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A preconditioned Krylov subspace method for the

solution of least squares problems

Kees Vuik

�

Agur G. J. Sevink G�erard C. Herman

August 30, 1994

Abstract

We present an iterative method of preconditioned Krylov type for

the solution of large least squares problems. We prove that the method

is robust and investigate its rate of convergence. For an important

application, originating from seismic inverse scattering, we derive a

suitable preconditioner using asymptotic theory. Numerical experi-

ments are used to compare the method with other iterative methods.

It appears that the preconditioned Krylov method can be much more

e�cient than CG applied to the normal equations.

Keywords: least squares problem, underdetermined problem, Krylov sub-

space method, preconditioning, inverse scattering.

AMS Subject Classi�cation: 65F10, 65F20, 81U40, 86A22

1 Introduction

In this paper we consider the solution of underdetermined least squares

problems by iterative methods. Section 2 contains the description of the

problem. In Section 3 we give a short survey of existing iterative methods

for least squares problems, such as SIRT, ART, and CG. After this sur-

vey we present two di�erent variants of a preconditioned Krylov subspace

method. The �rst one is robust, whereas the second one can be consider-

ably faster for underdetermined systems. In Section 4 we present results

�

all authors: Faculty of Technical Mathematics and Informatics, Delft University of
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concerning the convergence of the Krylov methods. Since the eigenvalues

of the preconditioned matrix play an important role we also give an algo-

rithm to approximate these eigenvalues. Section 5 contains an application

originating from seismic inverse scattering. For this application we give a

suitable preconditioner. The convergence results given in Section 4 are com-

pared with the convergence observed in the numerical examples. Finally

we note that for this application the preconditioned Krylov method may be

three times faster than the CG method applied to the normal equations.

2 Statement of the problem

We consider the least squares problem: given the matrix L 2 C

I

m�n

and

right-hand side b 2 C

I

m

, �nd a solution vector x 2 C

I

n

such that

kLx� bk

2

= min

y2C

I

n

kLy � bk

2

(1)

In this paper we consider an underdetermined system of equations Lx = b

so m < n. However, the methods given in Section 3 can also be used for

overdetermined systems. It is easy to show that x is a solution of (1) if and

only if

L

�

Lx = L

�

b: (2)

The equations given in (2) are called the normal equations.

The l

2

-norm condition number �

2

(L) is the ratio of the largest and the

smallest singular value (see [11] p.223): �

2

(L) =

�

max

�

min

.

3 Iterative methods for least squares problems

Before we start to describe our iterative solution method we give a short

survey of existing methods. For the theory of least squares problems we

refer to [11], Chapter 5. Direct methods to solve underdetermined linear

equations are given in [5].

3.1 Survey of well-known iterative methods

The following iterative methods are known:

SIRT

2



The SIRT (Simultaneous Iterative Reconstruction Technique) method is de-

scribed in [10]. It can be shown that SIRT is equivalent to Richardson

iteration applied to the system (see [18])

C

1

2

L

�

RLC

1

2

y = C

1

2

L

�

Rb and x = C

�

1

2

y.

In this equations R is a row- and C is a column-scaling matrix.

ART

The ART (Algebraic Reconstruction Technique) method is described in [12].

ART is equivalent to SOR (Successive Over Relaxation) applied to the sys-

tem [3]

LL

�

y = b, where x = L

�

y.

CG

A common approach to solve least squares problems is to apply CG (Con-

jugate Gradients) to the normal equations

L

�

Lx = L

�

b.

This method is called CGNR and is already proposed in [13]. Drawbacks

of this method are: it can su�er from rounding errors and a slow rate of

convergence. Both phenomena depend on �

2

(L)

2

which is in general very

large. More stable variants, with respect to rounding errors, are given in

[3], and [16]. In [3], also preconditioned variants of CGNR are considered.

A comparable method CGNE is proposed by [6], which applies CG to the

equations

LL

�

y = b, where x = L

�

y.

Comparisons of SIRT, ART, and CG-like methods are given in [18], [19],

and [8]. For the tomographic problems considered in [18] and [19] the CG

method has a better rate of convergence than the SIRT method. The com-

parison given in [8] leads to the conclusion that ART is only more e�cient

than CG for overdetermined systems where m� n.

3.2 Preconditioned Krylov subspace methods

For square linear systems with a nonsymmetric coe�cient matrix A 2 IR

n�n

,

it is well known that Krylov subspace methods based on the matrix A have

in general a much better convergence behaviour than the CGNR and CGNE

methods. One reason for this is the fact that CGNR and CGNE are based

on the Krylov subspace

3



K

k

(A

T

A;A

T

r

0

) = spanfA

T

r

0

; (A

T

A)A

T

r

0

; :::; (A

T

A)

k�1

A

T

r

0

g,

whereas the nonsymmetric Krylov methods are based on

K

k

(A; r

0

) = spanfr

0

; Ar

0

; :::; (A)

k�1

r

0

g.

