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Chapter 1

Introduction

Solving the eigenvalue problem for large linear systems, which is often required

in engineering problems, is still a di�cult task. In many cases, only a part of

the eigenvalue spectrum is asked for, and some of the most popular methods

for approximating a part of the eigenvalue spectrum are given by so called

projection methods. The best known versions of these projection methods are

the Arnoldi method and the Bi-Lanczos method, or, in the case of a Hermitian

problem, the Lanczos method.

Unfortunately, many aspects of these methods are not (yet) very well under-

stood, especially for the non-Hermitian problem. Some convergence properties

and minimization characteristics are known, but in practice, these are not very

useful.

The aim of this report is to give an impression of the current state of the

art for both the Arnoldi and the Lanczos methods. First, some basic linear

algebra aspects, necessary to understand the complete report, will be briey

mentioned. After that, a description of the general projection method is given,

and the Arnoldi method, the Bi-Lanczos method and the Lanczos method are

explained. This is followed by a summary of known relevant properties of or-

thogonal projection methods, of which the Arnoldi and Lanczos methods are

special versions. Finally, some open questions about the methods are given, as

well as an impression of what further investigation I want to do .

Most of the information gathered in this report is based on [1].
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Chapter 2

Basics

This chapter covers some basic subjects from linear algebra, mainly concerning

the eigenvalue problem.

2.1 Eigenvalues and eigenvectors

The linear eigenvalue problem consists of �nding so-called eigenpairs �

i

2 C

and u

i

2 C

n

, with u

i

6= 0, which satisfy the following equation for A 2 C

n�n

Au

i

= �

i

u

i

The �

i

are called eigenvalues, the set of eigenvalues ofA is called the (eigenvalue)

spectrum of A. The u

i

are called eigenvectors, or sometimes right eigenvectors.

The eigenvectors of A

H

are called left eigenvectors.

For each eigenvalue �, the matrixA��I must be singular, since (A��I)u =

0, with u the eigenvector corresponding to �. Therefore, the determinant of

A � �I, which is called the characteristic polynomial of A, must vanish for

each eigenvalue �. So the eigenvalues of A can be de�ned as the roots of the

characteristic polynomial ofA. The corresponding eigenvectors are those vectors

which are mapped by A � �I onto the zero vector. It can be proved that the

characateristic polynomial of A applied to the matrix A itself results in the zero

matrix.

It is possible that the characteristic polynomial has some multiple roots.

An eigenvalue � of A is said to have algebraic multiplicity � if it is a root

of multiplicity � of the characteristic polynomial. An eigenvalue � of A is

said to have geometric multiplicity  if the maximum number of independent

eigenvectors associated with it is . The geometric multiplicity is equal to the

dimension of N (A��I). The index l of an eigenvalue � is equal to the smallest

integer l for which N ((A � �I)

l

) = N ((A � �I)

l+1

).

If A is a Hermitian matrix, the eigenvalues are known to be real and the

eigenvectors can be chosen such that they are an orthogonal basis of C

n

.
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A change of basis does not a�ect the eigenvalues. This means that for all

invertible matrices X, the spectrum of X

�1

AX is equal to that of A. The

eigenvectors of X

�1

AX are equal to those of A, multiplied by X

�1

.

An interesting article about the linear algebra of eigenvalues and eigenvectors

is [2]. Its fresh approach to the eigenvalueproblem gives a good insight in the

meaning of eigenvectors and eigenvalues.

2.2 The conditioning of eigenvalues

The eigenvalues of A

H

are equal to those of A, the eigenvectors, however, are

di�erent. If u

i

is an eigenvector of A and v

i

is an eigenvector of A

H

, both

associated with eigenvalue �

i

, then u

i

and v

i

can be scaled such that (u

i

; v

j

) =

�

ij

, that is, the u's and the v's are biorthogonal.

