Fadt iterative solversfor the
discretized incompressible
Navier-Stokes equations

Report 93-98

C. Vuik

By

U D e I f‘t Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft

Delft University of Technology

ISSN 0922-5641

Copyright © 1993 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone +3115784568.

A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They arelocated in the directory /pub/publications/tech-reportsat ftp.twi.tudeft.nl

Fast iterative solvers for the discretized incompressible
Navier-Stokes equations

C. Vuik
Faculty of Technical Mathematics and Informatics
Delft University of Technology
P.O. Box 5031
2600 GA Delft
The Netherlands

Abstract

In this paper some iterative solution methods of GMRES type to solve the discretized
Navier-Stokes equations are treated. The discretization combined with a pressure correc-
tion scheme leads to two different types of systems of linear equations: the momentum
system and pressure system. These systems may be coupled to one or more transport
equations. For every system we specify a particular ILU type preconditioner and show
how to vectorize these preconditioners. Finally some numerical experiments to show the
efficiency of the proposed methods are presented.

1 Introduction

In this paper we treat the solution of the discretized incompressible Navier-Stokes equations.
The discretization of these equations in general curvilinear coordinates is described in [8],
[15] [9], [13] and [23]. As space discretization a finite volume technique on a boundary fitted
structured grid is used. In [22] iterative methods of Krylov type to solve the discretized
equations have been presented. Reference [22] also contains a short survey of other iterative
methods. In this paper we shall give improvements of the iterative methods described in [22]
and apply them to a wider range of problems. The improvements with respect to [22] are:
preconditioners with a better rate of convergence and vectorization of the preconditioners.
The methods given will be applied to problems with large gridsize (up to 160 x 320 cells) and
problems which include transport equations.

The discretized equations given in [15] have also been solved by multi-grid methods. For
stationary problems we refer to [10], [12] and for instationary problems to [11], [25]. For a
stationary problem it is not easy to compare the various methods, since the multigrid method
given in [10] solves the momentum equations simultaneously with the pressure equation,
whereas in our software we use a time stepping method combined with pressure correction.
For instationary problems the Krylov subspace methods described in this paper are more
efficient than the multigrid methods described in [11], [25]. Recently we have combined the
Krylov subspace method with multigrid as a preconditioner. This combination gives promising
results ([24]).

Since the discretized equations contain nonsymmetric matrices [22], we are not able to use
the conjugate gradient or conjugate residual method. This motivates us to use GMRES-
like methods, which are robust and have an optimal rate of convergence [14], [19], [21].
The incompressible Navier-Stokes equations in general coordinates are given by ([15]): the
continuity equation

Ug =0, (1)
and the momentum equations
8 84 84 84 o3 84
5PV + (U UP) s+ (9°%p) s — 7% = pf*, (2)

where 77 represents the deviatoric stress tensor
0 = gL + 97U

with ¢®? the contravariant metric tensor, u the viscosity, p the pressure, U® the contravariant
velocity component, p the density of the fluid, and f the contravariant component of a body
force. The transport equation for a scalar C' is given by

oC

fa o+ (U°C) 0 = (KPC g) o + ko€ = k3 (3)

where kq, ko, ks and K% are given functions.

Before discretization the physical domain is mapped onto a computational domain consisting
of a number of rectangular blocks. In this paper we restrict ourselves to the one block case.
In order to avoid possible pressure oscillations a staggered grid arrangement is used. The
pressure is computed in the cell centers and the normal velocity components are calculated at
the centers of the cell faces. In the remainder of this paper n; is the number of finite volumes

in the z; direction. For further details and the discretization of the boundary conditions we
refer to [15].

Finally, the spatial discretization is combined with finite differences for the time derivative.
We use the Euler backward scheme together with pressure correction. The time step is
denoted by At. For a given function v and n € IN, v" is an approximation of v(nAt). After
Newton linearization we obtain two systems of equations ([15], [22]), namely the momentum
equation:

n+1
Y N (A (1)
2
and the pressure equation:
PAp™tt = g™t where Aptl = prtl — pn . (5)

A discretization of (3) will be called a transport equation and denoted by:
Cn-l—lcn-l—l — kg-l—l . (6)

The iterative methods are applied to two test problems: the flow through a curved channel
and a Boussinesq problem. We have found that in a number of problems the behaviour of
the iterative methods is comparable to that in the aforementioned test problems.

Curved channel

The curved channel is displayed in Figure 1.

3.5r

2.5¢ 4 3

1.5¢ 2

0.5r

-0.5

Figure 1: The physical domain of the curved channel problem.

As initial condition we take the velocities equal to zero. The boundary conditions are: a

parabolic velocity profile at inflow (boundary 1), a no slip condition at boundaries 2 and 4
and the normal stress and tangential velocity given at outflow (boundary 3). We take p = 250,
and u = 0.5.

Boussinesq problem

In the Boussinesq problem the Navier-Stokes equations are coupled with a temperature (trans-
port) equation. We use a standard benchmark problem, published by [3]. The physical domain
and the 20 x 10 grid is displayed in Figure 2. Due to buoyancy we have a body force given by

1.2r

0.8r

0.61

0.4r

0.2r

Figure 2: The 20 x 20 grid used in the Boussinesq problem.