This motivates us to look for Krylov methods based on K

k

(L; r

0

) for the

solution of the least squares problems given by (1). However, it is impossi-

ble to form K

k

(L; r

0

) if n 6= m. The vector L(Lr

0

) is not de�ned because

L 2 C

I

m�n

and Lr

0

2 C

I

m

. Our idea to circumvent this is to construct a pre-

conditioner T 2 C

I

n�m

such that T is an approximation of the (generalized)

inverse of L. Note that there are two reasons to use a preconditioner T :

�rst to obtain a square matrix TL and second to have fast convergence. As

usual, as for square matrices, the di�culty is to �nd a 'good' approximation

T . An important application, where it is possible to �nd such a T , is pre-

sented in [17] and summarized in Section 5. Note that for a given T 2 C

I

n�m

the product matrix TL is in C

I

n�n

. So the Krylov subspace K

k

(TL; Tr

0

)

is de�ned and equal to spanfTr

0

; (TL)Tr

0

; :::; (TL)

k�1

Tr

0

g. We look for a

solution x

k

2 x

0

+K

k

(TL; Tr

0

) such that the residual r

k

= b�Lx

k

satis�es

a certain optimality property. In principle all Krylov subspace methods for

square complex nonsymmetric matrices can be used (for a recent survey see

[2]).

In our method we choose x

k

2 x

0

+K

k

(TL; Tr

0

) such that

kb� Lx

k

k

2

= min

�2x

0

+K

k

(TL;Tr

0

)

kb� L�k

2

The algorithm to obtain x

k

is given by (compare GCR given in [9]):

Algorithm 1

select x

0

; eps;

r

0

= b� Lx

0

; k = 0;

while kr

k

k

2

> eps do

k := k + 1; u

(1)

k

= Tr

k�1

; c

(1)

k

= Lu

(1)

k

;

for i = 1; :::; k� 1 do

�

i

= c

�

i

c

(i)

k

;

c

(i+1)

k

= c

(i)

k

� �

i

c

i

; u

(i+1)

k

= u

(i)

k

� �

i

u

i

;

endfor

c

k

= c

(k)

k

=kc

(k)

k

k

2

; u

k

= u

(k)

k

=kc

(k)

k

k

2

;

x

k

= x

k�1

+ u

k

c

�

k

r

k�1

;
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r

k

= r

k�1

� c

k

c

�

k

r

k�1

;

endwhile

Remarks

1. The vectors u

(i)

k

and c

(i)

k

are only used to describe the algorithm. In a

computer implementation they can be replaced by u

k

and c

k

.

2. The vectors u

k

are called search directions. The vectors c

1

; :::; c

k

form

an orthonormal basis for the Krylov subspace K

k

(LT; LTr

0

). The vec-

tors u

1

; :::; u

k

and c

1

; :::; c

k

should be stored in memory. The memory

requirements can be bounded by restarting or truncating the algo-

rithm. In our application the number of iterations is small, so all

vectors could be kept in memory.

3. The residual r

k

is perpendicular toK

k

(LT; LTr

0

). Note that the resid-

ual r

k

is obtained by updating r

k�1

. Due to rounding errors it is pos-

sible that r

k

and b�Lx

k

become di�erent. For this reason it is a good

idea to compare the updated residual r

k

and b�Lx

k

after every 10 or

20 iterations. If the di�erence is too large one can use the following

strategies:

a) restart the algorithm,

b) calculate r

k

= b�Lx

k

, adapt the solution x

k

such that the residual

is orthogonal to spanfc

1

; :::; c

k

g, and continue the algorithm.

In the very special case that c

(1)

�

k

r

k�1

= 0 the proposed method breaks

down, because then LTr

k

2 spanfc

1

; :::; c

k

g so c

(k+1)

k+1

= 0, and c

k+1

=

c

(k+1)

k+1

=kc

(k+1)

k+1

k

2

is not de�ned. In order to circumvent breakdown we de�ne

the search direction u

(1)

k

as follows:

De�nition 1

If c

(1)

�

k

r

k�1

6= 0 take u

(1)

k

= Tr

k�1

, else take u

(1)

k

= L

�

r

k�1

.

Theorem 3.1 When we use u

(1)

k

as de�ned in De�nition 1, the proposed

method does not breakdown.