Now consider the family of matrices A(t) = A + tE, where E is an arbi-

trary matrix of the same order as A. If � is an eigenvalue of A with algebraic

multiplicity one, then the eigenvalue �(t) of A(t) is a continuous di�erentiable

function of t, for t small enough. It can be shown ([1], p.92) that

�

0

(0) �

kEuk

2

kvk

j(u; v)j

� kEk

2

kuk

2

kvk

2

j(u; v)j

in which u and v are right and left eigenvectors associated with �.

The factor by which kEk

2

is multiplied in the upper bound is called the

condition number of the eigenvalue. This condition number can be rewritten as

Cond(�) =

1

cos �(u; v)

where �(u; v) denotes the angle between u and v. For normal matrices, u

i

= v

i

for all i, which means that the condition of each eigenvalue equals 1 in that

case. If A is highly non-normal, the angle between u

i

and v

i

can be large, which

implies a high condition number for the corresponding eigenvalues.

2.3 Error bounds on approximate eigenpairs

Suppose that an approximate eigenvalue

~

� and a corresponding approximate

eigenvector ~u of the matrix A have been found by some algorithm. What can

be said about the error made on these approximations?

A possible criterion used to determine the accuracy of an approximate eigen-

pair is the norm of the residual vector r = A~u �

~

�~u. An iterative method, for

instance, is repeated until krk

2

� ", where " is a prescribed tolerance. Unfor-

tunately, this stopping criterion does not guarantee a good eigenvalue approxi-

mation. The best thing that can be said about the residual vector is that if ~u is

of 2-norm unity and A is diagonalizable with eigenvector matrix X, then there

exists an eigenvalue � of A such that

j��

~

�j � kXk

2

kX

�1

k

2

krk

2
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(See [1],p.77). In general, this bound is of no practical use since the condition

number of X is usually not known. If A is Hermitian, however, then kXk

2

=

kX

�1

k

2

= 1 and we have

j��

~

�j � krk

2

Another stopping criterion is based on the backward error, this is used, for

example, in [4]. The normwise backward error associated with the approximate

eigenpair

~

�; ~u is de�ned to be

� = minf� : 9�A with k�Ak

2

� �kAk

2

; (A+�A)~u =

~

�~ug

The backward error gives a measure of the shortest distance between the original

problem with computed solution ~u and a perturbed problem with exact solution

~u. It can be shown(see [5]) that if k~uk

2

= 1, then

� =

kA~u�

~

�~uk

2

kAk

2

The stopping criterion is given by � � ". Since it is usually hard to compute the

2-norm of A, kAk

2

is replaced by kAk

F

=

p

n, the Frobenius norm of A divided

by the square root of the order of A. This results in a lower bound on the

backward error, since kAk

F

�

p

nkAk

2

.

For Hermitian A, it is possible to give an upperbound for the sine of the

angle between the exact eigenvector u and the approximate eigenvector ~u. If ~u

is of norm unity,

~

� = (A~u; ~u) and r = A~u�

~

�~u, then

sin �(u; ~u) �

krk

2

�

where � is the second smallest distance from

~

� to any eigenvalue � (see [1],p.82).

2.4 Min-max principles for Hermitian matrices

For Hermitian matrices, the eigenvalues can be expressed by a min-max prin-

ciple. Since the eigenvalues of a Hermitian matrix are real, we can label them

decreasingly, that is, �

1

� �

2

� : : : � �

n

. With this notation, the Courant-

Fisher min-max principle is formulated as follows:

�

k

= max

S;dim(S)=k

min

x2S;x 6=0

(Ax; x)

(x; x)

Making use of the fact that the eigenvectors of a Hermitian matrix are or-

thogonal, this principle can be rewritten in the form of the Courant characteri-

zation: the eigenvalues �

i

and the corresponding eigenvectors q

i

of a Hermitian

matrix are such that

�

1

=

(Aq

1

; q

1

)

(q

1

; q

1

)

= max

x2C

n

;x 6=0

(Ax; x)

(x; x)
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and for k > 1:

�

k

=

(Aq

k

; q

k

)

(q

k

; q

k

)

= max

x 6=0;q

H

1

x=:::=q

H

k�1

x=0

(Ax; x)

(x; x)

