

The Jacobian /g of the transformation in all points is computed from the base vectors in
those points, using the expression:

V(e = latyaty = atyalen (3.20)

for all points.

In the same way g, is computed by (3.12) in all points.

With respect to the Christoffel symbols {ﬁa'y} not only the interpolation is canceled but also

formula (2.18) is replaced by formula (2.17). The base vectors a(®) are computed by inversion
of @y, i.e.

1 1
alV) = _(‘1(22)7 _‘1%2))7 a®) = _(_‘1(21)7 a%l)) (3.21)
The derivatives are again computed by central differences based on 2 neighbouring points.

The formulae derived for the geometrical quantities can all be computed for the internal
region. However, at the boundary some extra kind of extrapolation is necessary. In the
present version of the flow solver the extrapolation has been taken care of by the introduction
of virtual cells and hence virtual co-ordinates. See Figure 3.2.

Y

Yoy |

0 1 r"i+1 q+2

Figure 3.2: virtual cells surrounding the boundary of the region (computational space)

The co-ordinates of the virtual boundary are computed by linear extrapolation, for example
T;0 = 2:132'71 — T2 (322)

The co-ordinates in the 4 vertex points are computed by taking the mean value of the linear
extrapolation of the co-coordinates along the two virtual boundaries corresponding to this
vertex.

For example

1
Too = 5[(2901,0 —220)+ (2201 — 20,2)] (3.23)

12

The base vectors a) are computed in the centroids of all virtual cells and in the midside
points of these cells. The metric tensor g, is computed in all non-virtual points as well as all
virtual points that are not situated at the outer boundary of the virtual alls. The Christoffel
symbols are only computed at the non-virtual points.

3.2 3D-case

The implementation here is only done for geotype = 2.

The covariant base vector @, is computed in the centre of the edges of a P-cell parallel to
the £%-axis, see Figure 3.3.

1

(0-1,1) ! X place where a (g iscomputed
1
E (01,1 O ; placewhere a () iscomputed
| ® : placewhere a is computed
i . (000 P (3) 'SP
|

/) ——————————— O -9-—-—-——-—-=-=-=-=
X 0-1-1) (0,1,-2)

Figure 3.3: P-cell with local numbering and the places where a(y), a(y) and a3y are computed.

The a(y,a(z) and a3y are computed in the following way:

a@)(0,i,5) = a(1,i,j)—2(~1,i,5) (3.24)
ap(i,0,j) = a(i,1,j)—2(i,~1,j) (3.25)
a@(i,5,0) = @(i,j,1)— a(i,j,—1) (3.26)

where ¢, j,€ {—1,1}.

Just as the 2D-case we compute a(i),a(z) and a(s) in all grid points where they are not
available by a linear interpolation, using the fewest number of interpolation points.

So:

1
(1(1)(—1,—1,—1) = §{a(1)(—2,—1,—1)+a(l)(O,—l,—l)} (3.27)
1
(1(1)(—1,0,—1) = Z{a(l)(—Q,—l,—l)‘F(1(1)(0,—1,—1)‘|'(1(1)(—2,1,—1)+
(1(1)(0,1,—1)} (328)
1
(1(1)(—1,—1,0) = Z{a(l)(—Q,—l,—l)‘F(1(1)(0,—1,—1)‘|'(1(1)(—2,—1,1)‘|'
(1(0,-1,1)} (3.29)
ay(=1,0,0) = —{a)(=2,-1,=1)+ a@)(0,-1,-1)+ a@)(-2,1,-1) + a)(0,1,-1) +

()(2,—1 1)—|—(1()(1,1)—|—(1(1)(—2,1,1)—|—(1(1)(0,1,1)} (330)

13

etc.

The geometrical quantity /g is computed for all gridpoints from the covariant base vectors;
using the expression:

V3w = (0Qyaya(s — ayaiyals +

Aty (a)(z) — A1)a(z)0(s)
Ay (2)a(s) = 1)tz a(3)) (i, k) (3.31)

The geometric tensors g3 and ¢°? are computed for all gridpoints by:

Gaplis Jo k) = (@) - @(5))(i5.k) (3.32)
and
9°°(i, j, k) = ((_1)a+ﬁjet (Gaﬁ))(i,j,k) (3.33)
where
Gap = m;nﬂor ii ﬁli ii : (3.34)
931 932 g33

Christoffel symbols are computed by formula (2.17) for the centers of the faces of a p-cell,
1 1 1 2 2 2 .
{11 },{12}, ...,{33} for the front and back face {11},{12}, ...,{33} for the right and left

face and {131 b { ;3} for the upper and lower face, see Figure 3.4 1
3
— RS N S ol
117 gty
[R B o
2 <71 (000) 2 2 2 2
1 |
. .3 3 3
3 3' {11}7 {12}7"'7{33}

Figure 3.4: Places in the p-cell where the Christoffel symbols are computed.

Tn 3D we don’t need the Christoffel symbols in all grid points, because we use another formula for the
deviatoric stress tensor ((4.16) instead of (4.2) with (2.16)).

14

The contravariant base vectors in formula (2.17) are computed by (2.5).
Just as in the 2D-case we introduce virtual cells to compute the geometrical quantities at the
boundaries. See Figure 3.5.

I I N - nj+2

I /,'— ——————————————— m———ommm s

: e] /// J

1 4 ! s

1 d 1 ’

| ’ | 7

| ¢ s

| , | 7

1 e ! ’

o, [

|z 1,

e e e e e e e e e e e e e e e e v

/m +2 _ o
i @0, nk+2)$----|—----,—----,—----:"-“,-“"9 (i, nj+2, nk +2)
| I I I X l :
| I I I | | \
| | | | | |)
Lo--- ----4
| |
| |
1 |
| |
| |
1 |
| |
| |
| |
| |
| |
1 |
| |
1 |
| |
(01 ¢---- el
| I I I I . |
| I I I I X l
L
(00 @---#-omoo——— d----® (i,n +20)

Figure 3.5: The virtual cells surrounding the boundary with a cross-section of the cube.

The co-ordinates of the virtual boundary are computed by a linear extrapolation, for example

face t: =10

w07j7k = 2w17]7k - w27j7k ?

15

(3.35)

edget=0and j =0

1
2ok = Sl(2%10% = @20) + (220,15 — To2k)] (3.36)

vertex t =0, j=0and k=0

1
0,00 = g[(%l,o,o —®20,0) + (220,1,0 — ®0,20) + (20,01 — To0,2)] - (3.37)

16

4 Space discretization of the differential equations

In this section we describe the space discretization of the momentum equations and convection-
diffusion equations in the inner region. Discretizations due to the boundary conditions are
treated in section 5.

4.1 The momentum equations and continuity equation

The momentum equations in general co-ordinates read (see van Kan et al 1991; formula 5.2)

0 a o
a7(PUS + (pUUP) 5+ (675 = 73 = pf (4.1)

with 7% the deviatoric stress tensor given by
0= (g UG + 97U, (42)

Here U® is the contravariant velocity, p the density, p the pressure, pf® some external force
per unit volume, p dynamic viscosity and p; denotes eddy-viscosity, which has to be specified.
This specification is accomplished by a turbulence model. This will be presented in section 4.3.

In the present version all coefficients may depend on space, time and previous computed
solutions. However, with respect to the density a correct implementation is only guaranteed
for p is constant.

The continuity equation reads (see van Kan et al 1991; formula 5.1):

Us=0 (4.3)
As unknowns the fluxes V* = | /gU® are used.
Equations (4.2) and (4.3) are discretized by a finite volume method.

We distinguish between the 2D and the 3D case.

4.1.1 2D-case

The discretization of the continuity equation is straightforward. We use a staggered grid
arrangement as plotted in Figure 4.1.
The continuity equation is integrated over a so-called pressure-cell. This yields:

VI + V2lig) = 0, 44)

where the local numbering of Figure 3.1 is used.

With respect to the discretization of the momentum equations we distinguish between the
time-derivative, the convection term, the pressure gradient, the deviatoric stress tensor and
the right-hand-side term.

17

ul points

| | | | | | |
I I I I I I I
i s i S A
[O o | I | | . scalar points
10 e e —1— o - o« —|— o —
e s | | scalar control volume
I I I I I
—Q ¢ —/— & —|— o —|— o —— — 0 —— 2
| | | | | |:| U “ control volume
I I I I I
—1— ¢ —(— e —|— o —|—— o —— @ e —(— o —|— 1
| | | | | | | . U~ control volume
I I I I I

Figure 4.1: Arrangement of the unknowns for a staggered grid

The discretization of the time-derivative is given by formula (5.35) of van Kan et al (1991)):

9 v
a(ﬂv I(0,0))v (4.5)

where (0, 0) is the center of a V-cell.
The discretization of the right-hand-side term is given by formula (5.34) of that report:

Pfa\/gI(o,o) (4.6)

In order to solve the so-called no flow problem, the discretization of the right-hand side has
slightly been improved by taking

P\/g(aIa)fl + a(za)f2)I(o 0)
See Segal (1993).

The discretization of the convective terms requires a linearization. At this moment only one
type of linearization is available, the Newton linearization given by

VeV & VTP 4 v - peps (4.7)
where V is taken at the new time level and V* at the preceding one.

Apart from the linearization, the discretization of the convective terms is given by formulae
(5.8) and (5.9) of van Kan et al (1991):

Vicell:

SOy VIV Vg (4.8)

V2_cell:
%VZVIIII_’?IO) + E(VQIZI(Y)t T{Vﬁ}VIVBI(o,o) (4.9)

Unknowns not present at points where they are required, are computed by linear interpolation
using the least number of neighbouring points possible.

The discretization of the deviatoric stress tensor is carried out according to formulae (5.23)
o (5.25) in van Kan et al (1991):

Vicell:

— Vg UL +g UL~ Van(g UR +g2 UL~ ﬁ}TW\/_|00 (4.10)
V2-cell:

— V(g U+ g2 U~ Va2l UL+ U)o, 1 ﬁ}ﬂﬁﬂoo (4.11)

with US given by formula (2.22) and 78 by formula (4.2).

The derivatives % are computed by central differences, hence

au~

@51| a = Uerim = Ue—1m) (4.12)
oue N
3£2| T U |(g,n+1 ue | En—1) (4.13)

where for (&,) the local numbering is used.
The same type of interpolation is used as for the convective terms. U® is replaced by V/,/g
in the points where U® is evaluated, although a better method might be to replace \/gU¢% by

V3, since \/gﬁ = 0.

Finally, the discretization of the pressure gradient is carried by formula (3.14) in Segal and
Kassels (1991):

(P(l,o) - P(—Lo))(gal\/g)(o,o) + (P(0,1) - P(o,—l))(gazx/g)(o,o) (4.14)

4.1.2 3D-case

First we show in Figure 4.2 the staggered grid arrangements of the unknowns together with
the control volumes.

19

U 2 control volume

(U2 - cdl)

e g
e g
/ / /
[
f I
|
|
|
4 -
+
v 4
1 1
_/:{_____ L //1_____.".____
/|
’ 1
I
P control volume Ulcontrol volume
(- cell) (UL call)
[} [}
| |
| |
| |
4 V4
7 4
| - |
| |
y /1_____/(____ /1_____/(____
/J/ /"
/7 /7 Y2
V4

U 3 control volume
(U3 - cell)

ul points
u? points
us points

pressure point

Figure 4.2: Arrangement of the unknowns for a staggered grid

20

If we integrate the continuity equation over a p-cell get

1,0,0 0,1,0 0,0,1
VA G+ VA + Ve 2y = 0. (4.15)

this is a simple extension of formula (4.4).