Proof: Using u

(1)

k

= Tr

k�1

there are two possibilities: c

(1)

�

k

r

k�1

6= 0, and

c

(1)

�

k

r

k�1

= 0. If c

(1)

�

k

r

k�1

6= 0 it follows that c

(1)

k

is not an element of

spanfc

1

; :::; c

k

g, since r

k�1

? spanfc

1

; :::; c

k

g. So c

(k)

k

6= 0 and thus u

k

and

c

k

exist. If c

(1)

�

k

r

k�1

= 0 the original search direction u

(1)

k

= Tr

k�1

is re-

placed by u

(1)

k

= L

�

r

k�1

. Again two di�erent cases occur:

5



kL

�

r

k�1

k

2

6= 0

In this case c

(1)

�

k

r

k�1

= (LL

�

r

k�1

)

�

r

k�1

= kL

�

r

k�1

k

2

2

6= 0, which implies

that u

k

and c

k

exist (compare the �rst part of the proof).

kL

�

r

k�1

k

2

= 0

In this case L

�

r

k�1

= L

�

(b�Lx

k�1

) = 0. This implies that x

k�1

is a solution

of the normal equations (2). Thus x

k�1

is a solution of the least squares

problem (1). This is called a lucky breakdown. 2

In our application it never happened that the choice u

(1)

k

= Tr

k�1

leads

to c

(1)

�

k

r

k�1

= 0. So the preconditioner T is the same in every iteration. In

such a case it is better to use Algorithm 2 given below:

Algorithm 2

Apply Algorithm 1 to the postconditioned system

LTy = b: (3)

If the norm of the residual kb � LTy

k

k

2

is small enough form x

k

= Ty

k

,

which is an approximation of the solution of the least squares problem (1).

Remarks

1. The iterate y

k

used in Algorithm 2 is an element of the Krylov subspace

K

k

(LT; r

0

).

2. The main di�erence between both algorithms is that u

(1)

k

= Tr

k�1

and c

(1)

k

= Lu

(1)

k

in Algorithm 1 are replaced by u

(1)

k

= r

k�1

and

c

(1)

k

= LTu

(1)

k

in Algorithm 2. Note that in Algorithm 1 c

k

2 C

I

m

and u

k

2 C

I

n

, whereas in Algorithm 2 u

k

; c

k

2 C

I

m

. So when m � n,

Algorithm 2 needs much less memory and work than Algorithm 1 to

obtain the same iterate x

k

.

4 The convergence behaviour of the precondi-

tioned Krylov method

It is well known that the convergence behaviour of Krylov subspace methods

for square linear systems depends on the eigenvalues of the (preconditioned)

matrix. In this section we generalize some of these results for square linear

6



matrices to the Krylov method proposed in Section 3. To approximate the

eigenvalues of LT we describe the Arnoldi method [1] applied to the square

matrix LT , where we assume that the matrix T is the same in every itera-

tion. This method provides so-called Ritz values, which are approximations

of the eigenvalues of LT .

The Arnoldi method [1] applied to LT 2 C

I

m�m

can be described as fol-

lows:

Algorithm 3

r

0

= b; v

1

= r

0

=kr

0

k

2

;

for j = 1; :::; k do

v

j+1

= LTv

j

;

for i = 1; :::; j do

h

ij

= v

�

j+1

v

i

;

v

j+1

= v

j+1

� h

ij

v

i

;

endfor

h

j+1;j

= kv

j+1

k

2

;

v

j+1

= v

j+1

=h

j+1;j

;

endfor.

After the algorithm is completed the upper Hessenberg matrix H

k

2 C

I

k�k

can be formed:

H

k

=

0

B

B

B

B

B

B

B

B

B

@

h

11

h

12

h

13

: : : : : : h

1k

h

21

h

22

h

23

: : : : : : h

2k

0 h

32

h

33

: : : : : : h

3k

0 0 h

43

.

.

.

: : : h

4k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 : : : 0 h

k�1;k

h

kk

1

C

C

C

C

C

C

C

C

C

A

:

For the choice T = L

�

the matrix H

k

is tridiagonal and the Arnoldi method

leads to the same results as the Lanczos method [15] . In general k is much

smaller than m, or n, so H

k

is a relatively small matrix. The eigenvalues

of H

k

can be calculated using MATLAB or LAPACK subroutines. These

eigenvalues are called Ritz values and are approximations of the eigenvalues

of LT . The Ritz values have the following properties:

- they converge fast to the extreme eigenvalues,

- they only converge to the eigenvalues for which the corresponding eigen-

vectors have a non-zero component in the right-hand side b.
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Below we give some results concerning the rate of convergence of Algorithm

1. Since algorithms 1 and 2 lead to the same iterates x

k

the convergence

results are also applicable to Algorithm 2. The convergence behaviour is

investigated using the fact that the iterate x

k

obtained from Algorithm 1

satis�es the equation:

kb� Lx

k

k

2

= min

�2K

k

(TL;Tr

0

)

kr

0

� L�k

2

: (4)

Note that r

k

= b � Lx

k

can also be written as r

k

= p̂

k

(LT )r

0

where p̂

k

is a polynomial of degree k such that p̂

k

(0) = 1. The class of polynomials

of degree at most k and constant term 1 is denoted by �

1

k

. Furthermore

equation (4) implies that

kr

k

k

2

� kp

k

(LT )r

0

k

2

,

for every polynomial p

k

2 �

1

k

. In the remainder of this paper we assume

that the matrix LT is diagonalizable ([11] p. 338).