2.5 Projectors

Projectors play an important role in the analysis done in this report. A projec-

tor P is a linear transformation from C

n

to C

n

which satis�es

P

2

= P;

When P is a projector then so is I � P and we have N (P ) = R(I � P ). The

two subspaces N (P ) and R(P ) have only the zero element in common. Since

they also span C

n

, we have

C

n

= N (P )�R(P )

Conversely, every pair of subspacesM and S that form a direct sum of C

n

de�ne

a unique projector P such that R(P ) = M and N (P ) = S. The projector P

is said to be the projector onto M along S. Every vector x can be uniquely

decomposed into the sum of a vector x

1

2 M and x

2

2 S, given by x

1

= Px,

x

2

= (I � P )x.

2.5.1 Orthogonal projectors

A projector P is said to be orthogonal if

N (P ) = R(P )

?

In this case, we have

Px 2 M and (I � P )x ?M

Without proof, we mention that a projector is orthogonal if and only if it is

Hermitian.

If an orthonormal basis of M is given by fv

1

; : : : ; v

m

g, then the orthogonal

projection onto M is given by P = V V

H

, where V is the n �m matrix which

has v

1

; : : : ; v

m

as its columns. This can easily be seen by recalling that the

projection onto M is equal to the sum of the projections onto the seperate

vectors v

i

. The projection of x onto v

i

is given by (v

i

; x)v

i

= v

i

v

H

i

x. This is

equal to multplication of the i-th column of V by the i-th element of V

H

x.

Since the orthogonal projector onto M is unique, we must have V

1

V

H

1

=

V

2

V

H

2

for all orthonormal bases V

1

and V

2

ofM.
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Qx

M

L

x

Px

Figure 2.1: Visualization of an orthogonal projector P ontoM and and oblique

projector Q ontoM along L

?

.

2.5.2 Oblique projectors

A projector that is not orthogonal is said to be oblique. An oblique projector

Q is uniquely determined by the two subspaces M and L such that

Qx 2M and (I �Q)x ? L

This is a projector onto M along L

?

. Note that R(Q

T

) is equal to L. This

means that Q

T

is a projector onto L along M

?

. A visualization of both an

orthogonal and an oblique projector ontoM is given in �gure 2.1.

A projector ontoM alongL

?

can exist only in the case that two biorthogonal

bases V of M and W of L exist, this is the multidimensional analogue to the

condition in two dimensions thatM and L

?

are not parallel. In that case, with

V

H

W = I, the oblique projector Q onto M along L

?

is given by the matrix

Q = VW

H

.

2.6 The Jordan canonical form and spectral pro-

jectors

The Jordan canonical form of a square matrix A gives a similarity transforma-

tion, or in other words a change of basis, such that the new representation J has

a special block diagonal structure. In words, the Jordan form can be described

as follows: any square matrix A can be reduced to a block diagonal matrix

consisting of p diagonal blocks, each associated with a distinct eigenvalue. Each

diagonal block number i has itself a block diagonal structure consisting of 

i

subblocks, where 

i

is the geometric multiplicity of the eigenvalue �

i

. Each of

the subblocks, referred to as a Jordan block, is an upper bidiagonal matrix of

size not exceeding l

i

, where l

i

is the index of �

i

, with the constant �

i

on the

diagonal and the constant one on the superdiagonal.

In other words, for any square matrixA there exists a non-singular matrixX

9



such that

X

�1

AX = J =

0

B

B

B

B

B

B

B

B

@

J

1

J

2

.

.

.

J

i

.

.

.

J

p

1

C

C

C

C

C

C

C

C

A

where

J

i

=

0

B

B

B

@

J

i1

J

i2

.

.

.

J

i

i

1

C

C

C

A

with

J

ik

=

0

B

B

B

@

�

i

1

.

.

.

.

.

.