=0,
f2 = gﬁ(T_TO)v

where ¢ is the acceleration of gravity, § a volume expansion coefficient, and Ty a reference
temperature. For the velocities we take no slip boundary conditions. The temperature satis-
fies a transport equation. As temperature boundary conditions we take T" = 1 at the left-hand
wall and 7" = 0 at the right-hand wall. The lower and upper walls are isolated. We calculate
the solution with p = 1, =1, Pr = 0.71 and Ra = 10°.

In Section 2 we discuss the optimization of the RILUD preconditioner on vector computers.
Furthermore an RILU preconditioner is given for the pressure equation. GMRES-like meth-
ods combined with RILU have a better rate of convergence than with RILUD, but requires
more memory than RILUD. For the pressure equation the memory is available (because for
the momentum system much more storage is needed) so we always use the RILU precondi-
tioner. In order to reduce storage the momentum equation has been solved with the RILUD
preconditioner.

In Section 3 the RILUD preconditioner is adapted for the momentum equation. The insights
obtained from the solution of the pressure and momentum equations are used to solve the
transport equations. A new variant of GMRESR is given in Section 4. Reuse of search di-

rections leads to a faster rate of convergence for the pressure equation. Section 5 contains
numerical experiments for two test problems on different gridsizes.

2 The pressure equation

In this section we consider the pressure equation. In Subsection 2.1 the preconditioner is
optimized for vector computers. Next we derive a new preconditioner which has a better rate
of convergence, and can be vectorized in exactly the same way.

2.1 Vectorization of the preconditioner

The discretization of the Navier-Stokes equations leads to a pressure equation, with a matrix P
with nine nonzero diagonals (see [22]). In this subsection an incomplete LD~ decomposition
of P is used as preconditioner, so that the iterative method is applied to

U'DL™ ' P =U'DL™" (7)
instead of to Pz = b. In this paper the preconditioner given in [22] is denoted by ILUD.
The ILUD preconditioner is implicitly defined by the following rules [7], [17]:

- diag (L) = diag (U) = D;
- the off-diagonal parts of L and U are equal to the corresponding parts of P;
- diag (LD7YU) = diag (P).
If the last rule is replaced by
rowsum (LD™'U) = rowsum (P), (8)

the MILUD preconditioner of [6] is obtained.

We have also used an averaged RILUD(«) preconditioner (see [2]). To define the RILUD
preconditioner we note that if the diagonal elements dZ»ILUD and df\“LUD are calculated by
the following expressions:

ILUD ILUD ILUD\ .
d; = @l,i(di—1 s ooy y))
MILUD MILUD MILUD
d; = 992,i(di—1 s ooy dy))

then the diagonal elements of the RILUD(«) preconditioner are calculated by:

RILUD RILUD RILUD
di di—l LAY dl)

= ¢3,(

where ¢3; = apy;+ (1 —a)pr;, and 0<a<1.

It is well known that using an ILUD-type preconditioner leads to the solution of systems of
linear equations with an upper or lower triangular matrix. Due to recurrences a straight-
forward algorithm for this part runs in scalar speed on a vector machine. We first give an

optimization of such scalar code, according to the lines set out in [18]. Then we specify a
vectorized version of the preconditioner.

Row scaling

In this paragraph it is shown that a row scaling of the pressure system leads to less work per
iteration.

For the RILUD decomposition there exists a matrix R such that

P=LD U -R.

Multiplication by D~! leads to

P=D'P=D'LD'W-D'R=LU-R.

The matrices P, L and U have the following properties:

- diag (L) = diag (U) =1,
- the off-diagonal parts of L and U are equal to the corresponding parts of P;
- diag (LU) = diag (P).

With b = D~'b we apply the iterative method to U~'L~'Paz = U~'L~'h. Note that the
multiplication by D in every iteration is no longer necessary. Furthermore, the solution of
the triangular systems is cheaper, because the main diagonals of L and U are equal to the
identity matrix. A nice property of this row scaling by D~ is that if L, D and U satisfy the
MILUD rule (8) then

rowsum (D~'P) = rowsum (D~'LD'U)

so that L, U also satisfy the MILUD rule. This is in contrast with a symmetric scaling (a row
and column scaling ([18])) where this property may be get lost for the scaled system. In the
remainder of this section the row scaled quantities are denoted by P, L, U and b.

Eisenstat implementation

In every iteration step we have to compute vj4q1 = U~'L™! Pv;. So the amount of work per
iteration is approximately two times as much as for the unpreconditioned system. In [5] it is
shown that much of the extra work can be avoided. To achieve this it is necessary to apply
the iterative method to

L'Puty=1"", (9)

where the solution vector x is given by # = U~ly. The rate of convergence of GMRES-
like methods depends on the eigenvalue distribution of the matrix ([14], [20]). Since the
spectrum of U~1L~1 P is equal to the spectrum of L='PU~! we expect the same convergence
behaviour if we use (9) instead of (7). During the iterative solution of (9) we have to calculate
vj41 = L7YPU1v;. Using the following equations:

vig1 = L'PUT o = L7HL+P—L—-U+U)u "ty
= U b, + L7 (vj + (diag (P) — 1)U ;)

the work to calculate v;4 is reduced to two vector updates and the solution of an upper and
lower triangular system. So one iteration of the preconditioned system costs approximately
the same amount of flops as the unpreconditioned system. A disadvantage, however, is that
the decrease of CPU time is small on vector computers, since a matrix vector product is
avoided, which is well vectorizable, whereas the hard to vectorize parts remain.