Just as the 2D-case we splitup the momentum equation. The formulae (4.5) - (4.14) are all
most the same in 3D. The main difference between 2D and 3D follows from the fact that not
a discretization of formula (4.2) is used but from:

W OUP S OUY 9g*P

rof = Uvy. (4.16)

= nly oe Y9 95 T o0

This formula (4.16) follows directly from equation (4.2), (2.16), (2.21) and g2’ = 0.
The discretization of the time derivative is given by:

Vo) (417

where (0,0,0) is the centre of a V-cell.
The discretization of the right-hand-side term is given by

(V9 (0,00) - (4.18)

The discretization of the convective terms is given by a straight forward extension of formulae

(5.7) and (5.8a)-(5.8b) of Van Kan et al (1991):

Ve — cell :

P i ra (1,0,0) P s a (0,1,0) P i ra (0,0,1)
ﬁv V1|(_1,0,0) + ﬁv V2|(o,—1,0) + %V V3|(0,0,—1) +

L Q
V9 B

For all non-linear terms in (4.19) we used the Newton linearization given by

}vaﬂ(o,o,o) for a€{1,2,3}. (4.19)

VeV VoVl 4 ey _ e (4.20)

where V is taken at the new time level and V' at the old level.
Unknowns not present at points where they are required, are computed by linear interpolation
using the fewest number of interpolation points.

The discretization of the deviatoric stress tensor is carried out according to:

Ve — cell :
o11(1,0,0 «21(0,1,0 «31(0,0,1
-9 1|E—1,0,)0) — 9T 2|Eo,—1,)0) — /9T 3|Eo,0,—)1)

_({Vaﬁ}ﬂﬁ\/gﬂ(opp) ; (4.21)

21

with 77 given by formula (4.16).
The derivatives % in (4.16) are computed by central differences, thus:

U~ N
355|(m} = Ui jm+as = UGigm-a, (4.22)

where | |

Ao = (3162015 -3l, 15— 1] |5 3], 515~ 115~ 2]). (+:23)
U is replaced by V*/,/g. We make here also the remark that it might be better to replace
VUG by V. So use

LOVe Ve g’
of _ gV
VI = e e + 0 e = e V) (4.24)

instead of formula (4.16) in (4.21).
Finally the discretization of the pressure term is carried out by a generalization of formula
(3.14) in Segal and Kassels (1991):

Ve — cell :
(galx/g)|(0,0,0)(l’(1,0,0) — P=1,00) + (V9" \/_)| 0,0,0)(P(0,1,0) =~ P(0,-1,0)) +
(ga3x/§)|(0,0,0)(17(0,0,1) - P(o,o,—l)) . (4.25)

4.2 The convection-diffusion equation

The convection-diffusion equation in Cartesian co-ordinates reads:

ac*T
ot

+u-V(*T) + div (kVT) + DT = f*, (4.26)

with k& the matrix (ZH le) and k12 = ka.
21 K22

Translated into general co-ordinates this equation becomes (see van Kan et al 1991, formula
5.4):
oc*T
ot

with Ko = a(wa)agﬁ)lﬂ‘s

+(UT) o) = (K*PT) o + DT = f*, (4.27)

The discretization of equation (4.27) is given by

0c*T,
9o, o>% + VI, + VT,
18 or 20 or *
vk ﬁ| 10 — 9k ﬁ| —1 +V9DT|0.0) = V9| (0,0) (4.28)

With respect to interpolations and derivatives the same rules as for the momentum equations
are applied.

22

4.3 Turbulence models

In section 4.1 we have stated that yu; in (4.2) has to be determine by introducing a turbulence
model. In this section we shall discussed two turbulence models.

4.3.1 The k — I model

The standard one-equation model called the & — L model uses a modelled transport equation
for turbulent kinetic energy k, which is by definition positive, and an algebraic expression for
a characteristic length scale L. The k equation in general co-ordinates reads

dpk B ft k312
) o — (2o = RPq, U, — pey—o 4.2
5 T (PUk) s (ng a)p = B9 Uy = pea— (4.29)
where R%” is the Reynolds stress tensor
RP = 1, (g°"UE + g7PU) (4.30)

Concerning source terms, the first term on the right hand side of (4.29) is the so-called
production of turbulent kinetic energy and the last term is the dissipation rate of turbulent
energy. Furthermore, ¢y and oy are empirical constants, which values are 0.08 and 1.0,
respectively. These values were proposed by Launder & Spalding, (1972).

It is necessary to find an algebraic expression for L, which depends on the flow geometry.
This is an important disadvantage of the k — L model, because, it is not very easy to find an
expression for L for an arbitrary flow geometry. However, this model can be used for near-wall
treatment, where little empirical information on the length scale distribution is available.
Finally, with & and L we can compute the eddy-viscosity

e = pVkL (4.31)

4.3.2 The k — ¢ model

The k — ¢ model which is developed by Jones & Launder (1972) has been generally accepted
as the standard turbulence model used in CFD codes. This two-equation model is presented
here in full:

k2
He = PCu— (4.32)
opk
T (U k)= (P k) = P = pe (1.33)
oy
dpe iy €
a1 T Ule) 5 — (U_Egmgw)ﬁ = plasP —caepe) (4.34)

where P is the production of turbulent kinetic energy

P =Rg.,,U}, (4.35)

23

Cu Cle C2e Ok O¢
0091441192 1.0 1.3

Table 4.1: Constants for £ — ¢ model

and ¢ is the dissipation rate of turbulent energy, which is essentially positive. Furthermore,
Cus C1e, and cg. are empirical constants and oy and o. are the turbulence Prandtl/Schmidt
numbers for k and ¢, respectively. The values of these contents are given in table 4.3.2 and
are recommended by Launder & Spalding, (1974). An important remark is that turbulence
models introduced above apply only to regions of flow with high Reynolds number. For a
derivation and further references, see Zijlema, (1993).

4.3.3 2D implementation of turbulence models

The equations (4.29) or (4.33) and (4.34) can be considered as convection-diffusion equations.
Hence, for the implementation of the £ — L and k — ¢ model the equation (4.27) will be used.
The evaluations of the functions ¢*, K%, D and f* will be treated in section 6.3.

Before the transport equations have to be solved, the production term (4.35) must be evalu-
ated. The discretization of the production term is carried out at the centre of a scalar cell.
Since we use V< = ,/gU® as unknowns, the covariant derivative of the contravariant velocity
components must be expressed in terms of flux components. Thus

Ve
N o {Jﬁ}va + ﬂav}vv (4.36)

The partial derivative of the flux component can be approximated by central differences.
The same interpolation rules as for the momentum equations are applied. All geometrical
quantities are evaluated at the centre of a scalar cell. Closest to a boundary, some derivatives
OV /0€P also contain virtual fluxes. These virtual quantities are expressed in internal fluxes
by using linear extrapolation. For example, at lower boundary we get:

%}—2 = QVZ}O - Vi}z (4-37)

In order to obtain non-negative solutions of the equations (4.33) and (4.34) a first order upwind
scheme has to be used for the convection terms Zijlema, (1993). Consider the convection term
of a convection-diffusion equation (4.27) in integral form:

/Q(C*UOYT),Q = /Fc*UaTdFa = VT, + VAT (4.38)

Consider only the first part of the right hand side of (4.38). Since 7" is only given in the centre
of a scalar cell, further approximation is needed. This can be done with a first order upwind
scheme:

1) 1 .
T~ 5[1 + sign(Vih o)1 0,0y + 5[1 = sign(V{i o)1 (2,0) (4.39)

1 . 1 .
T(—1,0) ~ 5[1 - Slgn(v(l—l,o))]T(o,O) + 5[1 + Slgn(v(l—Lo))]T(—z,o) (4.40)

24

where the local numbering of figure (4.3) is used. The second part of the convective terms
can be approximated the same way.

2+ + +
1 H
0 + /B 4+ o/ +
-1 D
2 4+ + +
-2 -1 o 1 2

Figure 4.3: Local numbering for scalar cells

25

5 Implementation of the boundary conditions

In the present version of the ISNaS incompressible program, the following types of boundary
conditions have been implemented.

Boundary conditions for the momentum equations:

Type 1: Velocity prescribed (Dirichlet boundary condition)

Type 2: Stress prescribed (Natural boundary condition)

Type 3: Normal stress and tangential velocity given (Semi natural flow)

Type 4: Tangential stress and normal velocity given (Slip boundary condition and also sym-
metry condition)

Boundary conditions for the convection-diffusion equations are:

Type 1: Scalar T prescribed (Dirichlet boundary condition)

Type 2: 61 4 (kVT) - n prescribed (Robbins boundary condition)

In the next paragraphs we consider the various boundary conditions separately.

In 2D the notion normal and tangential vector have been defined in a somewhat strange way.
For a user the normal vector is defined as the outward normal in the case of a counterclockwise
direction and as the inward normal in the case of a clockwise direction. The tangential vector
is defined in the direction of the outer boundary. In the program, however, the normal and
tangential vector are always defined in the 1 or 2 direction in the computational grid. Hence
at the boundary £2 = 0, the normal direction is the £? direction and tangential direction the
&' direction. At the boundary ¢! = na, the normal direction is £ and the tangential direction
£? ete.

In the sequel the internal definition will be used.

5.1 Prescribed velocities

5.1.1 2D implementation

In 2D, prescribed velocity given means in the present version w -n and w - ¢ given. These
quantities are transformed to contravariant components using the formulae (6.1) and (6.4)
from van Kan et al. (1991):

Ur = Vg"u-n (5.1)
1
Ul = —(JFau-t— g U") (5:2)

Yt
Here the definitions of n and ¢ as described above are meant both for the physical components
as for the computational components.

26

The given normal velocity component (in computational space) is implemented by explicitly
prescribing the velocity unknown at the boundary. In the program this is implemented by
setting the corresponding main diagonal element equal to 1 and the off-diagonal elements in
the corresponding rows to 0. The right-hand-side component corresponding to this unknown
is made equal to the unknown itself.

The given velocity component U? is implemented in the following way:

The matrix is built for all unknowns including all the "tangential” unknowns. The rows
corresponding to the "tangential” unknowns closest to the boundary (see Figure 5.1) contain
elements referring to virtual pressures and virtual "tangential” velocity unknowns. The virtual

2 EZI+E|ZI+EZ|
1 1 1 1 1
L L

’ ﬁjz'z?
1 g g
L [} L L

2 O+ O+ O
3 -2 -1 o0 1 2 3

Figure 5.1: A ”tangential” velocity cell at the boundary

quantities are expressed in internal unknowns and prescribed velocity components at the
boundary using linear extrapolation. For example for the lower boundary (Figure 5.1) we
get:

Pi—2 = 2Di0— DPi2 (5.3)
‘/Z}—? = 2‘/2'}—1_‘/2'}07 (54)

where Vi}_l is the value of \/gUt at the boundary point. The coefficient in the matrix corre-
sponding to the virtual unknown multiplied by the expression (5.3) or (5.4) is transported to
the right-hand side or the other matrix terms.

5.1.2 3D implementation

We give here two ways to describe the velocities in the physical domain:
(i) with Cartesian velocity components,
(ii) with normal and tangential components.

In the present version, only the first approach is implemented.

27

(i) If the Cartesian velocity components are prescribed we can compute the contravariant
components in the following way:

U = a'® .4

(5.5)
(ii) Normal and tangential components are prescribed on the plane where £ is constant.