De�nition 2

For the diagonalizable matrix LT there is an S 2 C

I

m�m

such that S

�1

(LT )S =

D where

D =

0

B

@

�

1

=

.

.

.

= �

m

1

C

A

and �

i

2 C

I

. We have ordered �

i

and s

i

, the i

th

column of S, such that r

0

can be written as r

0

=

t

P

i=1

�

i

s

i

where �

i

6= 0 for i = 1; :::; t.

Theorem 4.1 If "

(k)

is de�ned as follows:

"

(k)

= min

p

k

2�

1

k

max

1�i�t

jp

k

(�

i

)j

then the residual r

k

satis�es the following inequality:

kr

k

k

2

� "

(k)

kSk

2

kS

�1

k

2

kr

0

k

2

Proof: It follows from equation (4) that

kr

k

k

2

� kp

k

(LT )r

0

k

2

: (5)

Furthermore the equation S

�1

(LT )S = D can be rewritten as LT = SDS

�1

.

Substituting this into (5) leads to

8



kr

k

k

2

� kS

0

B

@

p

k

(�

1

) =

.

.

.

= p

k

(�

m

)

1

C

A

S

�1

r

0

k

2

Using the decomposition r

0

=

t

P

i=1

�

i

s

i

= S(�

1

; :::; �

t

; 0; :::; 0)

T

leads to:

kr

k

k

2

� kS

0

B

B

B

B

B

B

B

B

B

@

p

k

(�

1

)

.

.

.

=

p

k

(�

t

)

0

=

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

@

�

1

.

.

.

�

t

0

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

k

2

= kS

0

B

B

B

B

B

B

B

B

B

@

p

k

(�

1

)

.

.

.

=

p

k

(�

t

)

0

=

.

.

.

0

1

C

C

C

C

C

C

C

C

C

A

S

�1

r

0

k

2

This inequality implies that

kr

k

k

2

� min

p

k

2�

1

k

max

1�i�t

jp

k

(�

i

)jkSk

2

kS

�1

k

2

kr

0

k

2

which proofs the theorem. 2

The condition number �

2

(S) = kSk

2

kS

�1

k

2

can be large. However, for

a square linear system we see that the quantity "

(k)

gives a good indication

of the rate of convergence of Algorithm 1 (which is equal to GCR [9] for

square systems). For the choice T = L

�

, the CG method, the condition

number �

2

(S) is equal to 1.

Many bounds for "

(k)

are given in the literature. We only give two of them:

- if all eigenvalues �

i

are on the real axis and the e�ective condition num-

ber �

eff

of LT is de�ned as �

eff

= max

1�i�t

j�

i

j=min

1�i�t

j�

i

j then the

following inequality for "

(k)

holds:

9



"

(k)

� 2

�

p

�

eff

�1

p

�

eff

+1

�

k

,

- if all eigenvalues are enclosed in a circle centered at C 2 IR with C > 0

and having radius R with C > R then "

(k)

�

�

R

C

�

k

.

Finally, for square linear systems originating from discretized PDE problems

one frequently observes superlinear convergence behaviour. This means that

the reduction factor

kr

k+1

k

2

kr

k

k

2

decreases after some iterations. In [20] an expla-

nation of superlinear convergence is given based on the convergence of the

Ritz values to the extreme eigenvalues. It is straightforward to generalize

this explanation to the convergence behaviour of Algorithm 1.

5 Example: Seismic inverse scattering

We now consider a least-squares inverse problem from exploration seismol-

ogy. The aim of exploration seismology is to determine structures in the

earth's subsurface from seismic measurements at the surface. This type of

inverse problem is underdetermined and can therefore serve as an exam-

ple for the preconditioned Krylov subspace method discussed in Section 3.

With the aid of asymptotic methods we compute a preconditioner T and

subsequently analyse the performance of the resulting method by studying

the rate of convergence as compared to other methods and by applying the

Arnoldi method discussed in Section 4.

5.1 Formulation of the problem

We consider the scattering of acoustic waves by a bounded two-dimensional

object V embedded in a homogeneous, ideal uid material and di�ering from

its surroundings in its modulus of compression �, i.e.,

�(x; z) = �

(0)

(1 + ��(x; z)) : (6)

In Equation (6), �

(0)

is the modulus of compression of the surrounding

material and �� is a small contrast. We have chosen Cartesian coordinates

x and z, denoting horizontal coordinate and depth, respectively. In order to

estimate ��, a number of experiments have been performed at the surface

(Figure 1). In each experiment, the con�guration is probed with the �eld

generated by a monochromatic linesource with angular frequency !

k

, located

at x=x

s

and z=0. This �eld is recorded by a receiver at x = x

s

+ o and

z=0. In all experiments, the source-receiver o�set o is kept constant. The

10



midpoint between source and receiver is denoted by x

j

. This implies that

each measurement is labeled by the two indices k (frequency !

k

) and j

(midpoint x

j

), respectively.