Vectorization

In this subsection we discuss some ways to vectorize the solution of triangular systems. The
ideas for these vectorizations come from [1] and [18]. The vector of unknowns will be denoted
by z(7,j) where i refers to the index of the corresponding finite volume in z;-direction, and
j the similarly in the z5-direction. Straightforward solution of Lz = y leads to the following
expression:

for j =1, n9
fori=1,n4

$(l,])2y(l,]) - L(27]75)$(l_17])_L(27]74)$(2+17]_1)
— L(4,7,3)z(t,5— 1) = L(4,7,2)a(i—1,j — 1)

endfor
endfor

Note that recurrences prohibit vectorization.

In Figure 3 a diagonal ordering of the calculation is shown. In this figure the values of z in

>
/

Figure 3: Ordering used for the vectorization of the solution of the system La = y.

the points denoted by a + sign have already been calculated. The points denoted by a * sign
display the stencil of L. Using this figure it is easily seen that all the points on the dashed
diagonal (7 + 2j = ¢) can be calculated independently. So this ordering leads to vectorizable
code (compare [1]). This implementation has the following drawbacks: the initial and final

diagonals have a small vector length and indirect addressing is used. Indirect addressing costs
extra CPU time and may lead to memory bank conflicts. Indirect addressing can be avoided
by an explicit reordering of the unknowns. After this reordening, the unknowns are stored
in memory in the same way as they are accessed in the diagonal wise calculation of x from
Lz = y. Especially for large values of ny explicit reordering gives a faster code on the Convex
(3840 that we used in our experiments.

Another way to vectorize the code is to change the order such that all the points on the lines
parallel to the z-axis are calculated together. Advantages are: all vectorlengths are equal to
ny, easy implementation, and no indirect addressing. A disadvantage is that one recurrence
remains so % of the work is done in vector speed and % in scalar speed.

On the Convex C3840 the diagonal ordering leads to somewhat smaller computing times than
the line ordering. On other machines the line ordering may be faster.

Single precision

One of the methods to solve the pressure equation is the GMRESR method [19]. This method
consists of an inner and outer loop. In the inner loop a good search direction for the outer
loop is calculated. Since this search direction is an approximate solution of a linear equation,
the inner loop can be calculated with a low accuracy. On current computers single precision
may be much faster than double precision arithmetic (compare [16] and [26]). Implementation
of a single precision inner loop on the Convex C3840 leads to a 25% reduction of CPU time

([21]).

2.2 Better preconditioners

In this subsection we specify ILU preconditioners, which combined with a GMRES-like
method have a faster rate of convergence, but require more memory. Vectorization of these
preconditioners is possible along the same lines as in Subsection 2.1. Finally, some remarks
about a preconditioner for a singular pressure matrix are given.

The first preconditioner considered in this subsection consists of the classical incomplete LU
decomposition of P (all fill-in is neglected). This preconditioner is denoted by ILU:

LU

The matrices L and U satisfy the following rules:

- diag (L) =I;
- the nonzero structure of the matrix L + U is identical to the nonzero structure of P;
- if P # 0 then (LU);; = Py;.
The last rule can for ¢ = j be replaced by
rowsum (LU) = rowsum (P), (10)

which leads to the MILU preconditioner. Also for this preconditioner we always use an
averaged method: RILU(«) which is defined in the same way as the RILUD(«) preconditioner,

but now (M)ILUD is replaced by (M)ILU.

It is known that for a five-point stencil the RILUD and the RILU preconditioner are the
same. However for a nine-point stencil it is easily seen that RILU leads to a preconditioner
different from RILUD. Note that for this preconditioner the matrices L, U and P should be
kept in memory. So the amount of extra memory for this preconditioner is nine vectors (the
same amount of memory as needed for P). The Eisenstat implementation cannot be used for
this preconditioner, since the off-diagonal part of P is not identical to the off-diagonal part
of L + U. With respect to vectorization we note that the nonzero structures of L and U are
the same as in Subsection 2.1. So this preconditioner can be vectorized in the same way as
the RILUD preconditioner.

The optimal choice of a is an open question. Results in [2] indicates that for symmetric
matrices a close to 1 is a good choice. Furthermore, for increasing grid size the optimal
value of a approaches 1. These insights are confirmed by our experiments (see Section 5).
The combination of a GMRIES-like method with RILU and « = 1 has a fast convergence
behaviour as well. However this choice is not used for the following reason: the stopping
criterion is based on the norm of the preconditioned residual. Since U7!L=!P has a large
condition number for the choice @ = 1, this stopping criterion leads to inaccurate results in
our experiments.

For a problem where all boundary conditions for the velocities are of Dirichlet type, the
pressure matrix P is singular. The null space of P is given by

1
null (P) = : . (11)
1

For such a problem RILU(a = 1) gives a breakdown of the iterative method (the same for
RILUD(a = 1)). This can be explained as follows: equation (10) can be written as:

1 1
Ll + | =P ¢ | . (12)
1 1
1
(12) together with (11) implies that P | : | =0, so LU is singular. Due to the definition
1

of L it follows that U is singular, which leads to a breakdown of the preconditioned GMRES
method. A closer look at U shows that the last main diagonal element is equal to zero.
Changing this element to a small number makes the iterative method to converge, but in our
experiments o < 1 leads to a much better rate of convergence.