The scalar products w -n, w- 71 and w - 79 with the tangential vectors 71 and 77 are
given by the user. See Figure 5.2.

tangent plane

n
& = constant

£t

Figure 5.2: The scalar products u - n,
prescribed. Here is ||n|| = ||7;]| = ||z2]|

TS

-7y and u - 745 and tangential vectors 7, and 7, are
1.

vr =

U
Ut

From w-n, w-7Tq, u-T9, 71 and 79 we can compute U", U and U by:

sign (@™ - n)/g"u - n

(5.6)
-1 -1
[gtltl gtltg] [all O[lQ] [u 'Tl] _ Un [gnt1] (57)
gtgtl thtQ O[Ql O[QQ u - T2 gnt2

28

where
Ti Q) Gty
TiQiy) Gioty

Q1 =) (58&)
Gty Gtito
Gioty Gtoto
Jt1t1 Ti Q) ‘
Giot; Ti Q¢
Qg = 1 7 %HE) (5.8b)

Gty Gtito
Gioty Gtato

Formula (5.7) makes no sense if the tangential vectors 71 and 7, are linear dependent, so
they have to be linear independent.

The given U", U and U* are implemented in almost the same way as in the 2D-case.

5.2 Stresses prescribed
5.2.1 2D implementation

In 2D stresses prescribed implies that normal and tangential stress components at the bound-
ary are prescribed. Let S™" and S™ be the normal resp. tangential physical stress at the
boundary, where the normal and tangential vector are defined as in 5.1.1.

From S™" and 5™ we can compute o™ and o™ by

P - gnnsnn7 (59)
O_nt — (1 /gnngttsmf _ gntgnn)/gtt7 (510)

where 027 is defined by
o = —g*Fp 4 78, (5.11)

An important remark is that in this formulation pressure and deviatoric stress tensor can not
be separated, hence the discretization of both must be the same at the boundary. For that
reason the discretization of the pressure at the boundary will be different from the one in the
inner region.

Since no velocities are prescribed, it is necessary to consider finite volume cells around each
velocity unknown, including the "normal” velocity points at the boundary.

Let us first consider the "tangential” boundary cell as sketched in Figure 5.1. The discretiza-
tion of the convective terms, the right-hand side and the time derivative are exactly the same
as for the inner cells, with the exception that virtual (tangential) velocities are eliminated by
linear extrapolation as in formula (5.4).

29

The stress tensor (deviatoric part and pressure together) is discretized by:

1
N R T TR TR LV O

(5.12)

In this expression 012|(07_1) is given by formula (5.4). All other terms are treated in the usual

way (except of course for the pressure).

With respect to the normal velocity unknown at the boundary a half cell is defined as in
Figure 5.3. The discretization of the convective terms plus the stress tensor at the boundary

N
C1
C1
L]

o
C1
C1
L]

-3

N
=
o
=

Figure 5.3: A ”"normal” velocity half cell at the boundary

is given by formula (6.14) from van Kan et al (1991):
L —pary(1y) 2p0) 1 =020
5\/§T |(_171) + \/gT |(070) + §ﬁ{7ﬁ}T |(0,0)7
where
T°F = pU°U" — o*°
The discretization of the right-hand side gives

1
§Pfa\/!7|(o,0)

and of the time-derivative: v
—Z(pVe

The discretization of the convective terms is derived from (5.13) by substitution of
TP = puU”

and the approximation

1
Vol,o = §(V11,1 + V—11,1)

30

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

The discretization of the stress tensor at the boundary is given by formulae (6.14), (6.15) of
van Kan et al (1991):

1 2
RHS — /0% 0,1y — 5\/!7{ 11 Yo' (0,0); (5.19)
where RH S is defined by
1 1
RHS = —5\/!7021|(1,0) + 5\/!7‘721|(—1,0) + \/!7‘722|(0,0)
1 2 2
—5\/!7{ 29 }‘722|(0,0) -V 12 }012|(0,0) (5.20)

The evaluation of 0'|(g,0) introduces extra difficulties.
Following van Kan et al (1991), page 76, we use pg instead of pg .

11|(

Furthermore %“070) is computed at the preceding time-level, and %“070) replaced by
%“071). Virtual velocities are not used. To compute %“070) at the preceding time level,

U' at the boundary is computed by linear extrapolation from inside, using two points.

5.2.2 3D implementation

The normal and tangential stress components at the boundary are prescribed. Let S™" be
the normal stress component at the boundary and 5™ the tangential stress component in the
7 direction (see Figure 5.4). So:

Sf":const = Snnn —I_ SnTT (521)
where n is an unit normal vector and 7 is an unit tangential vector. From S™"n and 5™ 7 we
compute o™, ¢ and ¢™2 the stresses in the computational domain. Just asin the 2D-case

tangent plane

En = constant

gl

Figure 5.4: The normal and tangential stress in the physical domain at the boundary £" =
constant.

31

is:
o™t = ¢ emn (5.22)

o™ and o™ are computed by:

nt1 -1
[O'nt2] _ Slgn (a(n) n)\/gmsnﬂ' l Z;] — g l Gty Gtito] l 9nty] (523)

o Gtaty Gtaty

where
T Q) Gty
T Q1y) Gioty

a; = ; (5.24a)
guty Gto
Giot1 Gtoto
Jt1t1 T Q) ‘
Gty T Q
P el (t2) (5.24b)

guty Gto
Giot1 Gtoto

The stress 07 is defined by 0®® = —g*®p+ 728, At the boundary it is impossible to separate
the pressure from te deviatoric stress tensor 7%, So the discretization of the pressure at the
boundary will be different from the one in the inner region.

We have to consider three different cells closest to the boundary two ”tangential” and one
“normal” velocity cell.

Let us first consider the "tangential” cells. The two "tangential” cells closest to the boundary
are considered differently from the ones in the inner region, because the stencil contain virtual
unknowns (see Figure 5.5). The discretization of the convective terms, the right-hand side
and the time derivative are the same as for the inner cells, with the exception that virtual
velocities are eliminated by linear extrapolation. For example for the bottom boundary (see
Figure 5.5) we get:

Vi}j,—2 = QVilj,o - V’}j,z (5.25)

The stress tensor 0®7 is discretized in the following way for the V *-cell:

(1,0,0) (0,0,1)

(0,1,0)
\/_Ua1| 100 — V90" | 7—710 \/_Ua3|00—1

(5.28)
—\/g{w}am(om) for a=1,2.

Term O'a3|(0707_1) is given by formula (5.23), if we are concerned with the bottom boundary.
All other terms are treated in the usual way.

32

o
w
-
-

k=2 [CJ1 e [CJ1 o [1 u?point
k=1 — — D us point
k=0 [C] . p point
E3 = constant
777

k=-2 (.t e [0 e {1

17 7
k=-3 o Ly

La La

Figure 5.5: A cross-section ({1 = constant) over an U?-cell closest to the bottom of the

region.

Since no normal velocity components are prescribed at the boundary we have to consider a
finite volume around a "normal” velocity point at the boundary (see Figure 5.6). We will
now consider the discretization for a "normal” velocity cell at the bottom boundary.

The discretization of the time-derivative gives:

10

§§(PV3)|(0,0,0) (5.29)
and of the right-hand side:

1

§(Pf3\/!7)|(0,0,0) . (5.30)

The discretization of the convective terms is given by:

L p 11(1,0,0) L p o 5..2,01,0) P +,3v,3/(0,0,1)
§7V v | (—1,0,0) + 5%‘/ 4 |(o,—1,0) + %V 4 |(0,0,0

{yﬁ}v | (0,0,0) (5.31)

=

1,0
2\/_

and the approximation:

Vo = Vi (5.32)
Vie = Vi 5.33)

33

k=2 (] (] (] 1 u? point
k=t C1 o [LCF--=~--{1 o [[] u® point

_ [] M _
k=0 /U ///I// /7 U/ /\ ¢ p point
&~ = constant

k=-1 (__ ° L ® L_t ® L_t

| =
I I
L La

k=-2

Figure 5.6: A cross-section (! = constant) over an U3-cell at the bottom.

If V1 or V2 are not present at (7,7,1) then they are approximated by:

1

Vi}j,l = §(Vi1—1,j,1 + Vz’i—l,ﬂ) (5.34)
1

Vi,?j,l = 5(‘/2'?]‘—1,1 + Vz’?j+1,1) . (5.35)

The discretization of the stress tensor at the boundary is given by the following formula:

(1,0,0) 1 (0,1,0)
- \/_ 31| 100 5\/57‘732| 0,~1,0) \/_‘733|
—5\/!7{7ﬁ}gw|(0,0,0) (5.36)

or

RHS = /5o |001)~ \/_{11} "(0,0,0)
- \/_{12}‘712|000 \/_{22}022|000 (5.37)

where RIS is given by:

(1,0,0) 1 (0,1,0)
RHS = - \/_31| 100 5\/57 | 0,~1,0) ‘|'\/_U |000

- 13 }013|(0,0,0) -V 23 }02 | 0,0,0) \/_{ 33 }U | 0,0,0) (5.38)

The evaluation of 011|(07070), 0(10200) and 0'(000) introduces some difficulties. First we need

the pressure in point (0,0,0), because we have to split up o'!, o' and 0?2, Instead of pg oo

34

we 1use pgo,1 just as in the 2D-case.

8ga - and g[g]a at (0,0,0) for a = 1,2, 3. The derivatives 8[5]11 |(0,0,0)> %“07070),

au? Ut au?

ST |(07070) and 2 —852 |(07070) are replaced respectively by 2 —851 |(07071), 5 |(07071), ST |(07071) and

U2

52
1

%“07070) and 2 853 |(07070). It seems reasonable if we use the same strategy as used in the 2D-

Secondly we need 2
|(07071) In van Kan et al (1991), page 34, there are three strategies mentioned to compute

case. That is, the derivatives %“07070) and 2 853 |(07070) are computed at the preceding time

level, U' and U? at the boundary are computed by linear extrapolation, using two points, so:

au~

853 | 0,0,0) Ua|(0,0,3) - Ua|(0,0,1) (5-39)

(at the preceding time level) for o = 1, 2.

5.8 Semi-natural outflow condition
5.3.1 2D implementation

With semi-natural outflow condition we mean tangential velocity and normal stress prescribed
at the boundary, i.e.
w -t and 5™ given. (5.40)

Although w - ¢ prescribed does in general not imply U? prescribed we assume that instead of
(5.40) the following boundary condition is given:

U and S™ given (5.41)
where S™" is related to o™ by (5.9).

Boundary condition (5.41) influences both the tangential velocity cell as sketched in Figure 5.1,
as the normal velocity half-cell sketched in Figure 5.3.

With respect to the tangential cell, the molecule is built in the same way as for the inner cells.
The only difference is that virtual velocity components and virtual pressures are eliminated
by linear extrapolation, i.e. by applying formulae (5.3) and (5.4).

The normal velocity half cell gives rise to the following discretization of the stress tensor (see
van Kan et al 1991, formula (6.19)):

1 1 2 2
—5vIe M (5T = VAT o — 5va(| et 4+ 2{ 530)
1 2
+\/§Uz2|(0,0) - 5\/5{ 29 }022|(0,0)7 (542)

where 022 | 0,0) is given by (5.9). Virtual velocities are eliminated by linear extrapolation
using formula (5.3). It must be remarked that the first term with respect to the pressure is

35

evaluated in the points (1,1) and (-1,1) instead of (1,0) resp. (-1,0).
The convective terms are evaluated by expanding

prZUﬂ o +oVaUR U o) + pf{ ﬁ}U”U%o (5.43)

using the standard inter- and extrapolations.