�

i

1

�

i

1

C

C

C

A

When A is considered with respect to the basis X, the nature of the trans-

formation is very clear: Since J is block-diagonal, with p blocks, C

n

can be

divided into p subspaces, say M

1

; : : : ;M

p

, which are invariant under A. This

means that every vector x can be written as

x = x

1

+ x

2

+ : : :+ x

i

+ : : :+ x

p

The linear transformation which is de�ned by P

i

: x ! x

i

is a projector onto

M

i

along the direct sum of the subspaces M

i

; i 6= j, it is called a spectral

projector. Since the invariant subspaces M

i

together span C

n

, we must have

P

1

+ : : :+ P

p

= I.

2.7 The Schur canonical form

For any square matrix A there exists a unitary matrix Q such that Q

H

AQ = R,

with R upper triangular. This means that a unitary change of basis is possible,

such that the transformation A can be represented by an upper triangular ma-

trix, with respect to the basis Q. This is called the Schur canonical form. It is

clear that the diagonal elements of R are equal to the eigenvalues of A, since R

is upper triangular and similar to A. Writing the relation as AQ = QR, we see

that the �rst i columns of Q span an invariant subspace under A.

The Schur decomposition is not unique, the eigenvalues can for example

appear in any order on the diagonal of R, depending on the choice for Q.
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2.8 Krylov subspaces

The Krylov subspace K

m

(A; v) is a subspace given by

K

m

(A; v) � spanfv;Av;A

2

v; : : : ; A

m�1

vg

As can be seen from this de�nition, the Krylov subspaces K

m

(A; v), K

m

(A�

�I; v), K

m

(�A; v) and K

m

(A;�v) are the same.

The Krylov subspace can be de�ned in a alternative way: K

m

(A; v) is the

subspace of all vectors x in C

n

which can be written as x = p(A)v, where p is

a polynomial of degree not exceeding m� 1.

11



Chapter 3

Projection methods

An important class of algorithms for approximating the eigenvalues and eigen-

vectors of large matrices is given by the so-called projection methods. This

chapter describes the general projection method.

3.1 The general projection method

The eigenvalue problem consists of �nding the eigenvectors and eigenvalues of

a certain n� n matrix A, which means that we want to �nd u 2 C

n

and � 2 C

such that

Au = �u

The general projection methods essentially consist of restricting the approxima-

tion ~u of the eigenvector u to be an element of some subspace K, called the right

subspace. Usually, the dimension of K will be substantially lower than n, which

means that the amount of work required for �nding an approximate eigenpair

is much lower than the amount of work required for �nding an exact eigenpair:

if dimK = m then the approximate eigenvectors will turn out to be the exact

eigenvalues of a certain m �m matrix.

An approximate eigenpair is given by those

~

� and ~u which result in a resid-

ual vector orthogonal to another subspace L, called the left subspace. So the

approximants

~

� 2 C and ~u 2 K must satisfy the condition

A~u�

~

�~u ? L

It is clear that the results of this method are determined by the choices for

the subspaces K and L. Since the approximate eigenvectors are taken from

the subspace K, a good approximation of any eigenvector is possible only for

certain choices for K. The special case K = L results in an orthogonal projection

method, of which the Arnoldi method is an example. If K 6= L, the method is

called an oblique projection method, like the Bi-Lanczos method. These two

classes of methods will be treated separately in the following two sections.

12



3.2 Orthogonal projection methods

In the case that K = L, the method consists of solving the following problem:

�nd

~

� 2 C and ~u 2 K such that

A~u�

~

�~u ? K

If we de�ne P

K

to be the orthogonal projector onto the subspace K, then this

condition is equivalent to

P

K

A~u =

~

�~u;

~

� 2 C ; ~u 2 K (3.1)

This means that the approximate eigenpairs found by the orthogonal projection

method are exact eigenpairs of the transformation given by A

p

= P

K

A

jK

, where

A

jK

denotes the transformation A restricted to the subspace K.