We have also tried an incomplete decomposition of P where the stencil of P, L and U are
given in Figure 4.
The matrices L and U are such that:

5 1 6 5 1 1 6
2 3 4 2 3
P L U

Figure 4: The stencils of P, L and U.

- if Lij 75 0 or Uij 75 0 then (LU)Z']‘ = (P)ij .

The amount of extra memory required is equal to 7 vectors. In our experiments the rate of
convergence of this preconditioner is better than with RILUD but worse than with RILU. Due
to the reduced stencils this preconditioning can be vectorized along the diagonals ¢+ j = ¢
(see [1], [18]). This leads to a better vectorized code because the vector length of the loops is
longer than for the diagonal ordering given in Subsection 2.1. However we conclude from our
experiments that it is better to use the RILU preconditioner or the RILUD preconditioner.

3 The momentum and transport equations

In this section we consider the momentum and transport equations. The preconditioners
specified in Section 2 will be adapted to the momentum equations. Furthermore, we consider
a system resulting from a discretization of a transport equation. The insight obtained from
the solution of the pressure and momentum equations will be used to solve the transport
equations in an efficient way.

3.1 The momentum equation

The momentum equation is given by M"Tty"t! = f**1 The dimension of the matrix M"*!
is two times the dimension of the pressure matrix P. The matrix M"*! has 13 nonzero
elements per row. For the structure of M"™*! we refer to [22]. Note that the matrix P only
depends on the geometry and boundary conditions, whereas M"*! depends also on the time
and the choice of the time step At, on p and on u. In the following we delete the superscript
n + 1 for brevity.

Due to the extra memory needed for the RILU preconditioner (13 extra vectors of length
2.n1.n3) we restrict ourselves to the RILUD preconditioner for the momentum equation. The
same optimization techniques as in Subsection 2.1 will be used.

So the preconditioner is combined with row scaling and the Eisenstat implementation. For

10

the vectorization we use the following block structure of M, L and U:

M11 M12 (751
Mu = ,
(M21 M22) ((15))

(13)
I = Lll 0 U _ U11 U12
Loy Lo ’ 0 U

In [22] it has been shown that the nonzero structure of the diagonal blocks Myy and My; is
the same as for the matrix P.
Let us now consider the computation of # from Lz = y. The first part

Liizi =0 (14)
can be vectorized as indicated in Subsection 2.1. In the second part z; is calculated from
Laygws = y2 — Loray . (15)

Since z7 is already known, the right-hand side of (15) can be calculated in vector speed.
Finally, the computation of x5 from (15) can be done in the same way as the solution of (14).

The preconditioner RILUD is a combination of the ILUD and MILUD preconditioner. Our
experiments showed that for the curved channel problem the choice « close to zero is optimal,
whereas in the Boussinesq problem a close to one is optimal. Since our solver is mainly used
as a black box solver, we prefer a preconditioner such that one choice of a is optimal for a wide
range of problems. For that reason we consider the MILUD preconditioner more carefully. In
the following we denote the MILUD preconditioner by MILUD _1. The matrices L, D, and U
of MILUD _1 satisfy the following equation:

rowsum (LD™'U) = rowsum (M), so (16)
rowsum (L11D1_11 U11 + L11D1_11 U12) = rowsum (M11 + M12) 5
rowsuim (L21D1_11 U11 + L21D1_11 U12 + L22D2_21 U22) = rowsum (M21 + MQQ).

It is well known that the MILUD_1 preconditioner is very effective if the solution is a slowly
varying function. In the extreme case of no variation the multiplication by M and LD~'U
leads to the same result. Since in our code we use contravariant fluxes, which implies that
velocity components are scaled by the length of cell sides, it is possible that there is a large
difference between the uy and uy velocities. As a consequence, « close to one can lead to a bad
rate of convergence. This insight motivates us to propose a slightly adapted preconditioner
which is called MILUD_2.

MILUD_ 2

The matrices L, D and U satisfy the same rules as for MILUD_1 except the rule (16), which
is replaced by:

rowsum (LHDl_llUn) = rowsum (Mq1) , (17)
rowsum (L21D1_11 Uiz + L22D2_21 Usz) = rowsum (Msg) .

11

We expect that this preconditioner works well if w; and wy are slowly varying functions,
whereas the difference between uy and u; may be large. In all our experiments this precondi-
tioner has a nice convergence behaviour for « close to one. Hence the MILUD _2 preconditioner
is more robust than MILUD_1.

The transport equation

In this subsection we describe the iterative method that we use to solve a transport equation.

Transport equations of the type (3) can be used to describe the transport of temperature,
certain quantities occurring in engineering models of turbulence, the concentration of salt in
an estuary, etc. We distinguish between two classes of transport equations. The first class
describes the transport of a passive scalar. In this a case the Navier-Stokes equations can
be solved independently of the transport equation. Thereafter the velocities u; and ug can
be used in (3) to obtain a solution of the transport equation. The second class describes the
transport of an active scalar. This class consist of applications, where the Navier-Stokes equa-
tions are coupled with the transport equation (5), e.g., a Boussinesq problem or turbulence
modelling. Since the transport equation has the same properties for both classes, the choice
of the iterative solution method is independent of the type of scalar.