5.3.2 3D implementation
The tangential velocity and normal stress are prescribed at the boundary, i.e.:
w-Ty, W-To, Ty, T2 and ™" are given . (5.44)

From equation (5.7) it is clear that we can calculate U™ and U™ as g,;, and g, are zero,
otherwise we have to make an assumption about Ut and U*. In the remainder of this section
we assume that

U, U and S™ are given , (5.45)

at the boundary.
From S™ and equation (5.22) follows the stress ¢™" at the boundary in the computational
domain.

Boundary condition (5.45) influences the two "tangential” velocity cells (see Figure 5.5) and
the "normal” velocity half-cell (see Figure 5.6).

The U! and U? "tangential” cells (bottom boundary) are built in a similar way as the inner
cells. The only difference is that virtual velocity components and pressures are eliminated by
linear extrapolation. For example for the bottom boundary we get:

Vij—2 = 2‘/3_1 Vf;, for a=1,2 (5.46)
Pij—2 = 21%,], 0~ Pijz2 - (5.48)

The normal velocity half-cell at the bottom boundary. The discretization of the convective
term gives

Lp 1100 1 31,2((0,1,0) P 137,31(00,1
57‘/ Vv | (—1,0,0) + 5%‘/ Vv |(o,—1,0) + %V Vv | 0,0,0
Lp
+= Vve 5.49
2./7 75} | 0,0,0) ()
Terms with the factor V3V? are the only terms where we need a linearization procedure, since
V1! and V? are given at the boundary.

We use the following discretization of the stress tensor:

1 1,0,0 1 (0,1,0)
- 5\/57‘731|E—1 0)0) - 5\/57‘732| 0,~1,0) \/_‘733| ;

- VA0 00 (5.50)

—_
NN

36

where %%

0,0,0) i given by (933533)|(07070). So the right-hand side gets the contribution:

1.3
(14 553 VI 000 (551)

The virtual velocities introduced by formula (5.51) are eliminated by linear extrapolation.
Just as in 2D is the pressure evaluated in the points (1,0,1), (-1,0,1), (0,1,1) and (0,-1,1)
instead of (1,0,0), (-1,0,0), (0,1,0) and (0,-1,0).

5.4 Slip boundary condition

5.4.1 2D implementation

The slip boundary condition is equivalent to tangential stress as well as normal velocity
component given. The treatment of this type of boundary conditions is the subject of Segal
(1991). All formulae in this section are copied from that report.

The normal velocity given implies U™ given by the relation (5.1). The tangential stress given,
however, does not automatically imply that a component of the contravariant stress tensor
is prescribed. In fact it only implies a linear combination between stress components at the
boundary through the relation

V748" = gnia™ + g™ (5.52)
Since the normal velocity component is given no normal half cells are introduced.

The discretization of the convective terms implies the evaluation of virtual velocities by linear
extrapolation. The discretization of the stress tensor is given by

- \/!7‘711|El—7$,)0) B \/5012|28:1—)1) B {715}075\/57“070) (5.53)
The linear extrapolation formula for the velocities is given by
%}—2 = QVZ}O - Vzlz (5.54)
The term (\/‘(7012)(07_1) is equal to:
V37 0,21) = 5" 0,21) — \/5%022“07_1)7 (5.55)

where the first term is given and the second term involves virtual velocities and pressures
that can be eliminated by (5.54) resp. (5.3).

5.4.2 3D implementation

In this condition the normal velocity w - n and tangential stress S™7 with 7 are prescribed.
So we don’t need "normal” velocity half-cells. We have only to consider the two ”tangential”

37

cells. For the remainder of this section is the slip boundary condition given on the bottom
boundary.

The discretization of the convective terms is given by:

P i a 1,0,0 P 1 ra 0,1,0 P tra 0,0,1
ﬁv V1|E—1,0,)0)‘|' \/gv V2|E —1)0)‘|' %V V3|Eo,0,—)1)

+-= Vvve for a=1,2. 5.56
\/_{’}/ﬁ} |000 ()

Since V3 = \/§U3 is prescribed at the bottom boundary we do not have to use a linear
approximation for VV?| (oo _1) (see Segal (1991), formula (3.9)):

84 1 84 84
Vv V3|(0,0,—1) = 5(3‘/ |(0,0,0) -V |(0,0,2))V3|(0,0,—1) for a=1,2. (5.57)
The discretization of the stress tensor is given by:
21)(1,0,0) (0,1,0) «3(0,0,1)
—Vgo 1| 100 —Vgo® | 0,-1,0) — Vo 3|00—1
-9 3 }UW|(07070) for a=1,2. (5.58)

The virtual velocities introduced by formula (5.58) are eliminated by linear extrapolation, i.e.
using formula (5.25), (5.26) and (5.27).

The term 0%|(g0,_1) in (5.58) is for a = 1 (U'-cell) equal to:

-1
ol3 = | sign(/ 33677 o, _ 33T 911 912 g31 ~ 5.59
|(0,0, 1) g 1 g 22 32 |(0,0, 1) ()
where el =[1 0], s

13 n g, 33922931 — §12932
o _1) = | sign (n)\/ ¢339 -0 —) 1) - 5.60
|(0’0’ 2 (911922 — g12921 |(0’0’ 2 ()

Term O'a3|(0707_1) in (5.58) is for @ = 2 equal to:

-1
o3 = | sign(/ 33677 o, _ 33T 911 912 g31 ~ 5.61
|(0,0, 1) g 2 G921 G2 39 |(0,0, 1) ()
where el = [0 1], s
23 Ry (3) 33677 o, _ 33911932 — 921931) 5.62
o 1y = | sign (@) -n)y/ Qg — o 1y - .
|(0’0’ 2 (gn V9 : 911922 — 921912 |(0’0’ 2 ()
The factors oy and ay are calculated with formula (5.24a)-(5.24b).

The 0%3(g0,_1) in (5.60) and (5.62) involves virtual velocities and pressures that can be
eliminated by (5.25)-(5.27) and (5.48).

Before treating the boundary conditions for the scalar equations we shall first consider the
special cases where we have a transition of one type of a boundary condition to another as
well the case of a corner of the region.

38

5.5 Transition of types of boundary conditions
5.5.1 2D implementation

Just as in the preceding cases we restrict ourselves to the lower boundary in the computational
domain. Let at the vertex point S we have two types of boundary conditions (see Figure 5.7).

[[[
L L L
]]]
[. [[
L L L
S

Figure 5.7: transition point S (vertex of cell). At the left of point S the type of boundary
condition differs from the one on the right.

We shall only consider the boundary condition at the left of point S but in relation to the
boundary condition at the right. In all cases the most restrictive boundary conditions, i.e. the
one that influences the velocity most directly will be applied. Let us first consider Dirichlet
boundary conditions at the left of 5. Since Dirichlet boundary conditions are the most
restrictive, it is assumed that also in point S the velocity is prescribed. All points left of §
are treated in the usual way. The only special treatment is required for the tangential cell
just above point S (Figure 5.8).

) - - -

. M M
L] L

0 - -

] M
! s U L
2 [[Lo

-2 -1 0 1 2

Figure 5.8: Tangential cell just above transition point §.

The molecule corresponding to V(lo 0) contains 3 virtual points, 2 of which can be eliminated

39

by linear extrapolation using the boundary conditions.
The only special point is V(12 _2) If at the right side of 5 we have a boundary condition of
type 3 this point may be treated in the usual way. However, if boundary conditions of type

2 or 4 are prescribed V(12 _2) must be eliminated by the linear extrapolation:

V(lz,—z) = 2V(lz,o) - V(lz,z) (5-63)

Now suppose that we have a boundary condition of type 2 at the left side of $" and a boundary
condition of type 1, 3 or 4 at the right side of 5. It is sufficient to consider the tangential cell
sketched in Figure 5.8 and the normal half cell left of point S sketched in Figure 5.9.

C 1]
C
C 1]

S

- =" - ="

-1 L_J L_J
Figure 5.9: Normal half cell left of the transition point 5

All other cells are treated in the usual way. Let us first consider the tangential cell of
Figure 5.8. If at the right side of point .5 we have a boundary condition of type 1 or type 3,
the tangential velocity in point S is given and the cell is treated as if corresponding to the
right side. In the case of boundary conditions of type 4 the cell may be treated in the usual
way.

With respect to the normal half cell we can proceed as usual. Since no virtual velocities
appear no special treatment is necessary.

In the case that we have a boundary condition of type 3 at the left side of .5 we also distinguish
between the tangential cell of Figure 5.8 and the normal half cell of Figure 5.9. With respect
to the tangential cell the procedure described in 5.3.1 can be applied without any restriction.
With respect to the normal half cell we may also proceed in the standard way, i.e. apply
formula (5.42). This procedure leads to virtual unknowns which may be eliminated in the
usual way. There is no need to use extra information if velocities are given at the right of
point 5.

Finally with respect to boundary conditions of type 4 it is sufficient to consider the tangential
cell of Figure 5.8. If at the right side of point S boundary conditions of type 1 or type 3
are given (i.e. wu; prescribed) these boundary conditions prevail. In the case of boundary
condition of type 2 at the right side of 5, no special action is necessary.

40

5.5.2 3D implementation

Just as in the 2D case we restrict ourselves to only one boundary, the bottom boundary in the
computational domain. First we assume that only one boundary condition type is prescribed
on a "bottom boundary”-face of a p-cell, see Figure 5.10.

3

;
T £

\\ \\\\\\
NN
/ bottom boundary

/

E1

Figure 5.10: There is only one boundary condition type prescribed on A, the "bottom
boundary”-face of a p-cell.

It is clear that the only thing that has to be treated very carefully is the extrapolations of
the virtual points, see Figure 5.11.

\
7 T
I 225227 | /U2]]
! 500000 ! (]_1-2) l:t: \tq
722777/ i NN t\q
Vs epers- - D\\V'\tg -
" AlB NI
[T T
: (b)
d. o 4-
. 1
| | | . virtual U
! 5277, !
/5’///, ; 2
4- 0 7004- 0 - == virtua U
Vil
! . ! o virtua U3
d. o 4-
1
\
(©)

Figure 5.11: A cross-section of the bottom boundary and an (a) U'-cell, (b) U?-cell and (c)
U3-cell, with the positions of the virtual unknowns.

41

For the extrapolation of for instance V(QLL—?) in a Ul-cell (see Figure 5.11(a)) we have to
consider the boundary conditions in the two ”bottom boundary”-faces A and B. If boundary
condition type 1 (Dirichlet) or type 3 (semi-natural outflow) is prescribed in one of the two
”bottom boundary”-faces then the following extrapolation is used:

V(21,1,—2) = 2‘/(21,1,—1) - V(21,1,0)) (5.64)
otherwise

V(21,1,—2) = 2‘/(21,1,0) - V(21,1,2) : (5.65)

It is clear that a similar procedure can be used for all virtual velocities in the ”tangential”
cells and "normal” half cell.

5.6 Treatment of boundary conditions at the corners of the region

With respect to the corners of the region, it is necessary to consider the boundary condi-
tions carefully, because unknowns may be not present anymore. Let us investigate the four
boundary conditions in this special case.

5.6.1 2D

For simplicity we restrict ourselves to the case of a boundary condition at the right side of
the lower boundary in the computational region.

In the case of Dirichlet boundary conditions (type 1), no points at the right of the left
boundary appear, hence no special precautions are necessary.

In the case of boundary conditions of type 2 we have to distinguish between ”tangential”
cells and normal half cells. Only tangential cells of tangential velocities not lying on another
boundary are considered. As a consequence the last tangential cell is at a distance 1 from the
boundary and no special treatment is necessary.