Since this linear transformation is from K to K, it is useful to translate the

problem into a basis of K. Let fv

1

; : : : ; v

m

g be an orthonormal basis of K and

let V be the n � m matrix which has v

1

; : : : ; v

m

as its columns. A change of

basis can be achieved by introducing y 2 C

m

and setting ~u = V y. With this,

the orthogonality condition can be rewritten as

(AV y �

~

�V y; V z) = 0 8z 2 C

m

which is equal to

(V

H

AV y �

~

�y; z) = 0 8z 2 C

m

This condition can be satis�ed only if V

H

AV y �

~

�y = 0, or

V

H

AV y =

~

�y

So in order to �nd the approximate eigenpairs of A we need to �nd the exact

eigenpairs of the operator V

H

AV , which is called the Ritz-matrix. It represents

the transformation A

p

= P

K

A

jK

with respect to the basis fv

1

; : : : ; v

m

g, which

can be seen by inspecting the product V

H

AV y: V y indicates a change of basis

from fv

1

; : : : ; v

m

g to the standard basis, this change of basis is followed by the

transformation A and �nally, the result is orthogonally projected onto R(V ) =

K and expressed in terms of the basis fv

1

; : : : ; v

m

g.

So in order to �nd the approximate eigenpair

~

�; ~uwhich satisfy condition 3.1,

we need to generate the matrix A

p

= V

H

AV , where V has an orthonormal

basis of K as its columns, and compute its eigenpairs

~

�

i

; y

i

. The approximate

eigenpairs of A are then given by

~

�

i

; V y

i

.

3.3 Oblique projection methods

If K 6= L we have to �nd

~

� 2 C and ~u 2 K such that

A~u�

~

�~u ? L

13



We now have to introduce a projector Q

L

along the subspace L

?

onto the

subspace K which is an oblique projector. The orthogonality condition can be

written as

Q

L

(A~u�

~

�~u) = 0

Since Q

L

is a projection onto K, we have Q

L

~u = ~u, so the condition above is

equal to

Q

L

A~u =

~

�~u

We see that, analogously to the orthogonal method, the approximate eigenpairs

are given by exact eigenpairs of the transformation Q

L

A

jK

.

Again, a change of basis is useful. We assume that it is possible to �nd two

biorthogonal bases fv

1

; : : : ; v

m

g and fw

1

; : : : ; w

m

g of K and L, which means

that (v

i

; w

j

) = �

ij

. By V and W we denote the n � p matrices which have

these bases as their columns. With ~u = V y the orthogonality condition can be

written as

(AV y �

~

�V y;Wz) = 0 8z 2 C

m

Since W

H

V = I, this is equal to

(W

H

AV y �

~

�y; z) = 0 8z 2 C

m

In this case, we see that an approximate eigenpair satis�es

W

H

AV y =

~

�y

which means that it is an exact eigenpair of the matrix W

H

AV , again called

Ritz-matrix. This Ritz-matrix indeed represents Q

L

A

jK

with respect to the

basis V : multiplication by V represents a change of basis fromK to the standard

basis, this is followed by the transformation A and �nally, multiplication by

W

H

represents projection onto K along L with respect to the basis V , since

W

H

V = I.

3.4 A special situation: the right subspace is

invariant under A

It is possible that the right subspace K is chosen such that it is invariant under

A. If this is the case, then all approximate eigenpairs found by the projection

method are eigenpairs of the original matrix A. If K is invariant under A, then

the Ritz-matrix is equal to A restricted to K, and since the Ritz-matrix then

represents exactly the same transformation as A, but with a restricted domain,

the eigenpairs found are exact eigenpairs of A. Since K is invariant, it must be

spanned by m of the eigenvectors of A, where m is the dimension of K, these

are exactly those eigenvectors which are found by the method, together with

the corresponding eigenvalues.
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3.5 The usual procedure in practice

The methods desribed above require choices forK and L, and these choices result

in some approximate eigenpairs. In practice, however, the method is used in an

iterative way: in each step, the subspaces K and L used in the previous step are

expanded by one extra dimension, and again the approximate eigenvectors are

calculated. This procedure is repeated until a satisfactory result is obtained.

If too many iteration steps are required, the process is restarted with a new

starting choice for the left and right subspaces.

The most popular projection methods use Krylov subspaces as their left and

right subspaces. These methods are described in the following section

3.6 Examples of projection methods: Krylov-

based methods.

