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Abstract

A parallel implementation of the preconditioned GMRES method is described. The

method is applied to solve the discretized incompressible Navier-Stokes equations. A par-

allel implementation of the inner product is given, which appears to be scalable on a mas-

sively parallel computer. The most di�cult part to parallelize is the ILU-preconditioner.

We parallelize the preconditioner using ideas proposed by Bastian and Horton [2]. Their

ideas are little used to parallelize preconditioned Krylov subspace methods. Contrary to

other parallel methods the required number of iterations is independent of the number

of processors used. A model is presented to predict the e�ciency of the method. Ex-

periments are done on the Cray T3D computing the solution of a two-dimensional 
ow.

Predictions of computing time show good correspondence with measurements. It appears

that the proposed method is scalable.

1 Introduction

To compute incompressible turbulent 
ows in complicated two- and three-dimensional do-

mains we use a numerical method with the following properties. Boundary �tted coordinates

and domain-decomposition are used to handle geometrically complicated domains. The �nite

volume method and a staggered grid are used for discretization in space. A combination

of the Euler backward scheme and the pressure correction method is used to advance the

solution in time. The computer program is referred to as the ISNaS (Information System for

Navier-Stokes equations) incompressible 
ow solver.

Benchmark solutions for the discretization chosen can be found in [13]. Research into par-

allelism through multi-block techniques is described in [5]. Some results concerning the use

�
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of multigrid solvers in this code can be found in [25, 11, 12]. Periodic and anti-periodic

boundary conditions are discussed in [16]. Some aspects of the discretization are presented in

[23, 17, 22, 24]. The treatment of turbulence is analysed in [27, 28, 26] and of compressibility

in [3]. In the present paper we consider a two-dimensional single block laminar 
ow as a test

case for implementation on a Cray T3D.

The ISNaS solver uses pressure correction, which means that an intermediate velocity �eld is

determined. Thereafter a correction is calculated to obtain a velocity �eld with zero diver-

gence. The intermediate velocity �eld is obtained by applying a linear solver to the Newton

linearization of the discretized momentum equations. The pressure correction is obtained

from the solution of the discretized pressure equation.

The equations are discretized on a staggered grid and with curvilinear coordinates. The

curvilinear coordinates result in extra non-zero entries in the matrix. In 2D we initially �nd a

17 point stencil for the momentum vector component equations and a 9 point stencil for the

pressure equation. Using divergence freedom, the number of points needed in the momentum

stencil reduces to 13.

An initial analysis showed that matrix construction is embarrassingly parallel [18], so we

concentrate on the linear solvers for the momentum and pressure equations. From many

experiments it appears that GMRES combined with MILUD-preconditioning for the momen-

tum equations and MILU-preconditioning, with the same sparsity pattern as the original

matrix, for the pressure equations are robust and fast solvers [21]. Therefore we concentrate

on parallelizable variants of these methods. A choice still remains: we can either parallelize

the algorithms themselves or use some sort of multi-block algorithm. Results on multi-block

techniques can be found in [5]. In this paper we present a parallelization of the algorithms

themselves. In this case the convergence behaviour of the algorithm does not depend on the

number of processors. Only the wall clock time will vary.

For later reference we include a short description of the GMRES(m) method as given in [15],

with a left-preconditioner M

1

and a right-preconditioner M

2

.

1. Start: Choose an initial estimate x

0

, compute the initial preconditioned residual r
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4. Restart: Compute r

m

= M

1

(f � Ax

m

), if the termination criterion is satis�ed then stop,

else compute x

0

= x

m

, v

1

= r

m

=kr

m

k and go to 2.

Note that in step 2 the new search direction is made perpendicular to all previous search

directions with the classical Gram Schmidt orthogonalization method. For a full description

of the GMRES method and its properties we refer to [15].

In Section 2 we consider the building blocks of the preconditioned GMRES method. A

parallelization of the inner product is presented. The ILU-preconditioner part appears to be

the most di�cult to parallelize, details are given in Section 3. Section 4 contains various

models to predict Mega
op rates, communication costs etc. Timing experiments on a test

problem are reported in Section 5. Finally an analysis of the timing results is given in

Section 6.

2 Parallelization of preconditioned GMRES

We consider a 
ow problem on a two-dimensional rectangular domain. We assume that

the target machine behaves as a distributed memory machine (e.g. Cray T3D). The pre-

conditioned GMRES method consists of the following building blocks: vector update, inner

product, matrix vector product, preconditioner construction, and preconditioner times vec-

tor. In Subsection 2.1 we give the data distribution of our problem. We skip the description

of a parallel vector update, because it is easily parallelizable without communication. The

parallelization of the inner products is described in Subsection 2.2, together with a discussion

of various Gram-Schmidt orthogonalization methods. Subsection 2.3 contains the parallel

matrix vector product. Finally, in Subsection 2.4 we discuss the di�culties to obtain a par-

allel implementation of ILU-type preconditioners. The details of the parallel preconditioner

are given in Section 3.

2.1 Data distribution

On distributed memory machines and workstation clusters it is important to keep information

in local storage as much as possible. For this reason we assign storage space and update duties

as follows. The domain is subdivided into a regular grid of rectangular sub-domains. The

subdivision follows the cell edges of the space discretization grid. Each processor is responsible

for all updates of variables associated to the grid cells in its sub-domain.

We use the following convention to assign the 
uxes, which are given on cell edges for a

2

u velocity
1

pressure

u velocity

Figure 1: Assignment of unknowns to a cell using a staggered grid.

staggered discretization, to cells: the 
ux on the lower and the left-hand cell edge belongs to

3



the given cell (Figure 1). Furthermore, a sub-domain contains all 
uxes on the lower and the

left-hand boundary and all 
uxes on the intersections of an outer boundary with a sub-domain

boundary. Fluxes on an interior upper or right-hand sub-domain boundary are assigned to the

original domain

splitting

sub-domain 1 sub-domain 2

Figure 2: Decomposition of the domain in

sub-domains

Figure 3: Sub-domain 1 with auxiliary

cells

processor that is responsible for the sub-domain adjacent to that boundary (Figure 2). Two

extra rows of cells are added on the lower and left boundary of a sub-domain and three extra

rows of cells are added to the upper and right boundary of a sub-domain to provide storage

space for variables used in matrix-vector products and preconditioner construction (Figure 3).

Note that for small sub-domains the addition of the extra rows can result in a considerable

increase in problem size. However, for large sub-domains the increase is negligible.

2.2 Inner products and Gram-Schmidt orthogonalization

In this section we show how to calculate an inner product on a Cray T3D e�ciently. Fur-

thermore some remarks are given on Gram-Schmidt orthogonalization methods.

The work to compute an inner product is distributed as follows. First the inner product of the

vector elements that reside on a processor is calculated for each processor. Thereafter these

partial inner products should be summed up to form the full inner product. To obtain the full

inner product global communication is required. We implement two di�erent communication

strategies.