With respect to the normal half cell sketched in Figure 5.12 we have to be more careful.

"right" boundary

1

1

]
N

.

__.|

M
LI I -
2 -

"lower" boundary

Figure 5.12: ”normal” half-cell at the intersection of ”lower” and right boundary.

42

The discretization of the convective terms using formulae (5.13), (5.17) and (5.18) introduces
virtual velocities in the points (2,0) and (2,2). These virtual velocities are eliminated in the
standard way by linear extrapolation using the value of V2 at the right boundary if available
and otherwise using the values V() and V Hence even if V? is given at the right
boundary, we still use the mterpolated values. Tﬂls approach simplifies the treatment of the
boundary conditions.

The stress tensor in this cell as treated in formulae (5.19), (5.20) does not introduce virtual
unknowns at the right of the right boundary. Hence this part does not require a special
treatment.

With respect to boundary conditions of type 3 and type 4 the standard procedure may be
followed, provided virtual velocities are eliminated in the usual way. This is the case both for
the tangential cells and the normal half cells.

5.6.2 3D

In the 3D-case we have to consider two kinds of corners, edges and vertices.

Edges We restrict ourselves to the case of boundary conditions at the edge left under
(62 = 0 and £ = 0) in the computational domain. There are 4> = 16 possible combinations

to prescribe the boundary conditions, but only (4+ 3 -1) = 10 are really different, see
Table 5.1.
boundary condition type
combination | left boundary | bottom boundary
(& =0) (& =0
(i) 1 1
(ii) 1 2
(iii) 1 3
(iv) 1 4
(v) 2 2
(vi) 2 3
(vii) 2 4
(viii) 3 3
(ix) 3 4
(x) 4 4

Table 5.1: Combinations of the boundary conditions for the edge left under (£2 = 0 and
£ =0

43

Combination (i)
Since the normal velocities are given at the boundaries we have only to consider the "tangen-
tial” Ul-cell, see Figure 5.13.

left bou2r1dary
(plane & =0) M
k=3 global |
/]
k=2 o1 O .1 0O
/]
_ AT M
k=1 L L] L]
k=0 (2 o 1 W [J1 0O L[]
/]
k=-1 :L_: / L D . D y bottom b%undary
(plane & g =0)
k=-2 S A I A
U 2-0,-2,-2) (e

.r_
[

] u?

point at a half cell distance from the cross-section

D us point at a half cell distance from the cross-section

Figure 5.13: Cross-section over the "tangential” cell near the edge left under.

1

The virtual velocities are eliminated in the usual way ! one exception that is for V(o 22y

1

‘/(?7]7_2) = 2‘/(?7]7_1) - ‘/(?7]70) for a«=1,2 and j# -2
V(?,—?,k) = 2‘/(?7_17@ - ‘/(?,O,k) for a=1,3 and k # -2
‘/(3,—3,0) = 2V(%,—Lo) - V(%,Lo)

‘/(%,0,—3) = 2‘/(%,0,—1) - ‘/(%,0,1) .

44

This virtual quantity can be extrapolated in the following way:
V(lo,—z,—z) = 4V(10,—1,—1) - 2V(lo,—l,o) - 2V(lo,o,—1) + V(%J,O,O) (5.66)

or

V(%J,—2,—2) = 2V(lo,—l,—l) - V(%J,O,O) : (5.67)
Both equations have the same order of accuracy.

Combination (ii)
Here we have to consider the "tangential” cell and the ”"normal” half-cell at the bottom
boundary, see Figures 5.13 and 5.14.

Iefg boundary
(Egioba =0))
/]
! / [] []
2 |
L. a Ll Ll
107 Tl E%ih?*%i?' 1, O, CJ
- bottom boundar
k=0 11 ALK [@ty
- L.y, Z /78 7 sUS 7S global ~
o
2]] |
L.l L.l L.l
-3 -2 -1 j=0 1 2 3

O ut point at a half cell distance from the cross-section

1 U2 point

D us point

Figure 5.14: Cross-section over a "normal” U? half-cell.

"Tangential” U!-cell.
The approach is here al most the same as the one prescribed in paragraph 5.2.2. Although
there are more virtual unknowns they can be eliminated in the usual way. The V(lo _2,-2)

45

velocity forms an exception in this case. We can only use equation (5.67) for the elimination

of V(%) —2,-2) since V! is not prescribed at the bottom boundary.

"Normal” U? half-cell.

Only the velocities marked an a in Figure 5.14 appear in the discretization, since o°!, 03 and
033 respectively U', U? and U? are given at the bottom boundary respectively left bound-
ary. The approach is almost identical to the one given in paragraph 5.2.2, only the terms
%ﬁviﬁvﬂ(o’_lp) and %“0707_1) are treated in a different way. The first term is completely
known since V2 and V? are prescribed at the left boundary. So this term can be transported
to the right-hand side.

The derivative %“07071) = %(U(lozl) - U(l0 . 1)), introduced by the stress tensor can be

computed using the standard elimination rules, so:

out 1 L

3—52|(070,1) = §(U(0,2,1) - (QU(O,—l,l) - U(10,0,1)) (5.68)
where |
1 1 1
Utoiiy = 301 T Vi) - (5.69)

Combination (iii)

The U', U? and ¢33 are given at the bottom boundary and U', U? and U? at the left boundary,
so it is necessary to consider besides the "tangential” cell the "normal” U? half-cell.

The "tangential” cell can be treated in almost the same way as the "tangential” cell in

combination (i), see also paragraph 5.2.2.
The discretization for the "normal” U2 half-cell is almost given in paragraph 5.2.2. But
now there are more virtual unknowns and some of them: V(lo —2 -1y V(% _3-1) and V(% _2,-2)

can not be eliminated in the usual way. The virtual unknowns V(%) 2 1) and V(%) _3-1) and
V(% —2,-2) (see Figure 5.14) can be eliminated by using one of the following equations:
‘/(%,—2,—1) = 4‘/(%,—1,0) - 2V(%,o,o) - 2‘/(%',—1,1) + V(%,O,l) (5.70)
fori=—1orl,
V(%,—:a,—l) = 4V(%J,—l,o) - QV(%J,I,O) - 2‘/(%,—1,1) + V(%J,l,l)) (5.71)
and
V(?()J,—2,—2) = 4V(%,o,o) - 2V(%,z,o) - 2V(%,o,z) + V(%,z,z) : (5.72)

Combination (iv)

Here we have only to consider the "tangential” cell, since the "normal” velocities are given (U/?

at the left boundary and U? at the bottom boundary). For the treatment of the "tangential”

cell, we refer to paragraph 5.4.2. All virtual unknowns (see Figure 5.13) exept of ‘/(107_27_2)

are eliminated in the usual way. For V(%) _ we can use formula (5.67).

2,-2)

46

Combination (v)

The stresses 02!, 0?2 and %3 are prescribed at the left boundary and ¢!, 03? and 03 at the
botom boundary. So we have to consider two "normal” half-cells and the "tangential” U!-cell.
See paragraph 5.2.2, for the treatment of the "tangential” U' cell (Figure 5.15) and the

"normal” half-cells (Figure 5.14). However, in this case there are some differences:

Firstly, there are more virtual unknowns, but they caus no extra problems, since they can be
eliminated by using the standard rules.
Secondly, the discretization of the stress tensor 6% for the ”tangential” U'-cell produces a

difference. In formula (5.28) not only 013|(0707_1) is given, but also /2

(0,0,—1)'
Ieftbouzndary
(plane & =0) M
k=3 global |
/]
k=2 o 0 O COd 0O
/]
A7 M
k=1 L L L
/
k=0 (.2) COJ m C3J 0O CJ
na /]
_ /] [[bottom bound
k=-1 B avall nverersll nverer ettt el
(plane & y5ny =0)
k=-2 I U A R I
na
k=-3 | | na
j=-3 j=-2 j=-1 j=0 j=1 j=2 |j=3
! ul point
1 u?

point at a half cell distance from the cross-section

D us point at a half cell distance from the cross-section
12

na unknowns do not appear, since C and o33

(0-1,0) (00-1) degdiven

Figure 5.15: Cross-section over the "tangential” U -cell.

47

5.7 Boundary conditions for the convection-diffusion equations

The boundary conditions for the convection-diffusion type equations are much easier to im-
plement than the boundary conditions for the velocity components.

In the case of Dirichlet boundary conditions it is sufficient to use linear extrapolation to
eliminate virtual scalars. So for example in Figure 5.16 we use the following formulae:

To=2T1—-Tx (5.73)
for normal boundary points and
1 1
Too = 5(2T1,0 —Ts0)+ 5(2T0,1 —To2) (5.74)

for the corner points. In the case of a Robbins boundary condition we follow van Kan et al

3+ + + +
2 + + + +
1+ + + +
o+ + + +

0 1 2 3

Figure 5.16: Cells for scalar quantities and corresponding virtual points.
(1991). This means that the Robbins boundary condition
EPT gng = b —oT (5.75)
is substituted in the diffusive term:

/—(kaﬁf) udf = —/kaﬁTﬁnadF
Q r

- / kOPT g dl — /(b— oT)dT | (5.76)
M\ I

where 'y is the boundary at which the robbins boundary condition is given. Virtual scalars
T are eliminated in the usual way.

48

5.8 Wall functions
5.8.1 Introduction

In this section we shall consider the boundary conditions for the momentum and turbulence
transport equations along a solid wall.

In the case of laminar flows at the wall the no-slip conditions are directly applied. The
situation is much more complicated if turbulent flow is calculated. The reason for this is
twofold:

e in the near—wall region there are very steep gradients of the flow properties and so the
need for fine mesh is required to resolve the wall layer properly in a numerical scheme;

e there is an important role of molecular viscosity near the wall and hence the "high
Reynolds number” version of the k& — ¢ model can not be applied in the near—wall
region.

However, specification of the boundary conditions right at the wall is not necessary because
empirical laws of sufficient generality are available. One of these laws is the "law of the
wall”, which can be used to provide near—wall boundary conditions for the momentum and
turbulence transport equations, rather than on the wall itself. Other advantage of the ”law of
the wall” is that its allows some additional empirical information in special cases, for example
the roughness of the wall.

More details can be found in Zijlema (1993).

5.8.2 Boundary conditions for the momentum equations

We shall consider the control volumes adjacent to the wall. Figure (5.17) shows a scalar point
P whose associated volume is bounded on the south side by the wall.

1 .
0 . —|—P -
R \\N =~
-1 0 1

Figure 5.17: A scalar cell adjacent to a wall

The following boundary conditions for the momentum equations will be used:

w-n=0and 5" =1, (5.77)

49

where u - n is the physical velocity component normal to the wall, 5™ is the physical shear
stress tangent to the wall and 7,, is the wall shear stress. This type of boundary conditions
is the same as discussed in section 5.4.