In order to obtain an integral equation relating the (unknown) contrast

�� to the measured �eld, we decompose the total pressure wave�eld into

the incident �eld p

inc

(the �eld in the absence of contrast ��) and the

scattered wave�eld p

sc

. We can then derive an integral representation for

the scattered �eld in terms of the contrast ��. For small values of the

contrast, this representation can be linearized around �

(0)

and we obtain

the following linear integral equation of the �rst kind [7]):

p

sc

(x

j

; !

k

) =

Z

V

��(x

0

; z

0

) L(x

0

; z

0

; x

j

; !

k

) dx

0

dz

0

: (7)

In this equation, x

j

= j�x are the midpoints for subsequent experiments,

!

k

= k�! are discrete frequencies, whereas L(x

0

; z

0

; x

j

; !

k

) is given by

L(x

0

; z

0

; x

j

; !

k

) = �

!

2

k

s(!

k

)

16(c

(0)

)

2

H

(2)

0

�

!

k

�

up

(x

0

; z

0

; x

j

)

�

�H

(2)

0

�

!

k

�

down

(x

0

; z

0

; x

j

)

�

:

(8)

In Equation (8), c

(0)

denotes the velocity of the background medium, s(!)

the amplitude spectrum of the source and H

(2)

0

the Hankel function of order

zero and second kind. Writing ~x

0

= (x

0

; z

0

), ~x

j

= (x

j

; 0) and ~o = (o; 0),

we can express the traveltime of waves from the source downwards to any

subsurface point ~x

0

, �

down

, in the form

�

down

(x

0

; z

0

; x

j

) =

k ~x

0

� ~x

j

+

1

2

~o k

2

c

(0)

: (9)

(In Equation (9), k � k

2

denotes physical length of the vector.) In a similar

way, we can express �

up

, the traveltime of waves from the subsurface point

upwards to the receiver, as

�

up

(x

0

; z

0

; x

j

) =

k ~x

0

� ~x

j

�

1

2

~o k

2

c

(0)

: (10)

Since both !�

down

and !�

up

are large for the cases of interest in exploration

seismology, we replace the Hankel functions by their asymptotic approxima-

tions, i.e.,

H

(2)

0

(�) �

r

2

��

expf�i(��

1

4

�)g (�!1): (11)

11



After inserting the asymptotic approximation (11) into (8), we obtain

L(x

0

; z

0

; x

j

; !

k

) = �

i s(!

k

) !

k

8�c

(0)

�

expf�i!

k

�(x

0

; z

0

; x

j

)g

R(x

0

; z

0

; x

j

)

; (12)

where � ( = (�

down

+ �

up

)) can be interpreted as the total travel time and

R = (k ~x

0

� ~x

j

�

1

2

~o k

2

k ~x

0

� ~x

j

+

1

2

~o k

2

)

1

2

(13)

is related to the geometrical spreading of waves, propagating through the

background medium.

Writing (7) in operator notation �nally results in

L�� = p

sc

; (14)

with

L�� =

Z

V

��(x

0

; z

0

) L(x

0

; z

0

; x

j

; !

k

) dx

0

dz

0

; (15)

where the function L is given by Equation (12). The quantity L�� of

Equation (15) represents a matrix-vector product, since we have to discretize

the integral over V . The discretization interval �

V

has to be chosen small

enough in order to sample the oscillatory integrand accurately.

The inverse problem given in Equation (14) can be formulated as a least-

squares problem (Section 2), relating the calculated data p

sc

for a model x

to the measured data d: given the matrix L 2 C

I

m�n

and right-hand side

d 2 C

I

m

, �nd a solution vector x 2 IR

n

such that

kLx� dk

2

= min

y2IR

n

kLy � dk

2

; (16)

with the l

2

-norm now given by

kLx� dk

2

=

0

@

X

j;k

jLx(x

j

; !

k

)� d(x

j

; !

k

)j

2

1

A

1

2

: (17)

The elements of the matrix L are given by Equation (12) and the data d are

given by measurements at the surface. The dimension m of the data space

is determined by the number of measurements and is equal to the number of

(discrete) frequencies !

k

times the number of midpoints x

j

. The dimension

n of the model space can be chosen and is equal to the number of cells, into

which the subsurface is discretized. The dimension n of the model space can

be much larger than the dimension m of the data space (m� n).
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5.2 Choice of the preconditioning operator T

In order to accelerate the convergence, the preconditioning operator T should

be chosen as close as possible to L

�1

, the inverse of L. In [7], a Born in-

version method is discussed where this inverse is determined approximately

(with the aid of high-frequency asymptotics) and where �� is expressed in

terms of the data d by the relation:

��(x

0

; z

0

) =

1

Z

�1

1

Z

�1

A(x

0

; z

0

; x; !) d(x; !) dxd! : (18)

The weight function A(x

0

; z

0

; x; !) is derived in the Appendix. Equation (18)

requires the knowledge of d for -1 < x < 1 and -1 < ! < 1. If we take

the preconditioning operator T equal to T

B

, given by

T

B

(x

0

; z

0

; x

j

; !

k

) = A(x

0

; z

0

; x

j

; !

k

) �x�! ; (19)

we observe that this choice of T approximates the inverse of L if the sampling

is 'good enough', in the sense that fx

j

: j = 1; :::; Jg and f!

k

: k = 1; :::; Kg

represent adequate discretizations of the in�nite intervals occurring in Equa-

tion (18). For sparsely sampled data, this is not the case, but T

B

can still

be a fair approximation of L

�1

and can therefore be used as preconditioner.