Inner product I

We assume each processor to be a leaf of a binary tree (Figure 4). Each non-leaf node

represents a summation of two partial inner products carried out by for instance the proces-

sor found by recursively ascending the left sub-tree. The node at the top of the binary tree

obtains the full inner product at the last step of this process. Then the same tree is used

in reverse order to distribute the full inner product from its top to all its leaves. When 2

n

processors are used, there are 2n subsequent communication steps necessary.

Inner product II

To explain the second communication strategy we consider a small 1D torus (Figure 5). In

4



communication  full inner product

1

2

1

1

3

3 4

communication  partial inner products

Figure 4: Communication pattern for in-

ner product I

second communication step

1 2 3 4

first communication step

Figure 5: Communication pattern for in-

ner product II

the �rst step each processor sends its partial inner product to its left neighbour. After sum-

mation every processor sends this result to its left neighbour with a distance of 2 links away.

At the k

th

step the distance between the processors is 2

(k�1)

. For 2

n

processors it appears

that after n subsequent communication steps every processor contains the full inner product.

This implies that if su�cient bandwidth is available, the communication strategy of variant

II is twice as fast as that of variant I.

Due to overhead the use of PVM communication subroutines for the inner product leads to

unacceptable performance loss. Therefore we use Cray T3D speci�c shared arrays to im-

plement the communication for the inner product. The shared memory array contains two

memory positions for every processor. If n communication steps are done, the following

implementation is used (note that only one synchronization point is necessary):

for all processors

for i = 1, n

if i = odd then pos = 1 else pos = 2 end if

store the result in the shared memory array at [j,pos], where j is

the number of the target processor

synchronization

processor k reads information from the shared memory array at [k,pos]

calculations

end for

end for all
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It appears that the speed of the inner product II is comparable to the fastest Cray native

inner product. We use inner product II because its behaviour is easier to analyse. Note that

inner product II can also be used on machines without a native inner product.

Communication time can be seen as the sum of start-up time (latency) and send time. On

many parallel computers the send time is an order of magnitude less than the latency. For this

reason it is attractive to combine communications as much as possible. Using the Classical

Gram-Schmidt (CGS) method in the GMRES algorithm (see Section 1), all inner products can

be computed independently. So the communication steps can be clustered, which saves much

start-up time. A drawback of CGS is that the resulting vectors may be not orthogonal due

to rounding errors [4]. Therefore, the Modi�ed Gram-Schmidt (MGS) method is preferred,

which is stable with respect to rounding errors [4]. However, in MGS the inner products should

be calculated sequentially. So clustering of the inner product communications is impossible.

Since, for our T3D speci�c code, the di�erence between latency and send time is relatively

small we use the Modi�ed Gram-Schmidt method for stability reasons.

2.3 Matrix vector product

In principle only the vector elements normally updated by a given processor are kept up to date

on that processor. If vector elements from adjacent processors are needed in the matrix vector

product then calculations involving these elements are postponed until these elements have

been obtained from another processor. This nearest neighbour communication on relatively

long vectors is implemented by calls to PVM (or MPI) subroutines. The elements obtained

from other processors are stored in the corresponding auxiliary cells (Figure 3). Calculations

and communication steps are overlapped as much as possible.

2.4 Preconditioners

We use ILU-type preconditioners for the solution of the momentum and pressure equations.

Suppose Ax = b should be solved. A sparse lower triangular matrix L and a sparse upper

triangular matrix U are constructed such that L � U ' A. In the preconditioned GMRES

algorithm it is necessary to calculate x = U

�1

L

�1

b. This is done by solving the triangular

systems: Ly = b and Ux = y. The construction of L and U and the solution of the triangular

systems are not easy to parallelize. To illustrate this we consider the computation of y from

Ly = b (the other parts are comparable). A straight forward algorithm to calculate y is:

for i = 1; :::; n

y

i

=

 

b

i

�

i�1

P

j=1

L

ij

y

j

!

=L

ii

end for

Note that y

i

can only be computed if y

1

; :::; y

i�1

are already known, so this leads to sequential

code. For discretized partial di�erential equations it is possible to obtain parallel algorithms

to construct L, U , and solve triangular systems. Our approach, as given in the next section,

is based on the ideas presented in [2].
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3 Parallel ILU-preconditioning

Preconditioners originating from an incomplete LU decomposition lead to very good perfor-

mance of the preconditioned GMRES method [20],[21], and [19]. In this section we present

the properties of the discretized pressure and momentum equations in 2D. These properties

determine the form and contents of the triangular matrices L and U . Thereafter the details

of the parallelization of the operations with the preconditioners are given.

3.1 Properties of the linear systems

Pressure equation

After discretizing the pressure equation, one obtains a linear system Px = b, with a non

symmetric coe�cient matrix P . The discretization stencil of the pressure equation consists

of 9 points. Due to the structured grid approach the matrix P has only 9 non-zero diagonals

[20]. The preconditioner used in this paper is the RILU(�)-preconditioner with � = 0:975

[21]. Note that for the RILU-preconditioner the non-zero structure of L+U is identical with

the non-zero structure of P . Figure 6 displays the stencils of P , L, and U .

Momentum equations

6

P

9

5 1 6

2 3 4

87

L

5 1

2 3 4

U

7 8 9

1

Figure 6: The stencils of P , L, and U .

The discretized momentum equations are denoted by

Mu =

 

M

11

M

12

M

21

M

22

! 

u

1

u

2

!

=

 

b

1

b

2

!

: (1)

The discretization stencil of M consists of 13 points. The diagonal blocks M

11

and M

22

contain 9 non-zero diagonals and their non-zero structure is the same as that of P . Both M

21

and M

12

contain 4 non-zero diagonals. As preconditioner we use RILUD 2(�) with � = 0:95

[21]. Here the o�-diagonal parts ofM are the same as that of L and U , only the main diagonal

elements of L, U , and M are di�erent.

With respect to parallelization we consider the solution of Lu = b. First

L

11

u

1

= b

1

(2)

is solved. Thereafter u

2

is solved from

L

22

u

2

= b

2

� L

21

u

1

: (3)
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To compute the right-hand side of (3) a matrix vector multiplication (L

21

u

1

) is needed.

This can be parallelized in the same way as the original matrix vector product. Finally, the

identical structure ofM

11

;M

22

, and P leads to the same parallel algorithms to solve the lower

triangular systems (2), (3) and that encountered at the solution of the pressure equation. For

this reason, we restrict ourselves in the next paragraph to the parallelization of the pressure

preconditioner.

3.2 Parallelization of the pressure preconditioner

Parallelization of the construction of L, U , and the solution of the triangular systems is com-

parable. Therefore we restrict ourselves to the parallel implementation of the solution of the

lower triangular system Lx = b for the pressure equation. The algorithm is �rst explained for

a matrix originating from a 5 point stencil. Thereafter it is adapted for matrices based on a

9 point stencil.