We note that equation (3) resembles the equations given in (2). This explains why the con-
vergence behaviour of the iterative methods applied to a transport equation is comparable to
the momentum equation. The matrix C"! depends on the geometry, boundary conditions,
the velocities, the time step and the choice of the functions Ky, K%, and K,. An important
difference is that the momentum equations describe a vector quantity, whereas a transport
equation describes a scalar quantity. As a consequence the dimensions and the structure of a
transport matrix are the same as those of the pressure matrix. This motivates us to solve a
transport equation with a GMRES-like method combined with an RILU preconditioner.

4 Reuse of search directions for the GMRESR method

In this section we describe a new technique to save iterations and CPU time using the
GMRESR method. The key idea is the following: if a system of linear equations is solved
with different right-hand sides then the information obtained from the solution process for
the first right-hand-side vector is used for the following right-hand sides.

We describe the adapted GMRESR algorithm for the pressure equation
PAp™tt = g+t (18)

In this equation the matrix P is constant, whereas the right-hand sides are different in every
time step. The GMRESR algorithm is given by (b = ¢"*! and zj is an approximation of
Ap™tiy:

GMRESR algorithm
ro=b— Pxg, k=—-1;
while ||7541]]2 >tol do

12

k:=k+ 1, compute u;ﬂo) and CECO) = PUECO) ;
fori=0,1,...,k—1 do

a; = CZTCEJ) ; ng-l—l) = ng) — Q;C; ; ugjﬂ) = ugj) — QU ;
cr = P 5w = P)1eP)2

_ T. .

Th41 = Tf + URCLTE 3
T

Tkl = Tk — CRCL Tk -

In the original GMRESR algorithm u;ﬂo) is computed by one iteration of GMRES(m) applied

to Py,go) = ri. Other variants are proposed in [4] and [24]. In this paper the original GMRESR
algorithm is used combined with the "min alfa” truncation strategy (for the details of "min
alfa” see [21]).

In the first time step we solve PAp(M) = ¢() with the GMRESR method. The number of outer
iterations is equal to ny, while GMRESR is truncated after n; outer iterations. In the first
time step the search directions ug, k = 0,1,...,ns are used, where ny = min(ny,n¢). These
vectors and the vectors ¢, = Puy, are stored in memory. For the solution of PAp() = ¢(2)
we use the following adapted version of GMRESR. Before we start the iteration process the

residual is made perpendicular to span {cg, ..., ¢,.} as follows:
for ¥ = 0,1,...,ns do
9 = xp+ ukc;{ro , (19)
To = To— CkC%TO .

Thereafter we start the iteration, where the orthogonalization process in the GMRESR al-
gorithm now runs from ¢ = 0 to min(ns + £ — 1,n¢). The number of outer iterations in the
second timestep is equal to ng. The vectors uy and ¢, £ =0,1,...,ns = min(ns + ng, n;) are
stored in memory. These directions are reused in the third timestep etc. Note that n; is an
upperbound of the number of direction vector, which are reused.

Different strategies are possible for the selection of search directions, which are kept in mem-
ory. In the experiments reported here, we start by storing all search directions. If ny, + &k — 1
becomes equal to n; the "min alfa” truncation strategy is used to discard an old search direc-
tion. This implies that the search directions stored in memory may be different in every time
step. Another strategy could be: to obtain the n, search directions in the first time step, and
reuse these in every following time step. So the search directions remain the same for every
time step n > 2.

To illustrate this adaptation of the GMRISR algorithm we give results for the first test prob-
lem on a 16 x 64 grid with p = 250, ¢ = 0.5, implying a Reynolds number of 500. We use
GMRESR with GMRES(8) as inner loop, and no preconditioning. In Table 1 the results
are given for the pressure equation at the second time step. The CPU time is measured
in seconds on one processor of a Convex C3840. Note that there is a considerable speedup
when the search directions are reused. The convergence behaviour is given in Figure 5. For
the original GMRESR algorithm the superlinear convergence sets in after 13 outer iterations.
The GMRESR algorithm with reuse of search directions leads to fast convergence from the

13

10log(res(i))

Figure 5: Convergence behaviour of GMRESR (—), and GMRESR with reuse of search
directions (0) (grid 16 x 64).

beginning. So the gain in iterations and CPU time is not a consequence of the decrease of the
norm of the initial residual due to (19), but a consequence of the fact that the components in
slowly converging eigenvectors are absent, due to the expanded orthogonalization. Compare
the description of the superlinear convergence behaviour of GMRES as given in [20]. The
results in Table 1 show that the number of iterations decreases when the value of n; increases.
This agrees with our explanation if more search directions are reused (n; larger) then more
components in slowly converging eigenvectors are absent, so a faster rate of convergence re-
sults. A drawback is that increasing n; leads to larger memory requirements.

original GMRESR(8) | GMRESR(8) with reuse

n; | outer iterations | CPU | outer iterations | CPU
30 24 0.40 8 0.16
20 24 0.39 10 0.19
10 30 0.46 18 0.30

Table 1: Number of iterations and CPU time for different GMRESR variants.