The wall shear stress 7,, can be computed in point P from the ”"law of the wall”

1/4
Vk
= wu tp (5.78)
In(EY7)
where ”
Ypvk
Vi = %— (5.79)

and Yp is the normal distance of the point P from the wall, w - ¢ is the physical velocity
component along the wall, x is the Von Karman constant (~ 0.4) and F is a roughness
parameter, approximately equal to 9.0 for a smooth wall. In the above w -t and k are
evaluated at the previous iteration. However, a distinction is first made between the first
computational points associated with scalar volumes, which lie in the viscous region and
those which lie in the turbulent region. The limiting value is Y,* = 11.3 which is determined
by matching the linear and logarithmic velocity profiles. Thus, for Y]j' > 11.3, 7, is calculated
from (5.78). For Y& < 11.3 the wall shear stress is given by

u-tp
Yp

(5.80)

Tw = H
The tangential velocity along the wall expressed in terms of contravariant components reads:

w-t = o (5.81)

Vgt

The contravariant velocity components U® at point P is computed by linear interpolation
using the neighbouring points. Finally, the normal distance Yp is evaluated as follows, see
Figure (5.18):

AB.BC
|AB|.|BC]

sin ¢ = /1 — cos? ¢

cos ¢ =

1
Yp = §|BC| sin ¢

where A =z(; j), B =241/, and C = (4172 j41/2)- The co-ordinates of points B and C
are obtained by linear interpolation in the obvious way.
5.8.3 Boundary conditions for the turbulence equations

Boundary conditions are required for £ and ¢ to solve the k — L or k — ¢ equations. The
turbulent energy k at the first grid point away from the wall is calculated by the transport
equation (4.33). However, to ensure an accurate numerical representation of near-wall effects,

50

Figure 5.18: Calculation of distance between near wall point and the wall

a special care is needed in evaluating the source terms, i.e. the production and dissipation
rate, of k-equation in wall-adjacent cells. Let us consider the production term of the k-
equation. Since the near-wall flow is assumed of the Couette type, the dominant contribution

to the production is

ou-t

To discretize this term we use the midpoint rule. The volume-integrated production of & may

be approximated by
u-t

~ (0,0)
o, PdQ) =~ T, Yo \/§(070) (5.83)
where the local numbering of Figure (5.17) is used, and 7, is evaluated according to Y];" value.
The dissipation term in the k equation is integrated in the same way using the following

relation for e: 3/4
i k3/2
= - 5.84
£ ~ (5.84)

See Launder & Spalding (1974). This assumption leads to

|
o~ o 3/4 3/21H(EYP)
o, pedQd = pc/ kg v V0,0 (5.85)
when Y]j' > 11.3. If Y]j' < 11.3 then
|
— .3/4 3/2Yp
/Qh pedQd = pe,/ ky v V0,0 (5.86)

The boundary condition dk/dn = 0 for k-equation has been applied at the wall.

Finally, the e-equation is not solved in wall-adjacent cells, because of its inapplicability there.
Instead, the expression (5.84) is used for the evaluation of dissipation rate in the first com-
putational point.

51

6 Time-discretization

6.1 Introduction

After application of the space discretization of momentum and transport equations and the
implementation of the boundary conditions as described in chapter 5, the discretized Navier-
Stokes equations in the time-domain read:

MV +S(V)+GP=F, (6.1)
DV =0, (6.2)
Msz + 8T, = F; . (6.3)

In (6.1)- (6.3) V denotes the vector of velocity unknowns, P the vector of pressure unknowns
and T'; the vector of the i*" scalar unknowns.

The matrix M is a diagonal matrix containing the value of p in the centroids on the diagonal.
The expression S(V') represents the discretization of the deviatoric stress tensor and the
convective terms. GP represents the discretization of the pressure gradient, and F the
discretization of the source terms.

The equation DV = 0 denotes the discretized continuity equation.

Equation (6.3) stands for the general discretized convection-diffusion equation, where again
M is a diagonal matrix, and F; the discretization of the source term.

S;T; represents the discretization of the convective and diffusive terms. In fact this term may
also be non-linear, but in our program it is treated as if it is linear.

The first important decision that has been made is that momentum equations and continuity
equation are coupled, but that all scalar convection-diffusion equations are decoupled from
the momentum equations and the other convection-diffusion equations.

In fact this means that for each time step first the momentum and continuity equation are
solved and then each scalar equation separately in the sequence given by their index number.
So per time-step:

Solve V. and P

Solve Tj
Solve T3

The time discretization is performed with a standard technique for the solution of ordinary
differential equations. At this moment only one type of time-solver is present: the so-called

method.

52

6.2 The 0-method
The standard §-method applied to (6.1), (6.2) reads:

Vn—l—l _ Vn
M—— + IS(V") + (1-0)S(V") + 0GP + (1 -)GP" (6.4)
OF" ! + (1 -0)F"
Dvrtl =0, 0<0<1. (6.5)

n 4+ 1 denotes the new and n the preceding time-level.

To solve (6.3), (6.4) it is necessary to linearize the term S(V"™*!). In ISNa$, the convective
terms are linearized by a Newton linearization as given in formula (4.7). Coeflicients that
depend on the solution, like for example the viscosity, are evaluated at the preceding time-
level.

The #-method is unconditionally stable for 0.5 < # < 1. In the range 0 < 8§ < 0.5 a time-step
restriction is necessary. At this moment € < 0.5 has not been tested.

Practical implementation:

Instead of solving (6.4), (6.5) immediately, we introduce an intermediate level n + 6 by:
vt = vt L (1 -V
prto P (1 - 0)P" (6.6)
F0 = gFp"tl 4 (1 - 9)F"

If we assume that 5(V) is linearized, i.e. can be written as S(V"t!) ~ A(V™")4+B(V"*)V "+
then (6.4) reduces to:

Vn—l—l _ Vn
M—— 4 IB(VH) V™ L (1 - B(V")V" + 0GP 4 (1 - 6)GP"
+ A(V")=0F" L (1-6)F" (6.7)
Substitution of (6.6) into (6.7) and (6.5) gives
Vn—|—€ _yn
M=+ B(VHVvHl LGPl = prtl _ A(V?T) (6.8)
DVl = (6.9)
From (6.6) it then follows that:
1
vt g(vn” —(1-6)v™) (6.10)
1
Pl = (P _(1-4)P")

0

Once the momentum equations have been solved for ¢"*!, each of the scalar convection-
diffusion equations is solved for one time step. Exactly the same # method with practical
implementation is used as for the momentum equations. Quantities already computed, like
the velocity are substituted in these equations, thus improving the stability.

53

6.3 Time discretization of turbulence equations

For each time step first the momentum and continuity equations are solved and then each
scalar equation separately. Finally, the turbulence equations are solved. It should be noted
that for all equations the eddy viscosity py is evaluated at old time level. This is also true for
the momentum equations.

Normally, the equations for k£ and ¢ are coupled, in other words, k appears in the ¢ equation
and vice versa. Bearing in mind that each convection-diffusion equation is solved separately,
the equations for k& and ¢ will be treated as decoupled equations, in the following way: for
each time step first the equation for k is solve using the updated velocity components U< and
non-updated turbulence quantities, i.e. k, ¢ and p;. The same holds for the equation for ¢,
which is solved after k.

The right hand side of equations (4.33)-(4.34) can rise considerable problems, because it
represents a function of the solution U®, k and ¢ and is non-linear. We are compelled to
use fully-implicit scheme enabling such a linearization. In the present solver, a Newton
linearization is use. The dissipation term in k-equation in both £ — L and k — ¢ model is
evaluated as follows
k2

€ = pey " (6.11)

This non-linear expression is linearized on the following way:

2 knew kold _ (kold)?
M

peu() (6.12)

The same holds for the destruction term in the e-equation:

new ~old __ old \2
2env e (e°1)
kold

(6.13)

Finally, the functions ¢*, K%, D and f* for both equations are given by:

e k-equation:

F=p
old
](ozﬁ af My
i
9 old
D =2p%c, —3
13
. 9 (kold)?
" =P+pe T

54

e c-equation:
c=p

KoB = ¢of ﬁ
Oc¢

a,_:old

D = 2cyp ool
old
f* = koT (ClEP + Cgspff()ld)
On the grounds of the foregoing considerations the fully-implicit time scheme, i.e. 8 = 1,

must be used in the present solver.

It can be shown that the discrete equations for k£ and e, which is a result of applying up-
wind scheme for convection terms and Newton linearization for non-linear source terms, yield
positive values for k and ¢ Zijlema (1993).

55

7 Pressure correction

7.1 Introduction

An essential difficulty in the solution of the coupled momentum equations and continuity
equation (6.1), (6.2) or its (time discretized form (for example (6.8), (6.9), is the absence of
the pressure in the continuity equation. If we consider the system of equations as one large
system of linear equations to be solved, this means that in the part corresponding to the
continuity equations we have zeros at the main diagonal. Formally equations (6.8), (6.9) may

be written as: , .
s g|[vt Ft]
n = n ’ (7'1)
[DOHPH] [F2+€

where F;"’e is only non-zero if non-zero Dirichlet boundary conditions for the velocity are
prescribed.

The solution of systems of equations of the form (7.1) is in general more difficult for a linear
solver than the solution of equations arising from the discretization of standard convection-
diffusion equations. There are several ways to solve this problem. One of the possible ways is
to perturb the continuity equation. This leads to methods like the penalty method or Uzawa
iterations. An alternative way to solve the problem is formed by projection methods. In these
methods first the pressure at the new level is estimated, for example by the old pressure, and
then the momentum equations are solved yielding an intermediate velocity field. By projecting
this velocity onto the space of divergence-free vector fields a new velocity and pressure may
be computed. An important representant of this class is the so-called pressure-correction
method, which will be treated in 7.2.

7.2 The pressure-correction method

The pressure-correction method as implemented in the ISNaS incompressible code is the one
described in van Kan et al (1991). Starting point is the #-method formulated by (6.4), (6.5)
or the variant (6.8), (6.9).

Following van Kan et al (1991) we define an intermediate velocity V' by:

v-_vn
M——— +B(V")V" + GP" = Frtl— AV (7.2)
V™ must be such that the boundary conditions at ¢ = t" + At are satisfied. In the case of
prescribed normal velocities this means that the corresponding rows in the matrix &' contain
ZET0S.

Subtraction of (7.2) from (6.8) gives

Vn—|—€ B Vo B

M =GPt _ pn .
oAl () (7.3)

56

where the term B(V")(V"? — V*) has been neglected.
Application of (6.9) to (7.3) gives

— DV*=—0AIDM™'G(P"’ — P"), (7.4)

which is a Laplacian-type equation for the pressure correction. Once P"t? has been computed
V" + follows from (7.3):

vt — v _gaiM G(P - P (7.5)

Remark: the matrix —DM ~'G is in general non-symmetrical.

57

8 The linear solver

8.1 Introduction

The discretization of the incompressible Navier-Stokes equations in general curvilinear co-
ordinates is described in the foregoing sections. The space discretization consists of a finite
volume technique on a structured grid. The motivation for these choices is that we want to
solve large two and three dimensional problems. In these problems it is important to obtain
fast iterative methods to solve the discretized equations. This is easier using a finite volume
technique instead of a finite element technique. Finally the structured grid enables us to
develop a good implementation of the methods on vector computers.

The linear systems to be solved are Vuik (1992), Vuik (1993):

the momentum equations

Mn—l—lun—l—l — fn—l—l , un—l—l _ n+1

the pressure equation
PApn—I—l — gn—l—l \ Apn—l—l — pn—l—l _ pn \

and eventually one or more transport equations:

transport equations
A A

n+1 n+1 _ n+1
Cr cr. = di".

Suppose n; is the number of grid points in the z;-direction, where we take ng = 1 for a 2-
dimensional problem. The pressure and transport matrices have nq -ny-n3 rows and columns.
The dimension of the momentum matrix is 2-nq-ng in 2-dimensional problems and 3-nq-ng-n3
in 3-dimensional problems.

For the structure of the matrices in 2-dimensions we refer to Vuik (1992) and Vuik (1993). In
the 3-dimensional case the nonzero structure is symmetric for all matrices. In 3 dimensions
the structure of the pressure equation is given in Figure 8.1.