The ideas for the parallelization come from [2]. The same approach is used in the vectorization

of ILU-type preconditioners ([1] and [21]). First of all we decompose our rectangular compu-

tational domain in p strips parallel to the x

2

-axis. We assume that the number of strips is

equal to the number of processors. The number of grid points in x

i

-direction is denoted by n

i

.

For ease of notation we assume that n

1

can be divided by p and set n

x

= n

1

=p and n

y

= n

2

.

The index i refers to the index in x

1

-direction and j to the index in x

2

-direction. The k

th

strip is described by the following set S

k

= f(i; j)ji2 [(k� 1) � n

x

+ 1; k � n

x

], j 2 [1; n

y

]g.

A 5 point stencil

The vector of unknowns is denoted by x(i; j). For a 5 point stencil it appears that in the

solution of Lx = b, unknown x(i; j) only depends on x(i� 1; j) and x(i; j � 1). The parallel

algorithm now runs as follows: �rst all elements x(i; 1) for (i; 1) 2 S

1

are calculated on pro-

cessor 1. Thereafter communication takes place between processor 1 and 2. Now x(i; 2) for

(i; 2) 2 S

1

and x(i; 1) for (i; 1) 2 S

2

can be calculated in parallel etc. After some start-up

time all processors are busy (Figure 7).

active idle idle

CPU 1 CPU 2 CPU 3

active active idle

CPU 1 CPU 2 CPU 3

active active active

CPU 1 CPU 2 CPU 3

Figure 7: The �rst stages of the parallel solution of the lower triangular system Lx = b. The

symbols denote the following: � nodes to be calculated, o nodes are calculated, and + nodes

have been calculated.
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A 9 point stencil

When a 9 point stencil is used the value of x(i; j) depends on x(i � 1; j � 1), x(i; j � 1),

x(i+1; j�1) and x(i�1; j). Now the algorithm runs as follows: processor 1 calculates x(i; 1)

for (i; 1) 2 S

1

. The value of x(n

x

; 1) is sent to processor 2. Thereafter processor 2 calculates

x(n

x

+ 1; 1) and sends it to processor 1. Then x(i; 2) for (i; 2) 2 S

1

and x(i; 1) for (i; 1) 2 S

2

are calculated in parallel etc. Note that some extra communication is necessary for a 9 point

stencil. However, overlap of communication and computation is possible.

Note that the torus communication network of the Cray T3D is well adapted for this kind

of communication. Only nearest neighbour communication takes place. Per message only

one real is sent, so this approach is only useful on computers with a low latency with re-

spect to send time. For this reason we use shared arrays (as in the inner product) instead of

PVM subroutines. The auxiliary cells are again used to store information from neighbouring

processors.

4 A performance model of the linear solver

We present a simple model to analyse the speedup of the components involved in the precon-

ditioned GMRES algorithm on an abstract machine. This enables us to get an idea of the

behaviour of various versions of the algorithm for di�erent architectures. In this section we

only consider the preconditioned GMRES(m) part of ISNaS.

4.1 An abstract machine

Many di�erent aspects of parallel computer architecture play a role in determining the execu-

tion speed of a parallel algorithm. Some of them are: peak 
op rate, design of the individual

processors, cache size, latency, memory access time and structure, communications network,

bandwidth etc. As a minimum we need to take into account the number of 
oating point

operations that the processor can realistically be expected to perform per second, the com-

munication latency, i.e. the time needed for the transmission of a zero length message, and

the bandwidth, the maximum amount of data that can be transmitted per second.

We assume that the latency and bandwidth of our abstract machine do not depend on the

distance between the sender and receiver. We de�ne the following quantities: f is an estimate

of the number of 
ops per second per processor,

R

l

= latency in seconds� f;

and

R

b

=

f


oating point numbers transported per second

:

These quantities model e�ciency loss due to latency and bandwidth restrictions. In words

they mean the following: R

l

is the number of 
ops, which can be done in the time necessary

to send a zero length message and R

b

is the number of 
ops, which can be done in the time

that one 
oating point number is sent from a sending to a receiving processor.
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4.2 An abstract algorithm

In an abstract algorithm there will be a number of 
oating point operations to be performed,

split into a serial and a parallel fraction, and a number of messages of di�erent lengths to

be sent. To simplify things, assume the serial fraction of the algorithm is executed on all

processors. When p processors are used, W(p) (=serial fraction+ parallel fraction=p) is the

number of 
ops done on one processor. Let M(p) be the number of messages sent and received

by one processor and the total length of those messages is denoted by L(p).

We give three speedup de�nitions, namely the theoretical speedup for a machine with instan-

taneous communication:

S

0

(p) =

W (1)

W (p)

; (4)

the true speedup found when running a program incorporating the algorithm:

S

t

(p) =

wall clock time for a run on one processor

wall clock time for a run on p processors

; (5)

and an estimate of the true speedup derived from the ratios introduced earlier:

S

e

(p) =

W (1)=f

W (p)=f +M(p)R

l

=f + L(p)R

b

=f

: (6)

Suppose that W

ov

(p) is the amount of work, which can be done independently of the com-

munication. Then the estimated speedup with overlap of communication and calculation

is

S

e

(p) =

W (1)=f

W (p)=f +max(0;M(p)R

l

=f + L(p)R

b

=f �W

ov

(p)=f)

; (7)

which can also be written as

S

e

(p) = S

0

(p)�

1

1 +max(0; R

l

M(p)=W (p) +R

b

L(p)=W (p)�W

ov

(p)=W (p))

: (8)

If we introduce the ratios R

M

(p) = M(p)=W (p); R

L

(p) = L(p)=W (p) i.e. the start-up and

transmission costs as fractions of the calculation costs, then we �nd the formula:

S

e

(p) = S

0

(p)�

1

1 +max(0; R

l

R

M

(p) +R

b

R

L

(p)�W

ov

(p)=W (p))

: (9)

4.3 Speedup prediction

From now on we assume that the total number of grid points increases linearly with the

number of processors. So we consider scaled speedup. Suppose n

1

and n

2

are given and the

total number of grid points is equal to n

tot

1

(p) � n

tot

2

(p) = n

1

p

p � n

2

p

p, where we assume

that p (the number of processors) is a square. Since the domain is split into p strips parallel

to the x

2

-axis, the number of grid points per processor: n

x

� n

y

= n

1

=

p

p � n

2

p

p = n

1

n

2

is

constant. This means we base our analysis on the Gustafsson model [8, 9]. Similar models

are discussed in [14, 6].
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4.3.1 Matrix-vector multiplication

This section contains a prediction of the optimal speedup obtainable for the matrix-vector

product. Since the pressure matrix has 9 non-zero diagonals the number of 
ops per grid

point is equal to 17 (9 multiplications and 8 additions). This leads to W (p) = 17n

x

n

y

. Per

processor two communications are necessary, one to the left and one to the right neighbouring

processor, so M(p) = 2 and

R

M

(p) =

2

17n

x

n

y

=

2

17n

1

n

2

: (10)

The length of each communication is n

y

which implies L(p) = 2n

y

and

R

L

(p) =

2n

y

17n

x

n

y

=

2

17n

x

=

2

p

p

17n

1

: (11)

The calculation of the matrix vector product in the n

x

� 2 interior nodes can be done inde-

pendently of the communication. When overlap of communication and computation is used

W

ov

(p) is given by

W

ov

(p) = 17(n

x

� 2)n

y

; (12)

otherwise W

ov

(p) is taken equal to zero. After substituting (10), (11), (12) into (9) and

measuring the values of R

l

and R

b

one can predict the speedup of the matrix vector product.