The use of high frequency asymptotic methods for computing precondition-

ing operators for square systems has been suggested by [14].

5.3 Comparison of the various methods

We consider the estimation of two di�erent subsurface models that only

di�er in the size of V (dimension n), referred to as the small and the large

model. For both problems we use data gathered for 9 midpoints (9 source-

receiver pairs), spaced 45 m apart, with an o�set of 150 m for all midpoints.

The discretization-interval �

V

is chosen equal to 15 m. This is small enough

for these problems, since we need about 5 samples per dominant wavelength

(equal to 80 m here) for a reasonable sampling. The data d have been

calculated from Equation (14) for a model consisting of two pointscatterers

(V consists of two one-cell scatterers).

First, we have considered the estimation of the small subsurface model,

discretized into 2500 cells. For this problem m=738 and n=2500. The

pointscatterers were situated at a depth of 450 and 900 meter. Secondly,

13



we have also considered the estimation of the larger subsurface model, dis-

cretized into 10000 cells. Here m=738 again, but now n=10000. The

pointscatterers were situated at a depth of 600 and 1350 meter.

At the end of Subsection 3.1 we note that comparisons given in the

literature suggest that CG is more e�cient than ART and SIRT for un-

derdetermined systems. This motivates us to compare the preconditioned

Krylov subspace methods only with the CG method.

In Figure 2, the logarithm of the scaled l

2

-norm of the residual of the

small model problem is displayed as a function of the iteration index for four

di�erent schemes:

G The gradient scheme.

CG The conjugate gradient scheme (Algorithm 2 with T = L

�

).

PKNO The non-orthogonalized preconditioned Krylov subspace

scheme (Algorithm 2 with T = T

B

of Equation (19) and no

orthogonalisation). In [17] this method has been referred to as

PSOR (preconditioned successive overrelaxation scheme).

PK The preconditioned Krylov subspace scheme (Algorithm 2 with

choice T = T

B

of Equation (19)).

The starting model x

0

is taken equal to zero for all subsurface points.

The scaling is carried out with respect to the l

2

-norm of the data (which

is equal to the residual of the start iteration). Apparently, the choice T

B

given by Equation (19) is closer to the inverse L

�1

than the choice L

�

, used

in the gradient (G) and conjugate gradient (CG) methods, and gives rise to

a much faster convergence, especially in the �rst iterations. The amount of

work per iteration is more or less the same for all methods. Only for the

PK method the amount of work per iteration increases noticeably for large

numbers of iterations. Note that the rate of convergence deteriorates for

all methods. Furthermore PK uses much fewer iterations than CG and G

to obtain the same accuracy. Initially the convergence of PK and PKNO is

comparable, however after 10 iterations the convergence of PKNO stagnates

at certain intervals.

In Figure 3, the logarithm of the scaled l

2

-norm of the residual of the

large model-problem is displayed as a function of the iteration index for

two di�erent schemes: the CG and the PK scheme. The scaling is again

with respect to the l

2

-norm of the data. From a comparison of Figure 2

and 3 we conclude that the preconditioning operator T

B

seems to be even

more e�ective in accelerating the rate of convergence for large-scale inverse

problems containing 10000 unknowns.

Having compared the rate of convergence of the di�erent schemes for
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di�erent sizes of n, we now want to consider more quantitatively the two

di�erent choices of T , i.e., L

�

and T

B

. We do this by considering the small

problem (n=2500) and calculating the Ritz-values for the di�erent T , using

the scheme given in Algorithm 3. In Table 1 some Ritz-values are shown

for the conjugate gradient method(CG), for di�erent numbers of iterations

k. In Table 2 the same is shown for the preconditioned Krylov subspace

method(PK). For both methods the largest Ritz values converge fast to the

corresponding eigenvalues, whereas the smallest Ritz value becomes closer

and closer to zero. This observation is comparable to observations made

in [18]. The largest Ritz values of LT

B

are better clustered around 1 than

those of LL

�

which illustrates (also quantitatively) that T

B

is a better ap-

proximation of the generalized inverse of L.