We conclude that the reuse of search directions is a good idea if the original GMRESR al-
gorithm applied to the linear system of equations has a superlinear convergence behaviour.
If, furthermore, the required accuracy is low, the CPU time decreases considerably when
we reuse the search directions (low accuracy is in general sufficient for nonlinear or time-
dependent problems).

We also give results for GMRESR combined with an RILU preconditioner (o = 0.975). We
again use the first test problem but now on a 64 x 256 grid. The results given in Table 2 and
Figure 6 are comparable with the results for the 16 x 64 grid.

14

Figure 6: Convergence behaviour of GMRESR (—), and GMRESR with reuse of search

10log(res(i))

directions (0), combined with an RILU preconditioner (grid 64 x 256).

original GMRESR(4) | GMRESR(4) with reuse
n; | outer iterations | CPU | outer iterations | CPU
20 14 2.56 7 1.5
15 14 2.56 8 1.7
10 14 2.56 10 2.0

Table 2: Number of iterations and CPU time for different GMRESR variants combined with

RILU (a = 0.975).

Reuse of search directions can also be used for the momentum equations M7ty +l = fr+l,
Although M™*! £ M"™, we expect that after some time steps the search directions for M™+!
and M™ are related. Since M"™t! #£ M™ the relation M"u; = ¢ does no longer hold. So
only the vectors uy are stored in memory. The adapted GMRESR algorithm is now started

with the following loop:

for k =0,...,n;
u;ﬂo) =ug, C;ﬂo) = M”"’luéo) ;
fore =0,..,k—1
o; = c;fpc;f) ;
cgﬂ) = cg) e T quH)

(v)

= uy

— Qi

e = ey, w =),

Thereafter the GMRESR method continues with (19) and the expanded orthogonalization as
for the pressure equation. For the momentum equation we see only a small gain in iterations
and in general no gain in CPU time. There are two reasons for this: firstly the search direc-

15

tions are different or M™*! and M™, and secondly the original GMRESR method converges
linearly. The second reason implies that it is improbable to obtain a faster convergence by
reusing search directions. This is illustrated by the first test problem with the 16 x 64 grid,
p =250, p = 0.5 and At = 0.15. The convergence behaviour of GMRESR, with GMRES(4)
as inner loop, and without preconditioning is given in Figure 7 for the momentum equation in
the third time step. From this figure it appears that the convergence behaviour of GMRESR

10log(res(i))

Figure 7: Convergence behaviour of GMRESR (—), and GMRESR with reuse of search
directions (0).

is linear. Note that there is only a small gain in iterations, whereas the CPU time is larger.
So for the momentum equation, GMRESR with reuse of search directions does not lead to a
faster solution method.

For the transport equation in the second testproblem we obtain the same results as for the
momentum equation.

5 Numerical results

In this section we present the results of some numerical experiments. We start with the
curved channel problem. The efficiency of the solution methods for the momentum and pres-
sure equations are given using vectorized ILU-type preconditioners. Thereafter we measure
the CPU times required to solve the Navier-Stokes equations for various grid sizes. For the
Boussinesq problem comparable experiments have been done. In all cases the CPU time has
been measured in seconds on one processor of a Convex C3840.

Curved channel problem

Consider the curved channel problem described in Section 1. First we investigate the vector-
ization of the preconditioner. On the Convex, the megaflop rate for a vector update (which
runs in vector speed) is 35 Mflop/s. In Table 3 the megaflop rate is given for the diagonal-wise
ordering given in Subsection 2.1.

16

grid size | 16 X 64 | 32 x 128 | 64 x 256 | 128 x 512
Mflop/s 15 22 32 35

Table 3: Megaflop rate of the vectorized RILU(D) preconditioner with diagonal ordering for
the pressure equation.

Without vectorization the multiplication by L=! or U~! has a megaflop rate equal to 9. From
Table 3 it appears that the megaflop rate for the vectorized version becomes higher for in-
creasing grid size. For large grid sizes it is equal to the megaflop rate of a vector update.

In Subsection 2.2 we have given some guidelines for the choice of a for the RILU precon-
ditioner used in the solution of the pressure equation. We have performed experiments for
various values of a. In general we prefer postconditioning instead of preconditioning. The
reason for this is that using postconditioning, which means the solution of PU~'L™1y = b and
x = U7'L7 'y, the termination criterion is based on ||7g||2, whereas with with preconditioning
it is based on |[U7'L™'rg||2. Table 4 gives the number of iterations for GMRES (without
restarting) and various choices of a. The iteration process is stopped if ||7g||2/]|70]|2 < 1075.

a | 09751099 1
grid size
16 x 64 23 24 | 22
32 x 128 34 34 |32
64 X 256 57 49 | 46
128 x 512 104 84 |64

Table 4: Number of iterations of GMRES using the RILU(a) postconditioner for the pressure
equation.

Note that for this problem « = 1 leads to the minimal number of iterations. Furthermore for
small grid sizes @ € [0.975,1] leads to the same number of iterations, whereas for large grid
sizes the optimal values of a are close to one, and the sensitivity of the number of iterations
required to « increases.