4.3.2 Inner product

The Cray T3D computer is composed of pipelined RISC processors. It is well known that

on such a processor the total time of a vector operation consists of a start-up time and the

time to get one result multiplied by the length of the vector ([7] p. 56). The start-up time is

denoted by t

is

and f

im

is the maximum 
op rate once the routine runs. Using this notation

the 
op rate of the inner product is

f

i

(n) =

2n

t

is

+

2n

f

im

: (13)

We give this formula only for the inner product. However also for the other operations the


op rate depends on a start-up time and a maximum 
op rate (see Section 6.3).

We also model the inner product speedup. The communication strategy of inner product II

is used (see Section 2.2). For the inner product the ratios determining speedup are �rst of all

a theoretical speedup for in�nite communication speed. There are 2pn

1

n

2


ops done if one

processor is used and W (p) = 2n

1

n

2

+ log

2

p 
ops on each processor when p processors are

used, so

S

0

(p) =

2pn

1

n

2

2n

1

n

2

+ log

2

p

:

To pass the global inner product to all processors log

2

p communication steps are necessary,

where in each step p simultaneous messages are sent. Since only one 
oating point is sent in

each message the values of R

M

(p) and R

L

(p) are the same

R

M

(p) = R

L

(p) =

log

2

p

2n

1

n

2

+ log

2

p

:
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Since no overlap is possible W

ov

(p) = 0.

4.3.3 The parallel preconditioner

In this section we analyse the speedup of the solution of the lower triangular system Lx = b,

where a 9 point discretization stencil is used. The parallel algorithm to solve this system

is given in Section 3.2. The amount of work is 9 
ops (4 multiplications, 4 additions and 1

division) per grid point. For the theoretical speedup a delay is caused by the imbalance in the

lower left and upper right corner. It takes some time before the p

th

processor becomes active.

This processor has to wait until 9(p � 1)n

x

' 9pn

x

operations are done, before it starts to

perform the 9n

x

n

y


ops for its own sub-domain. Combination leads toW (p) = 9(pn

x

+n

x

n

y

).

On one processor 9pn

x

n

y


ops are done, so

S

0

(p) =

9pn

x

n

y

9(pn

x

+ n

x

n

y

)

=

pn

y

p+ n

y

=

p

p

n

y

+ 1

=

p

p

p

n

2

+ 1

:

For n

2

= 1 the speedup is S

0

(p) =

p

p

p+1

'

p

p and for n

2

large S

0

(p) ' p. For all values of

n

2

the theoretical speedup S

0

(p) lies between these bounds.

To account for communication delays we note that 2 messages (one to the left and one to the

right) per horizontal line are done on each processor. This leads to a total of 2n

y

messages

per processor. Again initial messages are necessary before the p

th

processor becomes active.

The number of these messages is 2(p � 1) ' 2p. Since all these messages contain only one


oating point number, we have

R

M

(p) = R

L

(p) =

2p+ 2n

y

9(pn

x

+ n

x

n

y

)

=

2

9n

x

=

2

p

p

9n

1

:

Note that only the communication to the left neighbouring processor can be overlapped by

calculations.

5 Experiments with the parallel code

We consider the curved channel problem as described in [21] (see Figure 8). Boundary �tted

coordinates are used to map this domain onto a rectangle. In mapping the physical domain to

the computational domain, the x

1

-coordinate is taken along the side containing the inner side

of the bend. We start with zero velocities and pressures and a parabolic in
ow at boundary 1

and take three time steps. The solution process was arti�cially interrupted after 19 iterations

of full GMRES for the momentum equations and 26 iterations of full GMRES for the pressure

equation to allow for direct comparison of timings on di�erent sized grids.

The measurements reported in this section were done at the Cray T3D computer at the Ed-

inburgh Parallel Computing Center. The tables are given at the end of this report. The

wall clock times are measured for the matrix construction (Table 1 and 4), preconditioner

construction (Table 2 and 5), and preconditioner construction combined with linear system

solution (Table 3 and 6). These measurements are given for both the momentum equations

12
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Figure 8: The physical domain of the curved channel problem.

and the pressure equation.

The results are only presented in a certain band. To explain this, consider the 32�8 grid. For

the parallelization the computational domain is split into strips parallel to the x

2

-axis. This

means that if 8 processors are used the grid on one processor consists of 4� 8 grid points. It

is impossible to reduce this further, so no measurements are done for the 32� 8 grid using a

larger number of processors. On the other hand using 1 processor one cannot solve grid sizes

larger than 256� 64 due to memory limitations.

The matrix and preconditioner construction show a nice behaviour when the number of pro-

cessors is increased. In general the momentum results are somewhat better than those for the

pressure. A possible reason is that more calculations are done for the momentum equations

so overhead costs are less important and more overlap is possible between communication and

computation. With respect to the solution of the system we see that the wall clock time for

2 processors is the same as for 1 processor. We cannot explain this phenomenon, except by

suggesting that the underlying architecture (2 processors share a communication node) slows

down the computation for this particular case.

Estimated Mega
op rates for the preconditioner construction and solution of the linear sys-

tem are given in Table 7 and 8. The Mega
op rates are estimated by an approximated 
op

count for the preconditioner construction and GMRES divided by the measured wall clock

times. Table 9 contains the Mega
op rates for the inner product. There is also a table (Table

10) giving Mega
op rates for an inner product, where the global summation is omitted. This

will be used later in Section 6.1 to estimate the communication costs associated with the

global summation. The tables for the inner product (see the �rst three rows of Table 9 and

10) illustrate the somewhat irregular behaviour of the BLAS routine SDOT for very short

vectors.

In theory the maximum Mega
op rate of 1 processor is 150 M
op/s. The observed 
op rates

are much lower: 33.5 for the inner product (Table 9, 10) , and 12.5 for the solution of the

13



systems (Table 7, 8). For the inner product this leads to an expected rate of 4288 M
op/s

on 128 processors. For long vectors the observed rate (see Table 9 and 10) is very close to

this value. The expected rate for preconditioning construction and system solution is 1600

M
op/s using 128 processors. The observed rates (Table 7: 790, 8: 630) for the 2048� 512

problem are approximately 50 % of the expected rate. This corresponds well with our obser-

vation that the wall clock time is the same using 1 or 2 processors.