Note that the nonzero structure is symmetric. The momentum matrix can be partitioned in
the following form:

My My M3 Uy S
My May Mos U2 = J2
Mz, Msy Mss u3 g

The structure of My;, ¢ = 1,2,3 is the same as for the pressure equations. The off-diagonal
blocks contain 16 non zero diagonals. The non zero structure of the momentum matrix is non
symmetric. To illustrate this we give My, and My in Figures 8.2 and 8.3 and note the non

58

zero structure of My, is not equal to the non zero structure of M'QT1

In the following table we summarize the number of non zero elements in some matrices.

2D 3D
pressure matrix 9-n1-n9 19-n1 -ng - n3
momentum matrix | 13-2-nqy-no | 51-3-nq - ng - n3

Figure 8.1: The pressure matrix P

In three dimensions the momentum matrix is much larger than the pressure matrix. The

ratio in 2D is equal to % = 3 whereas the ration in 3D is equal to 212 = 8.

19 —

So in 3D a momentum matrix times vector is 8 times as expensive as a pressure matrix times
vector.

The momentum matrix and the transport matrix depend on the time ¢. In many problems
the pressure matrix is independent of the time. However, this property of the pressure matrix
is not used in the current implementation.

59

= =
= | \ = | \
3 3
o0 o0
— —
5 5
5 5
2 = =
D D
=4 =4
= =
= =
E E
& &
5 \ | = \ |

8.2 Survey of iterative methods

The systems given in Section 8.1 are solved with iterative methods of CG-type. All the
methods used in ISNa$S can be applied to unsymmetric matrices. The methods used in ISNaS
are:

LSQR
This is a stable implementation of CG applied to the normal equations Paige et al (1982).

CGS
CGS is an iterative method based on the Bi-Lanczos algorithm Sonneveld (1989).

GMRES

An iterative method, which computes an approximation with a minimal residual Saad et al

(1986).

GMRESR

A method based on GMRES, but in general cheaper with respect to work and memory Van
der Vorst et al (1993). In Table 8.2 we summarize the properties of the iterative methods.
This table only gives an indication of the properties. So in many experiments the results

properties bad good

— —
memory GMRES | GMRESR | CGS LSQR
robustness | CGS GMRES GMRESR | LSQR
CPU-time | LSQR GMRES CGS GMRESR

Table 8.2: Properties of the iterative methods

agree with Table 8.2. However, for specific problems the results may be different.

Stopping criteria

For iterative methods it is necessary to specify a stopping criterion. In general the norm of
the residual: ||rg||s = ||b — Axzy||2 is easy to obtain. So all our stopping criteria are based on
||7k]|2. For the different equations we recommend different stopping criteria. For the details
we refer to Vuik (1992), p. 8 for the momentum equations, Vuik (1992), p.13 for the pressure
equation, and Vuik (1992), p. 15 for a transport equation.

Starting vector

Finally we have to choose a starting vector for the iterative methods. Since we solve the
systems for every timestep, the solution of the foregoing timestep is in general a good starting
vector. For the details we refer to Vuik (1992), p. 6, 7 for the momentum equations, Vuik
(1992), p. 13 for the pressure equation, and Vuik (1992), p. 15 for a transport equation.

61

8.3 Preconditioning

In many applications, iterative methods are combined with a preconditioner Meijerink et al
(1977). It is a well known fact that a good preconditioner is very important in order to
obtain fast iterative methods. The preconditioners used in ISNaS are based on incomplete
LU decompositions. In such a preconditioner, one constructs a lower triangular matrix L and
an upper triangular matrix U, where I, and U have a prescribed nonzero pattern, and LU is
a good approximation of A. The iterative methods can be applied to

UL 'Ar = UM LT, (8.1)
AU LYy = b, (8.2)

or
LAuty=1"%. (8.3)

We call equation (8.1) a preconditioned system and equation (8.2) a postconditioned system.
The final equation is only used in combination with the Eisenstat implementation Eisenstat
(1981). In general, the convergence behaviour of a Krylov type iterative method depends on
the eigenvalue distribution of the matrix. In the three equations given above the eigenvalues
of the product-matrices are the same. So the convergence behaviour is approximately the
same when we use (8.1), (8.2), or (8.3). A small advantage of a postconditioned system is
that the norm of a residual is not influenced by the matrices L and U (compare Vuik (1992),
p. 12, 13).

Below we give a short description of the preconditioners used in ISNaS.

Diagonal scaling

A diagonal preconditioner is obtained by choosing I = [and U = diag (A). This is a
cheap preconditioner with respect to memory and can be used in combination with vector
and parallel computers. For most problems the gain in the number of iterations is small.

ILUD
For this preconditioner we construct LD~'U as an approximation of A. To obtain L, D, and
U we use the following rules Van der Vorst (1981):

- diag (L) = diag (U) = D;
- the off-diagonal parts of L and U are equal to the corresponding parts of A;
- diag (LD™YU) = diag (A).
The third rule can be replaced by the following:
rowsum (LD™'U) = rowsum (A) for every row ,

which leads to the MILU preconditioning. We always use an average of ILUD and MILUD.
This preconditioner is also cheap with respect to memory. It costs two extra vectors, one

62

for D and the other one for D~!. Using the Eisenstat implementation we are able to save
one matrix vector product per iteration. In the ISNaS program ILUD preconditioner means
application of the iterative method to (8.3) and not to (8.1), which is done in the other
preconditioners. Multiplication with L= and U~! leads to recurrencies. So these parts do
not run in vector speed on a vector computer.

1L.U
This preconditioner is only used for the pressure and transport equations. The matrices L
and U are constructed such that LU approximates A and satisfies the following rules:

- diag (L) =I;
- the structure of L and U is comparable to the structure of A;
- if a;; # 0 then (LU);; = ay5.
Again the last rule for ¢ = j can be repaced by
- rowsum (LU) = rowsum (A),

which leads to MILU. We always use an average of ILU and MILU. The convergence be-
haviour of an iterative method combined with MILU is in general beter than a combination
with MILUD. A disadvantage is that extra memory space is needed to store L and U. The
amount of extra memory is the same as the amount of memory to store A. Furthermore it is
impossible to save a matrix vector product per iteration (compare the Eisenstat implemen-

tation). From our experiments we conclude that if the memory space is available than it is
better to use MILU.

Memory space

During the solution of the pressure or transport equation the memory space of the momentum
matrix is available. For this reason we always use the MILU preconditioner to solve the pres-
sure and transport equations, and the MILUD preconditioner for the momentum equations.

Vectorization

Due to the recurrencies, the multiplication of L=! or U~! for MILUD or MILU runs in scalar
speed on a vector computer. In the ISNaS program the loops are rewritten in such a way that
they run in vectorspeed Ashcraft (1988). Note that the rewritten loops use indirect adressing
and are much shorter than the original loops. On the Convex C3840 this leads to good results.

8.4 Concluding remarks

Not all the combinations described in the foregoing sections are implemented. In Van Nooyen
(1993) all the implemented combinations are summarized.

63

9 Post-processing

The ISNaS incompressible program computes the fluxes V¢ in the midside points of the cells
and the scalars in the centroids. For post-processing purposes these quantities are needed in
the vertices of the cells. For that reason it is necessary to interpolate (or at the boundary
extrapolate) the computed values to the vertex points. Numerical examples have shown that
a straighforward interpolation in the computational space is not accurate enough. For that
reason a weighted approach, taking into account the distances in physical space, is necessary.
In the following sections we consider the interpolation and backtransformation applied both

for scalar quantities and for the fluxes.

9.1 Interpolation of scalars in 2D

The scalar unknowns are positioned in the centroids of the cells. In order to interpolate these
values to the vertices a weighted mean value of the four surrounding cells is used. Figure 9.1
sketches a typical example. In this figure point ¢,j is the vertex in which the interpolated

12 22

_________+____

1 21
”‘l 14y, y
3

Figure 9.1: Vertex ¢, j with four surrounding cells and mapping of quadrilateral formed by

centroids on to a square.

values must be computed. This point is part of 4 cells with centroids 11, 21, 12 and 22.
In order to compute the interpolated value, the quadrilateral spanned by the 4 centroids is
mapped onto a unit square (0, 1) x (0,1) by a bilinear mapping as is usual in finite elements.

So
[,] :i; X (EXi(n) [)]] : (9.1)
with A(€) = 1€, (&) =¢

The value of the scalar in (z,y) is computed by

Scalar (z,y) = Z Ai(€)Aj(n) scalar (245, yi;) (9.2)

1,5=1

64

To evaluate (9.2) it is necessary to know the value of (£, 7)in point (z,y). This value can be
computed from (9.1) by solving this system of non-linear equation with a Newton-Raphson
method.

Define

() N I RN N I
[Fz(ﬁ,n)]_%:l AZ(OAM)[@/L [@/])

The Newton-Raphson method can be written as:
(&m)'=(1/2,1/2)

lapl/ag dF o]”([¢]n+1_ l ¢ r:_

OF, /08 OFy/0n n n Fy

i] n=1,2,.. (9.4)

Since Newton is a fast converging process, the maximal number of iterations is restricted to
5. At this moment the iterations is stopped if ||£"1 — £€"|| < 0.001.

From (9.3) it follows that:

F(&n) = (1= -nzu+&nza+(1-Onziz— 2
= i+ (21 + @2 — 2o — 212)En + (221 — 211)E 4 (212 — 1)y — 2 (9.5)

and
OF
9 (T11 + @22 — T21 — T12)7 + @21 — T (9.6)
OF
8—77 = (@11 +x22 — 21 — 12) + 12 — 11 (9.7)

With respect to the boundary points it is not longer possible to use an interpolation. In that
case an extrapolation is used. Figure 9.2 shows the four points that are used to compute the
value at an under boundary.

i

Figure 9.2: Cells that are used to extrapolate the scalar value at the under boundary ¢, j.

65

9.2 Interpolation of the velocity in 2D

The interpolation of the velocity is performed in three steps.

In the first step the Cartesian velocity is computed in the cell centre. First the fluxes V! and
V2 are averaged according to

V(%J,O) = (V(ll,O) + ‘/(1—1,0))/2) (9.8)
V(%J,O) = (V(%,l) + ‘/(%,—1))/2) (9.9)

see Figure 9.3 for the notations. Next the fluxes are transformed to Cartesian velocity com-

V 2
0
vi o+ + + vi
('1!0) (O’O) (1!0)
V 2
(0!'1)

Figure 9.3: Cell with fluxes and centroid

ponents using;:

Ve = U~
u = U%a,,
hence
u=V'ag + Viaw)/V9g (9.10)

In the second step each of the components is interpolated to the vertices by exactly the
procedure described for scalars in 9.1.

Finally at the boundary essential boundary conditions, if present, are substituted in order to
avoid unnecessary interpolation erors.

9.3 Computation of the stream function

A special scalar that is computed, is the stream function . Since in fact ISNaS incompressible
computes the fluxes, the steam function computation is straightforward.

At present we assume 1 = 0 at the vertex point (1,1). The values in the other vertices are
computed by summation:

66

For 7 := 1(1)nj do
U141 1= Pny + VY
i:=1(1)ni do
bivrj1 = Pige + Vi

67

References

[1]

[10]

[11]

C.C. Ashcraft and R.G. Grimes,
?0On vectorizing incomplete factorization and SSOR preconditioners”,
SIAM J. Sci. Stat. Comput., 9, pp. 122-151, (1988).