We compare the theoretical convergence results with the experimental

results. The e�ective condition number is approximated by

�

k

�

1

using Table

1 and 2. The observed rate of convergence

kr

i+1

k

2

kr

i

k

2

and the (approximated)

theoretical rate of convergence

q

�

k

�

1

�1

q

�

k

�

1

+1

are presented in Figure 4 for CG and

in Figure 5 for PK. Note that there is a qualitatively close correspondence

between theory and experiments ( generalizing the analysis of CG given in

[19] to PK may even lead to better theoretical results). Note that instead of

a faster rate of convergence observed in PDE problems the rate of conver-

gence of CG and PK deteriorates when the number of iterations increase. To

understand this behaviour we note that the initial residual has large com-

ponents in eigenvectors corresponding to the clustered eigenvalues. After

a number of iterations these components decrease considerably and become

comparable with the components corresponding to small eigenvalues. So the

e�ective condition number increases which explains the deterioration of the

rate of convergence.

In Table 3 we summarize the theoretical rates of convergence of CG and

PK. From this table we see that the theory predicts (correctly) that PK

converges faster than CG. This implies that the Ritz values may be used to

measure the quality of a given preconditioner.

In practice we only require low accuracy, since seismic data contain a

relatively large noise component. Therefore we also present in Table 4 and

5 the CPU time and number of iterations that are required for reducing

the residual to 5 percent of its initial value (i.e., by chosing eps = 0:05 in

Algorithm 2). The CPU time is measured on an HP 720 workstation. We
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see that for this accuracy the methods PK and PKNO are comparable. Note

that for the large model-problem PK and PKNO are approximately three

times faster than CG.

6 Conclusions

Two related preconditioned Krylov subspace methods are presented to solve

underdetermined least squares problems. We show that the �rst variant

does not breakdown and that the second variant is more e�cient than the

�rst one. To analyse the convergence behaviour we prove a relation between

the residual and the eigenvalues of the preconditioned matrix. Furthermore,

the Arnoldi method is described to approximate the eigenvalues. The CG

method and the preconditioned Krylov method are applied to a seismic

inverse scattering problem. For this problem we derived a suitable precon-

ditioner using asymptotic theory. From the experiments it follows that the

given preconditioner speeds up the rate of convergence considerably. As a

result the preconditioned Krylov methods are three times as fast as the CG

method for large problems. Finally, we note a good qualitative correspon-

dence between the theoretical and experimental rate of convergence.
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A Computation of the preconditioning operator

T

In order to derive a relation between the contrast �� and the wave�eld d of

the form (18), we �rst insert L, given by Equation (12), into Equation (7).

We then obtain

p

sc

(x; !) = �

Z

V

��(~x

0

)

expf�i!�(~x

0

; x)g

R(~x

0

; x)

W (!) dx

0

dz

0

; (A1)

with ~x

0

= (x

0

; z

0

) and where we have introduced the variable W (!) =

i!s(!)

8�c

(0)

.

In our derivation, we assume that s(!) is not equal to zero and the data d

are equal to p

sc

given by Equation (A1).

We now write Equation (18) in the following form:

��(~x

0

) =

1

Z

�1

1

Z

�1

expfi!�(~x

0

; x)g Q(~x

0

; x; !) p

sc

(x; !) dxd! ; (A2)

where Q is a weight function to be determined and the integral is taken on

the midpoints between sources and receivers (x) and frequencies !. We now

want to determine Q such, that Equation (A2) gives the correct estimate

of ��(~x

0

) if it consists of a point scatterer at (arbitrary) location ~x

0

0

. This

implies that the contrast function can be written as

��(~x

0

) = ��(~x

0

0

) �(~x

0

� ~x

0

0

) ; (A3)

where � denotes the two-dimensional Dirac delta function. Substituting

this relation into Equation (A1) and the resulting expression for p

sc

into

Equation (A2), we obtain

�(~x

0

� ~x

0

0

) = �

1

Z

�1

1

Z

�1

exp[i!f�(~x

0

; x)� �(~x

0

0

; x)g]

R(~x

0

0

; x)

Q(~x

0

; x; !)W (!) dxd! :

(A4)

Since the left-hand side of Equation (A4) involves a Dirac delta function act-

ing at ~x

0

= ~x

0

0

, it seems intuitively reasonable to approximate the traveltime

�(~x

0

; x) by the �rst two terms of its Taylor expansion around ~x

0

= ~x

0

0

�(~x

0

; x) � �(~x

0

0

; x) +r

~x

0
�(~x

0

; x)j

~x

0

0

� (~x

0

� ~x

0

0

) ; (A5)
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to use the approximation

Q(~x

0

; x; !) � Q(~x

0

0

; x; !) (A6)

and neglect higher order terms [7]. Then, Equation (A4) can be rewritten

as follows:

�(~x

0

�~x

0

0

) = �

1

Z

�1

1

Z

�1

exp[i!r

~x

0
�(~x

0

; x)j

~x

0

0

� (~x

0

� ~x

0

0

)]

R(~x

0

0

; x)

Q(~x

0

0

; x; !)W (!) dxd! :

(A7)

Following [7], we make a transformation of integration variables:

(x; !) 7�! (k

1

; k

2

) =

~

k ; (A8)

where

~

k(x; !) = �!r

~x

0
�(~x

0

; x) j

~x

0

0

: (A9)

The Jacobian of this transformation is given by

J =

@(x; !)