To check the e�ciency we determine the total time used per variable. This is calculated

by dividing the wall clock time by the number of variables per processor. The number of

variables per grid point is 2 for the momentum equations and 1 for the pressure equation.

Again these results are given for the matrix construction (Table 11 and 14), preconditioner

construction (Table 12 and 15), and preconditioner construction combined with linear system

solution (Table 13 and 16).

In order to investigate scalability of our approach we visualise the e�ciency for the momen-

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

i −>

tim
e 

−
>

n 2 =128

n 2 = 64

n 2 = 32

n 2 = 16

n 2 = 8

Figure 9: Total CPU time per variable in

�seconds for the matrix construction
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Figure 10: Total CPU time per variable in

�seconds for the preconditioner construc-

tion and solution of the system

tum equations in Figure 9 (matrix construction) and 10 (system solution). In these �gures

the grid size is given by 4n

2

� 2

i

� n

2

� 2

i

and the number of processors is equal to 2 � 4

i

. A

constant amount of CPU time per variable means that the considered algorithm is scalable.

It appears that both algorithms are scalable when n

2

is large enough (n

2

� 64). For smaller

values of n

2

the e�ciency deteriorates. One reason for this is the overhead of computation

due to the auxiliary grid cells. Another reason is a small vector length, which leads to low

Mega
op rates on the RISC computers of the Cray T3D (compare Table 10). The e�ciency

loss for the solution algorithm is more severe than that for the matrix construction. This

is probably caused by the fact that matrix construction is embarrassingly parallel (without

communication), whereas the solution algorithm is parallelized using communication. It ap-

pears from Section 4.3 that the relative start-up R

M

(p) and transmission costs R

L

(p) increase

for increasing p. Finally for small values of n

2

only a small amount of communication can be

overlapped by computation.
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6 Analysis of the timing experiments

In this section the measurements given in Section 5 are analysed using the models speci�ed

in Section 4. First some parameters are estimated: start-up time, transmission time and

latency. Thereafter Mega
op rates are predicted for the various parts of GMRES and if

possible compared with the rates observed. Finally we compute the total time per grid point

for the solution of the pressure equation and compare them with the observed values.

6.1 Parameters of the Cray T3D

Before we give quantitative results it is helpful to consider the T3D machine on a qualitative

level. Important characteristics are the high bandwidth of the inter-processor communication

channels (300 Mbyte/sec, bi-directional along all torus directions), their low latency and the

presence of latency hiding hardware. The high processor speed (150 MHz clock) and the

small cache of 8 Kbyte imply severe penalties for code that is not speci�cally optimised for

the T3D.

Estimates of communication costs are complicated by the fact that two processors share a

node in the communication network. This means that the step from one to two processors

may show atypical behaviour for communication intensive algorithms. Automatic rerouting,

latency hiding and spare nodes make precise estimates of communication costs di�cult. Of

course rough estimates are still possible. When a small number of processors is required the

T3D automatically restricts the communication pattern to a 1D or 2D torus, otherwise a 3D

torus segment is used.

The start-up time, transmission time and latency are obtained from the measurements of the

inner product. It appears from Table 10 that the inner product behaviour does not match

model (13) for vectors with fewer than 64 elements. This is possibly caused by strip-mining

e�ects ([7] p. 11). Applying the model to the remaining data and assuming a maximum


op rate of f

im

= 33:4 Mega
ops per second, we �nd a start-up time of approximately

t

is

= 12�seconds for Table 9 and t

is

= 7�seconds for Table 10.

We estimate the communication latency t

l

from Table 9 and 10. The inner product of two

vectors with n elements costs 2n 
ops. The time t(p) needed to perform the global summation

on p processors consists of the following parts: a �xed overhead, log

2

p message start-ups, and

log

2

p reals are sent. It appears that the transmission time t

b

is equal to

16

300

�seconds per

real (300 MByte/sec per link per 2 processors). To eliminate the �xed overhead we consider

t(p)�t(2). The value t(1) cannot be used because no communication takes place if 1 processor

is used. When we �t the model

t(p)� t(2) = t

l

log

2

p+ t

b

log

2

p� t

l

� t

b

(14)

to the measurements we �nd a latency of approximately 4�seconds.
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6.2 Predicted speed

The Mega
op rates are computed with the parameters speci�ed in Section 6.1. Table 17 con-

tains the predicted Mega
op rates of the inner product using the model discussed in Section

4.3.2. The predicted rates (Table 17) show a good correspondence with the observed rates

(Table 9).

We also use the values of t

l

and t

b

from the inner product to predict the rate of the matrix

vector product. Note that t

l

and t

b

are based on the Cray speci�c shared array code. The

actual matrix-vector product code uses MPI, so it should be somewhat slower. On 1 pro-

cessor the preconditioner construction and GMRES method runs at 10 M
op/s (see Table 7

and 8). For this reason we present predicted speeds for the matrix vector product without

communication overlap for f

m

= 10 in Table 18 and f

m

= 5 in Table 19. When overlap is

used we see a perfect speedup. The Mega
op rate is then equal to f

m

p.

Finally, a prediction of the performance is given for the solution of a lower triangular system,

which is used in a preconditioner vector product. The results without communication overlap

are given in Table 20 (f

p

= 10) and Table 22 (f

p

= 5), whereas Table 21 and 23 contain the

predictions when overlap is taken into account. Only one half of the communication can be

overlapped. When n

x

(number of grid points in x

1

-direction on one processor) is relatively

small the Mega
op rate of the preconditioner vector product is much less than the matrix

vector product. For n

x

> 64 both Mega
op rates are comparable.

6.3 Prediction of the solution time for the pressure equation

In our experiments we take 26 iterations of the preconditioned GMRES method to solve

the pressure equation. The amount of work of k iterations of full GMRES (applied to a

problem with grid size n

1

p

p � n

2

p

p) is: k matrix vector products with 17pn

1

n

2


ops, 3k

back substitutions with 9pn

1

n

2


ops, k

2

=2 inner products with 2pn

1

n

2


ops and k

2

=2 vector

updates with 2pn

1

n

2


ops. Let f

i

be the inner product 
op rate, f

m

the matrix vector 
op

rate, f

p

the back substitution 
op rate, and f

u

the vector update 
op rate. The total time,

measured in � seconds, needed on 1 processor is:

t

tot

= k

 

17

f

m

+

27

f

p

+

k

f

i

+

k

f

u

!

pn

1

n

2

:

The time per grid point is then approximately

t = k

 

17

f

m

+

27

f

p

+

k

f

i

+

k

f

u

!