S.C. Eisenstat,
?FEfficient implementation of a class of preconditioned conjugate gradient methods”,
SIAM J. Sci. Stat. Comput., 2, pp. 1-4, (1981).

Kay, C. David,
”Schaum’s outline of theory and problems of tensor calculus”,
McGraw-Hill book company, (1988).

W.P. Jones and B.E. Launder,
”The prediction of laminarization with a two-equation model of turbulence”,
Int. J. of Heat and Mass Transfer, 15, pp. 301-314, (1972).

J.J. I M. van Kan, C.W. Qosterlee, A. Segal and P. Wesseling,

”Discretization of the incompressible Navier-Stokes equations in general coordinates us-
ing contravariant velocity components”,

Report 91-09, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, (1991).

B.E. Launder and D.B. Spalding,
”Lectures in mathematical models of turbulence”,
Academic Press, London, 1972.

B.E. Launder and D.B. Spalding,
”The numerical computation of turbulent flows”,
Comp. meth. in Appl. Mech. and Eng., 3, pp. 269-289, (1974).

J.A. Meijerink and H.A. van der Vorst,
”An iterative solution method for linear systems of which the coefficient matrix is a

symmetric M-matrix”,
Math. of Comp., 31, pp. 148-162, (1977).

R.R.P. van Nooyen,
ISNAS user manual, version 1.0 a, (1993).

C.C. Paige and M.A. Saunders,
"LSQR: an algorithm for sparse linear equations and sparse least squares”,
ACM Trans. Math. Soft., 8, pp. 43-71, (1982).

Y. Saad and M.H. Schultz,
"GMRES: a generalized minimal residual algorithm for solving non symmetric linear

systems”,
SIAM J. Statist. Comput., 7, pp. 856-869, (1986).

68

[12]

[13]

[20]

Guus Segal,

”The treatment of slip boundary conditions for the incompressible Navier-Stokes equa-
tions in general co-ordinates”,

Report 91-22, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, (1991).

Guus Segal and Kees Kassels,

”Some 2D test examples for the ISNaS incompressible code”,

Report 91-44, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, (1991)

Guus Segal,
”The no flow problem”,
to appear.

P. Sonneveld,
?CGS: a fast Lanczos type solver for nonsymmetric linear systems”,
SIAM J. Sci. Stat. Comput., 10, pp. 36-52, (1989).

H.A. van der Vorst,

?Iterative solution methods for certain spares linear systems with a non-symmetric matrix
arising from PDE problems”,

J. Comp. Physics, 44, pp. 1-19, (1981).

H.A. van der Vorst and C. Vuik,

?GMRES: a family of nested GMRES methods”,

J. Num. Lin. Alg. Appl., to appear (1993),

Report 91-80, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, (1991).

C. Vuik,

”Solution of the discretized incompressible Navier-Stokes equations with the GMRES
method”,

Int. J. Num. Math. in Fluids, 16, pp. 507-523, (1993)

C. Vuik,

?Termination criteria for GMRES-like methods to solve the discretized incompressible
Navier-Stokes equations”,

Report 92-50, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, (1992).

M. Zijlema,
”Finite volume discretization of the k& — ¢ turbulence model in general coordinates”,
Technical report, to be published, (1993).

69

Appendices

In these appendices we prove equations (5.6), (5.7), (5.22) and (5.23).

A Proof of (5.6) and (5.7)

We have to prove (see Figure A.1):

ur = sign(a(”) ‘g u-n

and
Ut1 -1 -1 .
— gtltl gtltg all O[lQ u Tl _ UTL gnt1
Ut2 gtgtl gtgtg O[Ql O[QQ u - T2 gnt2
where
Ti Q) Giato
Ti Q) Giato
a1 =
guty Gto
Giot1 Gtoto
and
Jtit1 Ti Q)
Jtot1 T Q(gy)
Qo =
guty Gto
Giot1 Gtoto
First (A.1):
a™ Um
U -n=4u- =
la™]| Vg™
SO
Ut =Vg"u-n.

This formula is true if @™ and m have the same direction else we have to use:

U= —V¢"u-n.

Formula (A.2):
The tangential vector 7;, given by the user can be decomposed in the following way:

T = Qi1Q(4) T Q20

see Figure A.2.

70

(A.1)

(A.2)

(A.3)

(A.4)

(A5)

¢ "= constant

tangent plane

Figure A.1: Normal and tangential velocity components are given by the user (||z|| = ||z1]| =

72l = 1)

The calculation of ay;:

From Figure A.2 it is clear that

and

Frome (A.6), (A.7) and Cramer’s rule we obtain.

and

a(t1) : ai?a’(tz) = a’(t1) ' (Ti - aila’(h))
Q1)) " Oty) Xt + Q(py) " () Q2 = C(gy) * T

Q1) Q1A (1) = Q) (T — Qi2ayy))
Q(ty) * Q1)1 + Q(ty) " Q1) X2 = C(1y) " T -

Q) " Ti Q1) " A1) A(ty) " Ti Gtito
Aip) " Ti Cty) " A(1y)] Q) T Yot
a(tl) a(tl) a(tl) a(t2) Gty Gtits
Aty) " C(t1) A(ty) " C(ty) Giaty Giaty
Aty) " A(tr) P(t) " Ti 1ty Q(1y) " Ty
Atz) " A(tr) Xt2) " Ti | | Gtats Q(t) " Ti
a(tl) a(tl) a(tl) a(t2) Gty Gtits
Ay) * A(ty) Q1) " Q(ey) Gioty Giots

(A.8)

“mgag

Aty
%12ty

Aty

Figure A.2: Decomposition of z,.

Back to formula (A.5):

u-T; = u-(apap) + @ipagy,))

= apu- gptla(p) + apu - gptz)a(p)

= (gt + i2gpt,)) UT (A.10)
s0:
w-ty = (104 + 012006)UN + (1160, + 1206, U™ +
(1190, + 0120n1,) U™, (A.11)
w-Ty = (@10t + @22006,)UN + (91,0, + 220i,0,) U™ +
(@21Gnt, + @220n1,) U™ . (A.12)
Formula (A.11) and (A.12) in matrix notation gives:

011Gtt; T Q1204 C110t,t, T Q120151 Ut _ | v T (1190, + 012Gn1,) U™
2101t T 22011ty 210151, T 220151, Ut w- Ty — (Q21Gnt, + O22G01,)U"

or:

a1y Qg Gt1t1 Gtits Ut _ | v T _r ary Qg Inty
Qo1 Q29 Jtat, Gtots Ut U - Ty Qo1 Q23 Inty

Hence:

72

-1 -1
Utl — gtltl gtltg all O[lQ u - Tl _ Un gnt1 1
Ut2 gtgtl thtQ O[Ql O[QQ u - T2 gnt1

where a;; is given by (A.8) and (A.9).

! This formula can be modified in the following way:

-1
Ut _ Gtoto Jtito B B2 K S ur Inty
Utz —Gtot; Gty Ba1 P22 U-T2 Gty Gtats — GtitaJtaty | nto
where
TiGeeyy Giato
and

Gratr Ti- Ly

512:‘ g1ty Ti Gy ‘

73

B Proof of (5.22) and (5.23)

We have to prove (see Figure B.1):

n

€

T m—_- .
. |-~

.

tangent plane

Figure B.1: The normal and tangential stress in the physical domain at the boundary &

¢ "= constant

constant.
and
-1
Untl — Slgn(a/(n) . n) . \/WSTLT O[l _ O_nn gtltl gtltg gnt1 2 (BQ)
Untg a2 gtgtl thtQ gnt2
2This formula can also be modified in the following way:
onit 1 . (n) 51 Gtot —gtqt Int
n = stgn(a‘™ - n)/gm S™T — o™ 2tz 12 e
|: o™ :| i1ty Gtota — Gti1ts © Jtoty { g (_) g B2 —Jtaty gtity Intqy
where
8 = T8y Goato
T8,y Gtats
and
62 _ gtit7 T Q(tl)]
Gtot; T Q(tQ)

74

where

T Q) Gigts
T Q(y) Giots

ap =
Gty Gtito
Gioty Gtoto

Jtity T Qyy)

Gtt; T Q
g = 1220) 1 (B.4)
Gtgt1 T Q)
Jt1t1 Jtity

Jtotq Gtats

We start with formula (3.17) from Kay (1988):

Sf":constant = 5”(” : ei)ej (B5)

where &% is stress tensor in the physical domain.
From Sen_ionstans = S""m + 5™77 and (B.5) we get:

o(n-e)e; = S""n + ST (B.6)
$0 -
(6 (n-e;)e;) - g™ = (5"n+ 5" 7) -a™ = §7n . a (B.7)
It should be noticed that S™" and 5™ are not tensors.
The normal vector n pointing in the outside direction of the domain is equal to: ||a(1—">||a(n)
if a(™ is pointing in the outside direction and ——L—a(") otherwise. Formally we can write:

llat™]|

; (n) .
o = (@™ -n)) (B.8)

lat]
From (B.7) and (B.8) we get:

(Uw(a(") . e Je;) - a™ = §gmg(n) . q()
5_2]()(n))] _ Snn nn

72] 8571 8571 — g g
dat D
$0
o n — gTLTLSTLTL .
O

Formula (B.2):
The tangential vector 7 is just as in the previous proof equal to:

T = a1a(y,) T 020(,) (B.9)

75

where

T Q) Gty
T Q1y) Gioty

ap =
Gt1t1 Gty
Gtaty Gty
and
Gt T Q1) ‘
Jtot; T - Q(y)
Qg =

Gty Gtito
Gioty Gtato

From (B.7), (B.8) and (B.9) it follows that:

sign(a™ - n)
||(1 (]

)o'i(al™); (a(tl))j = la™|[$" (ara (s, -) + a2a(,) - @)

szgn(a “n)o ”() [Ipt) ()j = V"8 (gt + @20t,1,)

)

8)
9pt, ;a; aif VIS (o1 gu iy + @2gi,)

a(”) . ei)ej) CQyy = S”T(ala(tl) + aga(tz))) Ty

(5"

sign(a™ -n

sign(a™ -n
s0:
sign(a(”)) gpt, 0" = g7 S (0098, F Q298,1,) (B.10)
where 0% is the stress tensor in the computational domain. For [= 1,2 we get:
sign(a™ - m) g0 0™ + 9,0, 0™ + g, 0™} = VIS (01G00, + 02000,)
and
sign(a(”) G0, 0"+ G0, 0™ F G, ™Y = VIS (1 Gy, + agtaty)

or:

[gt1t1 gt2t1 [O'nzl] _I_ O_nn [gnt1] — Slgn()\/WSTLT [gtltl gt2t1] [O[l]
niy

gtltg thtQ i) gnt2 gtltg thtQ O[Q
S0: } 1
o : (n) [o1 gnt 9un || Int
— sianla .n nnSm— _ O_nn 1%1 2%1 1
[O-nt2] g () g O[Q gtltg gtgtg gnt2
hence

nt1 -1
l Unt2] _ SZgn(a(”) n)\/gmsnﬂ' l aq] _ g l Gt1t1 Gtits] l 9nty]) (Bll)

Gioty Gtoto

76

By using Cramers rule in formula (B.11) we get:

mh 1 ; n nt nn 2t T Ytito niy
] et s [9] o [s g] 1]}

a™z | Gt1t1 9tat1 — Gt1t2Gtaty

(B.12)

where

T-a Gtit
B = (t) Ttz B.13
! T Q1) YGtota ()
and

— | Jutn T Gy) B.14
B2 G T Ay (B.14)
O

7