In Figure 8 the number of iterations for full GMRES combined with the MILUD or MILU
postconditioner are given for the pressure equation. One iteration costs approximately the
same amount of CPU time for both postconditioners. So this figure gives a good idea of the
performance of the postconditioners. Note that especially for large grid sizes MILU becomes
much better than MILUD. The results presented in Figure 8 motivate us to use an RILU
preconditioner instead of a RILUD preconditioner. Whereas the results of Table 4 motivate
us to choose RILU(0.99) for the pressure equation. This choice of o is a compromise between
a fast convergence and a not too large condition number.

17

Number of iterations

20F

Figure 8: Number of iterations of full GMRES combined with MILUD (—) and MILU
(— - —+). The grid size is equal to (16.2) x (64.2°).

Table 5 shows CPU times for the solution of the pressure equation, using the RILU(0.99)
postconditioner combined with truncated GMRESR(m) and reuse of the search directions.

grid size | ny | m | iterations | CPU | memory vectors
16 x64 |10 | 3 7 0.09 32
32x128 | 15| 3 7 0.32 46

64 x 256 | 15 | 4 7 1.21 47

128 x 512 | 20 | 6 7 7.38 55

Table 5: The amount of memory, CPU time and the number of iterations for the pressure
equation.

The results are measured in the second time step. Comparing these results with [22] we see
a large gain in CPU time. Part of this gain comes from the fact that the Convex C3840
is 2.5 times faster than the Convex C240 used in [22], but in addition the new method is
approximately 3 times faster.

In [22] the momentum equation has been solved with a diagonal preconditioner. In this sub-
section the results are produced by GMRES(20) combined with a diagonal or ILUD precondi-
tioner. For the momentum equation the preconditioned system L='M"t1U~ty = L=1b, 2 =
U~1y has been solved. Termination criteria based on ||rg||s and |[|[L71r||2 lead to the same
results. Furthermore, the Eisenstat implementation is used, which saves CPU time. The
iteration process is stopped if ||r||2/||7oll2 < 107*. The experiments are done in the second
time step. Table 6 demonstrates that ILUD saves many iterations and much CPU time. For
this problem MILUD_1 leads to worse results, whereas the number of iterations and CPU
time for MILUD_2 are comparable with ILUD. Comparing the results for the 16 x 64 grid

18

diagonal ILUD building

grid size time step | iterations | CPU | iterations | CPU | of systems
16 x 64 0.15000 41 0.24 7 0.075 0.07
32 x 128 0.07500 38 0.75 6 0.20 0.18
64 x 256 0.03750 36 2.74 6 0.73 0.60
128 x 512 0.01875 39 13.05 7 3.21 2.16

Table 6: Number of iterations and CPU time using different preconditioners for the momen-
tum equations.

with [22] we see again a large gain in CPU time. The last column in Table 6 contains the
CPU time to build the momentum and pressure equation. Note that comparison of tables 5
and 6 show that the solution of the pressure equation is the most time consuming part, as
has been the general experience on Cartesian grids in the past.

Boussinesq problem

For the Boussinesq problem we shall start with experiments for the pressure equation. We
have used the RILU(0.975) postconditioner combined with GMRESR(m), where the search
directions are reused. The results we show are measured in the third time step, which was
found to be typical The termination criterion used is the same as for the curved channel

grid size | ny | m | iterations | CPU | memory
vectors
20x40 | 10| 4 5 0.047 32
40x 80 | 15| 5 6 0.33 46
80x 160 | 15| 6 10 2.0 47
160 x 320 | 20 | 7 11 9.7 55

Table 7: The amount of memory, CPU time and the number of iterations for the pressure
equation.

problem.

Table 8 gives results for the momentum equations. In these experiments GMRES(20) com-
bined with ILUD and RILUD_2(0.95) as preconditioners have been used. In all cases a time
step dt = 4.10~* has been chosen independently of the grid size. Note that for increasing
grid size RILUD_2 becomes much better than ILUD. Since RILUD_2 has at least the same
performance as ILUD for other problems, e.g. the curved channel problem, it is recommended
to use the RILUD_2(0.95) preconditioner in all cases.

Finally Table 9 gives the results for the transport equation. In every time step first the mo-
mentum and pressure equations are solved and then the transport equation. The computed

19

ILUD RILUD_2
grid size iterations | CPU | iterations | CPU
20 x 40 5 0.034 5 0.034
40 x 80 8 0.22 8 0.22
80 x 160 13 0.94 10 0.73
160 x 320 23 8.1 12 4.1

Table 8: The number of iterations and CPU time for the momentum equation.

temperature is used in the right-hand side of the next time step.

building
grid size | iterations | CPU | of systems
20 x 40 6 0.016 0.05
40 x 80 10 0.11 0.15
80 x 160 14 0.48 0.49
160 x 320 16 2.3 1.8

Table 9: The number of iterations and CPU time for the transport equation.

The GMRES(20) method combined with the MILU postconditioner has been used. The iter-
ations process is stopped if ||7g]|2/||7o]l2 < 107¢. Note that comparison of tables 7, 8, and 9
again shows that the solution of the pressure equation is the most time consuming part.

6 Conclusions

In this paper we have described properties of GMRES type iterative methods combined with
ILU type preconditioners to solve a discretization of the incompressible Navier-Stokes equa-
tions in general coordinates with the pressure correction method. Comparing the results of
this paper with [22] we note a considerable decrease of CPU time to solve the pressure and
momentum equations, due to the novel idea of reuse of search directions for the pressure
equation and improvements in pre- and postconditioning, and vectorization.