: (15)

When k is very large it appears from (15) that the inner products and vector updates dominate

the run time of the preconditioned GMRES method. In such a case it is important that the

inner product is parallelized very well.

The Mega
op rates which are used in (15), are based on (13). From the experiments we
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observe that the Mega
op rates on 2 processors are approximately 50% of the Mega
op rates

on 1 processor. Therefore we use the following formulae:

f

m

=

17(n

x

� 2)

14 +

17(n

x

�2)

5

; f

p

=

9(n

x

� 2)

14 +

9(n

x

�2)

5

; f

i

=

2n

x

n

y

7 +

2n

x

n

y

16

; f

u

=

2n

x

n

y

7 +

2n

x

n

y

10

:

This together with the communication model (with overlap) is used to predict the total time

per grid cell. The results are given in Table 24. There is a good correspondence between the

predictions (Table 24) and the measurements (Table 16). So the described model can be used

to predict the e�ciency of the proposed parallel method also for larger grid sizes and/or a

larger number of processors. Finally we note that 3k preconditioner vector products are used.

This can be lowered to 2k. Again the model can be used to predict the e�ect of this change.

It appears that this is favourable for the scalability of the method.

In �gures 11, 12, and 13 we present the percentage of the total time for the various parts of

GMRES. Figure 11 contains the results for p = 8 and an increasing grid size. It appears that

the preconditioner vector product is the most time consuming part, it takes 70 % of the time

for a small grid size and 45 % for a large grid size. A comparable behaviour is seen for a �xed

grid size and an increasing number of processors (Figure 12). In Figure 13 the results are

shown for the Gustafsson model, the grid size increases linearly with the number of processors.

There is only a small increase in the percentage used for the preconditioner vector product.

This model suggests, as expected, that the preconditioner can be a bottle-neck especially if

the number of grid cells in x

1

-direction per processor is small.

The ratio between the computational cost and communication cost for the the preconditioner

vector product is higher for the momentum equations than for the pressure equation. There-

fore we expect a better e�ciency for the momentum equations than for the pressure equation.

This expectation is con�rmed by the measurements in Table 13 and Table 16.
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used by the various parts (grid size 32 �
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7 Conclusions

A parallel implementation of the preconditioned GMRES methods is given, which is scalable

when the grid size is large enough. The proposed model describes the required time per grid

point adequately and can be used to analyse the method or to predict the e�ciency on larger

number of grid points or processors.

When the number of iterations increases the percentage of time spent in inner products and

vector updates increases. Since these parts have a scalable parallel behaviour we see no

parallelization problems, also when a large number of processors is used.

The ILU-preconditioner is parallelized using the ideas proposed in [2]. Advantage of this

method is: the serial and parallel version of this method have the same behaviour with

respect to convergence, size of the residual and e�ects of rounding errors. The only drawback

is that the e�ciency deteriorates when the domain is divided into thin slices. The reasons

for this are: communication time is large with respect to computation time, many isolated


oating point operations occur, an increase of overlap between the domains and a low 
op

rate for short vectors.

When the number of processors/domains becomes large it seems a good idea to combine coarse

grain parallelism (domain decomposition [5]) and our parallel method (�ne-grain parallelism).

This is especially true on a Distributed Shared Memory (DSM) computer, which has a non-

uniform latency [10]. A DSM computer consists of several identical building blocks. Every

building block contains a number of processors connected to the same (shared) memory.

The communication between the building blocks is done by message passing. The proposed

combination is: the domains used in the domain decomposition method, are distributed

over the building blocks (larger latency), whereas on each building block (small latency) our

parallel method is used.
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#PE's 1 2 4 8 16 32 64 128 256

32�8 105.2 71.8 54.3 46.9

64�16 278.2 158.9 103.5 78.4 63.7

128�32 875.0 483.8 274.4 175.5 125.0 102.5

256�64 3109.8 1645.4 861.9 507.1 320.4 226.3 178.5

512�128 6028.1 3115.3 1708.7 959.9 610.6 430.3 337.8

1024�256 6301.9 3317.7 1880.8 1174.0 832.0 659.9

2048�512 6550.2 3693.7 2337.5 1646.0

Table 1: Momentum matrix construction times in msec

#PE's 1 2 4 8 16 32 64 128 256

32�8 13.3 12.3 7.4 5.9

64�16 63.3 30.7 18.8 15.1 10.8

128�32 191.0 103.4 63.0 36.8 25.8 22.5

256�64 713.4 379.3 208.0 119.1 75.1 52.1 41.8

512�128 1454.8 776.5 415.1 251.0 168.2 108.2 84.8

1024�256 1568.0 887.6 487.3 320.1 217.7 172.0

2048�512 1781.2 1068.4 706.0 428.8

Table 2: Momentum preconditioner construction times in msec

#PE's 1 2 4 8 16 32 64 128 256

32�8 136.6 159.2 122.9 113.5

64�16 495.2 483.5 310.1 219.4 190.4

128�32 1800.2 1746.7 969.4 573.1 398.6 359.2

256�64 6913.1 6733.3 3612.3 1931.1 1138.7 887.2 692.7

512�128 25980.5 13089.0 7121.5 3906.6 2392.0 1610.9 1388.0

1024�256 27042.7 14198.3 7784.6 4755.1 3240.3 2764.1

2 048�512 28536.7 15824.5 9528.2 6627.9

Table 3: Momentum preconditioner construction and solution times in msec
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#PE's 1 2 4 8 16 32 64 128 256

32�8 63.1 46.6 39.6 36.3

64�16 128.8 85.1 62.4 52.5 46.6

128�32 347.1 203.6 132.8 95.7 78.2 68.9

256�64 1103.0 602.5 345.8 224.6 160.9 129.8 113.0

512�128 2055.1 1114.5 647.6 410.8 293.2 235.8 204.6

1024�256 2139.8 1231.0 779.2 555.8 441.4 388.3

2048�512 2395.0 1520.0 1080.1 864.9

Table 4: Pressure matrix construction times in msec

#PE's 1 2 4 8 16 32 64 128 256

32�8 9.4 6.7 5.4 4.9

64�16 36.1 23.0 14.2 9.6 8.3

128�32 144.2 82.5 44.8 27.3 19.0 16.8

256�64 568.4 300.1 190.0 100.1 63.5 46.6 34.7

512�128 1615.3 602.2 332.2 192.2 112.9 79.3 66.6

1024�256 1233.7 670.9 406.7 231.4 173.8 133.3

2048�512 1335.0 745.5 502.1 335.9

Table 5: Pressure preconditioner construction times in msec

#PE's 1 2 4 8 16 32 64 128 256

32�8 75.6 89.2 82.4 85.2

64�16 225.6 228.6 167.0 133.2 134.3

128�32 878.7 778.9 448.8 292.5 231.5 233.6

256�64 3237.0 2911.2 1544.1 878.4 562.4 473.2 424.1

512�128 11653.3 5695.5 3099.2 1718.1 1090.9 837.0 805.3

1024�256 11630.8 6164.8 3478.7 2151.5 1671.3 1612.1

2048�512 12925.6 6867.1 4532.6 3294.0

Table 6: Pressure preconditioner construction and solution times in msec
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#PE's 1 2 4 8 16 32 64 128 256