In this section we take a closer look at the most important examples of pro-

jection methods: the Arnoldi method (an orthogonal projection method) and

the Bi-Lanczos method (an oblique projection method), which in the case of a

Hermitian matrix both degenerate to the well-known Lanczos method. Only the

the most important properties of each method are given; the following chapter

will treat the Arnoldi and Lanczos methods extensively.

In this section, K

m

(A; v) denotes the m-th Krylov subspace generated by

the matrix A and the vector v: K

m

(A; v) = spanfv;Av;A

2

v; : : : ; A

m�1

vg. If no

ambiguity is possible, then the arguments (A; v) are omitted.

3.6.1 The Arnoldi method

The Arnoldi method is an orthogonal projection method which has the Krylov-

space K

m

(A; v) as its right subspace, where the vector v can be any element

of C

n

. This particular choiche for K results in a Ritz-matrix that is an m �

m upper-Hessenberg matrix. This is a slight advantage over methods which

produce a full Ritz-matrix, since the computation of eigenpairs takes less e�ort

for Hessenberg matrices than for full matrices. Another advantage is given

by the fact that storing a Hessenberg matrix requires less memory. However,

in comparison with projection methods which result in an even sparser Ritz-

matrix, like for example a tri-diagonal matrix, the same arguments result in

disadvantages of Arnoldi.

3.6.2 The Bi-Lanczos method

Bi-Lanczos is an example of an oblique projection method. It uses the choices

K = K

m

(A; v) and L = K

m

(A

H

; w), where v and w are elements of C

n

such that

v

H

w = 1. So like Arnoldi, approximate eigenvectors are taken from K

m

(A; v),

these approximants are those vectors which result in a residual vector orthogonal

to K

m

(A

H

; w). This method can be used to approximate the left eigenvectors

15



as well. Switching the roles of K and L, which is the same as approximating

eigenpairs of A

H

, leads to a Ritz-matrix which is the transposed of the original

Ritz-matrix. In other words, calculating the left eigenvectors of the Ritz-matrix

results in approximations of the left eigenvectors of A. The main advantage

of Bi-Lanczos, however, is the sparsity of the resulting Ritz-matrix, which is a

tri-diagonal m �m matrix.

Disadvantages of Bi-Lanczos are possible loss of orthogonality due to the

three-term recursion used to compute the entries of the Ritz-matrix and the

risks of a breakdown of the algorithm.

3.6.3 The Lanczos method

If A is Hermitian, then both Arnoldi and Bi-Lanczos result in the same sym-

metric tri-diagonal Ritz-matrix. In this special case, the method is called the

Lanczos method.

In order to get a better insight in orthogonal projection methods, the Arnoldi

method and its Hermitian version, the Lanczos method, the next chapter ex-

tensively treats some of the known properties of these methods.
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Chapter 4

Properties of orthogonal

projection methods

This chapter gives a summary of the most important porperties of orthogonal

projection methods, especially the Arnoldi method and its Hermitian version,

the Lanczos method.

4.1 An overview of known convergence proper-

ties of orthogonal projection methods

This section gives an indication of the known properties of orthogonal projection

methods, for both the non-Hermitian and the Hermitian problem. Of course,

everything said for the non-Hermitian case also applies to the Hermitian case.

4.1.1 The non-Hermitian problem

First, it is interesting to note that an orthogonal projection method applied

to the matrix A with a right subspace K which has V as its basis gives the

same results as an orthogonal projection method applied to Q

H

AQ with a left

subspace K

0

which has Q

H

V as its basis, where Q is a unitary matrix. This

observation will be used when analyzing the Arnoldi and Lanczos methods.

Since the approximate eigenvectors are all taken from the subspace K, the

best possible approximation, with respect to the two-norm, for an eigenvector u

is given by the projection of this eigenvector onto K, which is given by P

K

u.

Therefore, the quantity k(I �P

K

)uk

2

, which is the distance between K and the

eigenvector u, plays an important role in the analysis of projection methods.