The pressure equation has been solved with GMRESR combined with an RILU postcondi-
tioner. In the case of a non-singular pressure matrix o = 0.99 appears to be a good choice for
the average parameter, whereas in the singular case o = 0.975 should be preferred. Finally
reuse of the GMRESR search directions leads to a large reduction of CPU time in the solution
of the pressure equation. The required memory is available because the memory required to
store the momentum matrix can be re-used.

The momentum equation has been solved with GMRES(20) combined with RILUD_2. A

20

good choice for a is 0.95. The properties of the momentum equation not only depend on the
geometry and boundary conditions, but also on the other parameters as there are: time, time
step, p, p etc. So the number of iterations and CPU time may be different for different values
of these parameters.

The transport equation has been solved with GMRES(20) combined with MILU postcondi-
tioning. Solving for the pressure takes most of the time, as in the Cartesian case.

References

[1] C.C. Ashcraft and R.G. Grimes. On vectorizing incomplete factorization and SSOR
preconditioners. SIAM J. Sci. Stat. Comput., 9:122-151, 1988.

[2] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numer. Math., 48:479-498, 1986.

[3] G. de Vahl Davis and I.P. Jones. Natural convection in a square cavity: a comparison
exercise. Int. J. Num. Meth. Fluids, 3:227-248, 1983.

[4] E. De Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogo-
nality. In T.A. Manteuffel and S.F. McCormick, editors, Proceedings of the Sizth Copper
Mountain Multigrid Conference on Multigrid Methods, VA, 1993. NASA Langley Re-
search Center, Hampton.

[6] S.C. Eisenstat. Efficient implementation of a class of preconditioned conjugate gradient
methods. STAM J. Sci. Stat. Comput., 2:1-4, 1981.

[6] I.A. Gustafsson. A class of first order factorization methods. BIT, 18:142-156, 1978.

[7] J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148-162, 1977.

[8] A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible
Navier-Stokes solver: invariant discretization. Applied Scientific Research, 48:175-191,
1991.

[9] C.W. Oosterlee. Robust multigrid methods for the steady and unsteady incompressible
Navier-Stokes equations in general coordinates. PhD thesis, Delft University of Technol-
ogy, The Netherlands, 1993.

[10] C.W. Oosterlee and P. Wesseling. A multigrid method for an invariant formulation of
the incompressible Navier-Stokes equations in general co-ordinates. Communications in
Applied Numerical Methods, 8:721-734, 1992.

[11] C.W. Oosterlee and P. Wesseling. Multigrid schemes for time-dependent incompressible
Navier-Stokes equations. Impact Comp. Science Engng, 5:153-175, 1993.

21

[12]

[13]

[25]

[26]

C.W. Oosterlee and P. Wesseling. A robust multigrid method for a discretization of the
incompressible Navier-Stokes equations in general coordinates. Impact. Comp. Science
Engng., 5:128-151, 1993.

C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for the
incompressible Navier-Stokes equations in general co-ordinates on staggered grids. Int.
J. Num. Meth. Fluids, 17:301-321, 1993.

Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving
non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856—-869, 1986.

A. Segal, P. Wesseling, J. Van Kan, C.W. Qosterlee, and K. Kassels. Invariant discretiza-
tion of the incompressible Navier-Stokes equations in boundary fitted co-ordinates. Int.
J. Num. Meth. Fluids, 15:411-426, 1992.

K. Turner and H.F. Walker. Efficient high accuracy solutions with GMRES(m). SIAM
J. Seci. Stat. Comput., 13:815-825, 1992.

H.A. Van der Vorst. Iterative solution method for certain sparse linear systems with a
non-symmetric matrix arising from PDE-problems. J. Comput. Phys., 44:1-19, 1981.

H.A. Van der Vorst. High performance preconditioning. SIAM J. Seci. Stat. Comp.,
10:1174-1185, 1989.

H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer.
L.A.A. 1993. to appear.

H.A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES.
J. Comput. Appl. Math., 48:327-342, 1993.

C. Vuik. Further experiences with GMRESR. Supercomputer. to appear.

C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the
GMRES method. Int. J. for Num. Meth. Fluids, 16:507-523, 1993.

P. Wesseling, A. Segal, J.J.I.LM. van Kan, C.W. QOosterlee, and C.G.M. Kassels. Finite
volume discretization of the incompressible Navier-Stokes equations in general coordi-
nates on staggered grids. Comp. Fluid Dynamics Journal, 1:27-33, 1992.

S. Zeng, C. Vuik, and P. Wesseling. Solution of the incompressible Navier-Stokes equa-
tions in general coordinates by Krylov subspace and multigrid methods. Report 93-64,
Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft,
1993.

S. Zeng and P. Wesseling. Multigrid solution of the incompressible Navier-Stokes equa-
tions in general coordinates. STAM J. Num. Anal., 1993. to appear.

M. Zubair, S.N. Gupta, and C.E. Grosch. A variable precision approach to speedup
iterative schemes on fine grained parallel machines. Parallel Comp., 18:1223-1232, 1992.

22