32�8 11.3 9.7 12.6 13.6

64�16 11.6 11.9 18.5 26.1 30.1

128�32 12.0 12.2 22.1 37.3 53.6 59.5

256�64 12.6 12.9 24.0 44.8 75.9 86.7 124.8

512�128 13.4 26.7 49.1 89.0 145.4 215.7 250.1

1024�256 72.7 136.9 249.6 403.0 588.2 709.6

2048�512 271.6 478.4 786.7 1167.0

Table 7: Momentum preconditioner construction and solution performance in Mega
ops per

second

#PE's 1 2 4 8 16 32 64 128 256

32�8 10.7 9.1 9.8 9.5

64�16 13.3 13.1 18.0 22.5 22.3

128�32 13.2 14.8 25.7 39.5 49.8 49.4

256�64 14.7 16.5 31.1 54.7 85.5 101.8 113.9

512�128 15.5 31.6 58.1 104.8 165.0 215.2 223.7

1024�256 61.6 116.2 206.0 333.0 428.8 445.1

2048�512 221.2 416.3 630.7 868.0

Table 8: Pressure preconditioner construction and solution performance in Mega
ops per

second
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#PE's 1 2 4 8 16 32 64 128

#elements

per processor

32 10.1 7.2 11.7 20.0 34.8 61.2 108.9 194.9

64 8.2 8.9 15.5 27.8 50.3 91.5 167.2 307.2

128 13.2 15.5 27.6 50.1 91.5 167.3 307.8 568.3

256 19.0 25.2 45.8 84.5 155.8 289.6 538.8 1004.2

512 23.9 36.2 67.6 127.1 239.3 451.1 853.2 1612.3

1024 28.0 46.9 90.0 172.6 331.3 636.2 1221.6 2346.2

2048 30.5 55.3 107.4 209.6 409.1 797.2 1553.1 2997.7

4096 31.9 60.6 118.8 234.9 463.1 912.8 1796.8 3542.4

8192 32.6 63.5 125.9 250.1 495.7 974.1 1950.8 3875.3

16384 33.1 65.1 129.2 258.4 514.8 1025.6 2013.0 4057.3

32768 33.3 66.0 131.5 262.7 524.3 1046.5 2082.2 4152.9

65536 33.4 66.4 132.6 264.9 529.3 1057.7 2112.7 4212.0

Table 9: Inner product performance in Mega
ops per second with communication

#PE's 1 2 4 8 16 32 64 128

#elements

per processor

32 25.0 49.9 99.9 199.8 399.6 799.2 1598.3 3196.5

64 11.9 24.2 48.5 97.0 193.8 388.0 775.3 1552.2

128 17.7 35.5 70.9 141.8 283.6 567.2 1132.9 2265.1

256 23.2 46.4 93.1 186.2 372.3 744.6 1490.2 2978.4

512 27.1 54.0 108.4 216.9 433.7 867.6 1733.5 3470.0

1024 30.0 60.0 120.0 239.3 479.9 959.8 1919.7 3839.7

2048 31.7 63.3 126.3 252.7 505.8 1011.6 2022.7 4046.7

4096 32.5 65.0 129.9 259.9 519.8 1039.6 2077.0 4157.7

8192 33.0 65.9 131.8 263.3 527.1 1053.1 2108.1 4212.8

16384 33.2 66.4 132.8 265.6 531.1 1062.2 2124.6 4247.9

32768 33.3 66.7 133.3 266.5 532.9 1062.4 2131.6 4262.4

65536 33.4 66.8 133.5 266.9 533.9 1067.6 2135.1 4270.2

Table 10: Inner product performance in Mega
ops per second without communication
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#PE's 1 2 4 8 16 32 64 128 256

32�8 190.5 260.3 393.8 679.4

64�16 130.7 149.4 194.6 294.8 478.8

128�32 104.8 115.9 131.4 168.1 239.5 392.6

256�64 94.0 99.5 104.2 122.6 155.0 218.9 345.2

512�128 91.5 94.6 103.8 116.6 148.3 209.1 328.3

1024�256 95.9 101.0 114.5 143.0 202.6 321.4

2048�512 99.8 112.6 142.5 200.7

Table 11: Momentum equation matrix construction; total time per variable in �seconds

#PE's 1 2 4 8 16 32 64 128 256

32�8 24.15 44.62 53.69 85.73

64�16 29.77 28.90 35.27 56.76 81.39

128�32 22.87 24.76 30.15 35.23 49.48 86.23

256�64 21.56 22.92 25.14 28.80 36.33 50.41 80.95

512�128 22.09 23.58 25.21 30.50 40.87 52.59 82.42

1024�256 23.87 27.02 29.67 38.98 53.03 83.78

2048�512 27.15 32.57 43.04 52.28

Table 12: Momentum preconditioner construction; total time per variable in �seconds

#PE's 1 2 4 8 16 32 64 128 256

32�8 247.5 576.8 890.6 1644.9

64�16 232.7 454.4 582.9 824.8 1431.6

128�32 215.5 418.3 464.3 548.9 763.6 1376.2

256�64 208.9 407.0 436.7 466.9 550.6 858.0 1339.8

512�128 394.5 397.5 432.5 474.6 581.1 782.8 1348.9

1024�256 411.6 432.2 474.0 579.0 789.2 1346.4

2048�512 434.9 482.3 580.8 808.1

Table 13: Momentum preconditioner construction and solution; total time per variable in

�seconds
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#PE's 1 2 4 8 16 32 64 128 256

32�8 246.3 364.4 618.4 1133.8

64�16 125.8 166.3 243.8 410.5 727.5

128�32 84.7 99.4 129.7 186.8 305.5 538.1

256�64 67.3 73.5 84.4 109.7 157.2 253.6 441.2

512�128 62.7 68.0 79.1 100.3 143.2 230.2 399.6

1024�256 65.3 75.1 95.1 135.7 215.5 379.2

2048�512 73.1 92.8 131.8 211.2

Table 14: Pressure equation matrix construction; total time per cell in �seconds

#PE's 1 2 4 8 16 32 64 128 256

32�8 36.59 52.07 83.93 152.27

64�16 35.26 45.01 55.60 75.23 129.62

128�32 35.20 40.27 43.78 53.29 74.35 131.10

256�64 34.69 36.64 46.39 48.87 61.99 90.98 135.45

512�128 49.29 36.76 40.55 46.93 55.14 77.46 130.06

1024�256 37.65 40.95 49.65 56.50 84.85 130.20

2048�512 40.74 45.50 61.29 82.01

Table 15: Pressure preconditioner construction; total time per variable in �seconds