@(k

1

; k

2

)

=

�

@(k

1

; k

2

)

@(x; !)

�

�1

= �

1

!

�

�

�

�

�

�

�

x

0

x

�

x

0

�

z

0

x

�

z

0

�

�

�

�

�

�1

; (A10)

where �

x

0

denotes di�erentiation of � with respect to x

0

(and similar nota-

tions for �

x

0

x

, �

z

0

and �

z

0

x

).

If we now choose Q(~x

0

0

; x; !) to be given by:

Q(~x

0

0

; x; !) = �

R(~x

0

0

; x)

(2�)

2

W (!)

� jJ j

�1

= �

j!j R(~x

0

0

; x)

(2�)

2

W (!)

� j�

z

0

x

�

x

0

� �

x

0

x

�

z

0

j ; (A11)

Equation (A7) can be written in the following form:

�(~x

0

� ~x

0

0

) =

1

(2�)

2

1

Z

�1

1

Z

�1

expf�i

~

k � (~x

0

� ~x

0

0

)g dk

1

dk

2

; (A12)

which is an identity.

From Equation (18) and (A2), we now conclude that the weight function A

is given by

A(~x

0

; x; !) = expfi!�(~x

0

; x)g Q(~x

0

; x; !) ; (A13)
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with Q given by Equation (A11). This concludes the determination of A.

For inhomogeneous background media, with material properties that are

su�ciently smooth functions of the spatial coordinates, the functions � and

Q can be determined using ray-tracing methods [4]. For the case of a homo-

geneous background medium, � and its spatial derivatives can be computed

explicitly from Equation (9)-(10) using the relation � = �

down

+ �

up

after

which Q follows from Equation (A11). (The determination of R for a ho-

mogeneous background is discussed below Equation (12)).
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k �

1

�

2

�

3

�

k�3

�

k�2

�

k�1

�

k

5 0.00217 0.00717 0.01378 0.00717 0.01378 0.02255 0.03010

10 0.00052 0.00230 0.00484 0.01996 0.02390 0.02622 0.03014

15 0.00023 0.00105 0.00242 0.02413 0.02576 0.02691 0.03014

20 0.00012 0.00056 0.00130 0.02445 0.02631 0.02706 0.03014

25 0.00007 0.00035 0.00087 0.02555 0.02633 0.02706 0.03014

30 0.00005 0.00026 0.00060 0.02568 0.02633 0.02706 0.03014

Table 1: The Ritzvalues for the small problem (CG)

k �

1

�

2

�

3

�

k�3

�

k�2

�

k�1

�

k

5 0.42149 1.03663 1.97072 1.03663 1.97072 2.95177 3.63582

10 0.08392 0.36642 0.72695 2.64811 3.15636 3.42586 3.65609

15 0.02992 0.15581 0.34739 3.16691 3.33419 3.48742 3.65584

20 0.02007 0.08263 0.20526 3.23081 3.41193 3.49093 3.65589

25 0.01332 0.03896 0.11507 3.38580 3.43911 3.49392 3.65586

30 0.00698 0.02819 0.07936 3.41293 3.44489 3.49280 3.65586

Table 2: The Ritzvalues for the small problem (PK)

k 5 10 15 20 25 30

CG 0.576 0.767 0.839 0.881 0.908 0.921

PK 0.492 0.736 0.834 0.862 0.886 0.916

Table 3: The theoretical rate of convergence of CG and PK (small problem)

50x50 CG PK G PKNO

k 10 5 26 5

CPU 68.45 40.5 177.37 40.4

Table 4: Number of iterations and CPU time (in seconds) for the small

problem
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100x100 CG PK G PKNO

k 12 4 42 4

CPU 331 132 1146 127

Table 5: Number of iterations and CPU time (in seconds) for the small

problem
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Figure 1: Con�guration of the seismic inverse problem
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Figure 2: Rate of convergence for the small problem (2500 unknowns) for the

following iterative schemes: gradient scheme (G), conjugate gradient scheme

(CG), preconditioned Krylov scheme without orthogonalization (PKNO)

and preconditioned Krylov scheme (PK). The error norm has been nor-

malized with respect to the error of the initial model u

0
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Figure 3: Rate of convergence for the large problem (10000 unknowns) for

the following iterative schemes: conjugate gradient scheme (CG) and pre-

conditioned Krylov scheme (PK). The error norm has been normalized with

respect to the error of the initial model u
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Figure 4: Comparison between the observed rate of convergence
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Figure 5: Comparison between the observed rate of convergence
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