#PE's 1 2 4 8 16 32 64 128 256

32�8 295.3 696.9 1287.5 2662.5

64�16 220.3 446.5 652.3 1040.6 2098.4

128�32 214.5 380.3 438.3 571.3 904.3 1825.0

256�64 197.6 355.4 377.0 428.9 549.2 924.2 1656.6

512�128 355.6 347.6 378.3 419.5 532.7 817.4 1572.9

1024�256 354.9 376.3 424.6 525.3 816.1 1574.3

2048�512 394.5 419.1 553.3 804.2

Table 16: Pressure preconditioner construction and solution; total time per cell in �seconds
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#PE's 1 2 4 8 16 32 64 128

32 4.5 7.0 11.4 19.1 33.0 58.1 103.6 187.0

64 8.0 12.8 21.2 36.1 63.0 111.6 200.4 363.7

128 13.0 21.5 36.7 63.9 113.3 203.3 368.8 675.0

256 18.7 32.6 57.6 103.4 187.3 342.5 630.9 1169.3

512 24.0 43.8 80.6 149.2 277.6 519.3 975.2 1838.5

1024 27.9 52.9 100.5 191.5 365.5 699.2 1339.9 2572.3

2048 30.4 59.1 114.7 223.1 434.2 845.4 1647.4 3212.4

4096 31.8 62.7 123.5 243.2 479.1 944.1 1860.8 3668.5

8192 32.6 64.7 128.3 254.6 505.2 1002.6 1989.7 3948.7

16384 33.0 65.7 130.9 260.8 519.4 1034.6 2061.0 4105.5

32768 33.2 66.3 132.2 263.9 526.8 1051.4 2098.6 4188.6

65536 33.3 66.5 132.9 265.6 530.6 1060.1 2117.9 4231.5

Table 17: Estimated inner product Mega
op rates with communication

#PE's 1 2 4 8 16 32 64 128 256

32� 8 9.8 19.2 37.0 68.8

64� 16 9.9 19.8 39.1 76.6 146.9

128� 32 10.0 19.9 39.7 79.0 155.9 304.1

256� 64 10.0 20.0 39.9 79.7 158.6 314.6 618.9

512�128 10.0 20.0 40.0 79.9 159.5 318.0 632.1 1248.9

1024�256 10.0 20.0 40.0 79.9 159.8 319.2 636.8 1267.1 2509.1

2048�512 10.0 20.0 40.0 80.0 159.9 319.6 638.6 1274.3 2537.2

Table 18: Estimated matrix vector product Mega
op rates (f

m

= 10, no overlap)

#PE's 1 2 4 8 16 32 64 128 256

32� 8 4.9 9.8 19.2 37.0

64� 16 5.0 9.9 19.8 39.1 76.6

128� 32 5.0 10.0 19.9 39.7 79.0 155.9

256� 64 5.0 10.0 20.0 39.9 79.7 158.6 314.6

512�128 5.0 10.0 20.0 40.0 79.9 159.5 318.0 632.1

1024�256 5.0 10.0 20.0 40.0 79.9 159.8 319.2 636.8 1267.1

2048�512 5.0 10.0 20.0 40.0 80.0 159.9 319.6 638.6 1274.3

Table 19: Estimated matrix vector product Mega
op rates (f

m

= 5, no overlap)
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#PE's 1 2 4 8 16 32 64 128 256

32� 8 7.8 11.4 13.8 13.2

64� 16 8.8 14.7 21.6 26.3 25.6

128� 32 9.3 17.0 28.6 42.2 51.6 50.4

256� 64 9.7 18.4 33.5 56.4 83.3 102.1 100.1

512�128 9.8 19.2 36.5 66.6 112.1 165.6 203.1 199.4

1024�256 9.9 19.6 38.2 72.8 132.7 223.4 330.2 405.2 398.0

2048�512 10.0 19.8 39.1 76.3 145.3 264.9 446.0 659.3 809.5

Table 20: Estimated preconditioner vector product Mega
op rates (f

m

= 10, no overlap)

#PE's 1 2 4 8 16 32 64 128 256

32� 8 8.8 13.9 18.6 15.5

64� 16 9.3 16.5 26.3 35.6 30.0

128� 32 9.7 18.1 32.1 51.2 69.7 59.1

256� 64 9.8 19.0 35.7 63.2 101.1 137.9 117.2

512�128 9.9 19.5 37.8 70.9 125.5 201.0 274.4 233.5

1024�256 10.0 19.7 38.9 75.2 141.2 250.2 400.8 547.4 466.1

2048�512 10.0 19.9 39.4 77.6 150.2 281.9 499.6 800.3 1093.4

Table 21: Estimated preconditioner vector product Mega
op rates (f

m

= 10, overlap)

#PE's 1 2 4 8 16 32 64 128 256

32� 8 4.4 6.9 9.3 10.1

64� 16 4.7 8.3 13.2 17.9 19.5

128� 32 4.8 9.1 16.0 25.7 35.0 38.5

256� 64 4.9 9.5 17.9 31.7 50.7 69.3 76.4

512�128 5.0 9.8 18.9 35.5 62.9 100.8 137.9 152.2

1024�256 5.0 9.9 19.4 37.6 70.7 125.3 201.0 275.0 303.7

2048�512 5.0 9.9 19.7 38.8 75.1 141.1 250.2 401.3 549.3

Table 22: Estimated preconditioner vector product Mega
op rates (f

m

= 5, no overlap)

#PE's 1 2 4 8 16 32 64 128 256

32� 8 4.7 7.8 11.4 13.1

64� 16 4.8 8.8 14.8 21.7 25.4

128� 32 4.9 9.4 17.1 28.8 42.5 50.0

256� 64 5.0 9.7 18.5 33.7 56.8 84.1 99.2

512�128 5.0 9.8 19.2 36.6 66.9 112.9 167.3 197.6

1024�256 5.0 9.9 19.6 38.3 73.0 133.3 225.1 333.8 394.4

2048�512 5.0 10.0 19.8 39.1 76.4 145.7 266.2 449.5 666.8

Table 23: Estimated preconditioner vector product Mega
op rates (f

m

= 5, overlap)
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#PE's 1 2 4 8 16 32 64 128 256

32� 8 420.4 539.8 861.3 2033.3

64� 16 378.5 424.9 534.7 832.1 1952.9

128� 32 361.9 381.8 425.7 529.3 812.1 1902.2

256� 64 354.6 363.8 383.1 425.4 525.3 799.3 1871.4

512�128 351.3 355.7 364.7 383.6 424.9 522.5 791.5 1853.3

1024�256 349.6 351.8 356.2 365.1 383.8 424.5 520.8 786.9 1842.8

2048�512 348.9 349.9 352.1 356.4 365.3 383.8 424.2 519.8 784.2

Table 24: Predicted total time per cell in � seconds for the solution of the pressure equation
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