If this quantity is not small, a good approximation of u is not possible, since

k~u � uk

2

� k(I � P

K

)uk

2

for all ~u 2 K. Since the norm of u is assumed to

be 1, k(I � P

K

)uk

2

can be seen as the sine of the angle between u and K.

This quantity can be used to give the following inequality: the residual norm

17



of the pair �;P

K

u, which are the exact eigenvalue and the corresponding best

approximating eigenvector, satis�es for the linear operator A

p

= P

K

A

jK

(see

[1], p.130):

k(A

p

� �I)P

K

uk

2

� k(I � P

K

)uk

2

;

with  = kP

K

A(I � P

K

)k

2

. The exact eigenpair �; u satis�es

k(A

p

� �I)uk

2

�

p

�

2

+ 

2

k(I �P

K

)uk

2

With V the orthogonal matrix which has a basis of K as its columns and y

u

=

V

H

u=kV

H

uk

2

, the �rst inequality can be rewritten to

k(V

H

AV � �I)y

u

k

2

� 

k(I � P

K

)uk

2

kP

K

uk

2

�  tan �(u;K)

The parameter  = kP

K

A(I � P

K

)k

2

, which appears in the inequalities

above, can be seen as a measure of invariance of the subspace K under the

transformation A. If  = 0 then the subspace K is invariant under A, a small

value for  indicates that K is \almost invariant" under A.

4.1.2 The Hermitian problem

The eigenvalues of a Hermitian matrix A are real and the eigenvectors are

an orthogonal basis of C

n

. These properties make the Hermitian case much

easier to analyse than the non-Hermitian case. Since the eigenvalues are real,

it is possible to label them decreasingly, �

1

� �

2

� : : : � �

n

. This gives the

possibility of making quantitative comparisons between exact eigenvalues and

approximate eigenvalues, which are real as well.

For the approximate eigenvalues of A, which are the eigenvalues of P

K

A

jK

,

a min-max formulation can be given: the i-th largest approximate eigenvalue of

a Hermitian matrix A, obtained from an orthogonal projection onto a subspace

K, satis�es

~

�

i

= max

S K;dim(S)=i

min

x2S;x 6=0

(Ax; x)

(x; x)

;

which can be seen as a Courant-Fisher principle restricted to the subspace K.

Comparison with the original Courant-Fisher principle results in the following

inequality:

�

i

�

~

�

i

; i = 1; 2; : : :;m

The Courant characterisation can also be rewritten in a restricted version:

the approximate eigenvalue

~

�

i

and the corresponding eigenvector ~u

i

are such

that

~

�

1

=

(A~u

1

; ~u

1

)

(~u

1

; ~u

1

)

= max

x2K;x 6=0

(Ax; x)

(x; x)

and for k > 1:

~

�

k

=

(A~u

k

; ~u

k

)

(~u

k

; ~u

k

)

= max

x2K;x 6=0;~u

H

1

x=:::=~u

H

k�1

x=0

(Ax; x)

(x; x)
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The approximate eigenvectors give an orthogonal basis of K. Since for Her-

mitian A the Ritz-matrix is Hermitian as well, these restricted versions of the

Courant-Fisher principle and the Courant characterisations are not too surpris-

ing. They can be used, however, to give a rather general upper boundary for the

di�erence between an exact and an approximate eigenvalue (see [1],p.135): let

~

Q

i

be the sum of the spectral projectors associated with the approximate eigen-

values

~

�

1

;

~

�

2

; : : : ;

~

�

i�1

, then the error between the i-th exact and approximate

eigenvalues �

i

and

~

�

i

is such that

0 � �

i

�

~

�

i

� kA� �

i

Ik

k

~

Q

i

u

i

k

2

2

+ k(I �P

K

)u

i

k

2

2

k(I �

~

Q

i

)P

K

u

i

k

2

2

Unfortunately, this inequality is not of any immediate practical use since it

contains many unknown quantities.

It is also possible to give an upperbound for the sine of the angle between

the exact eigenvector u and the approximate eigenvector ~u for the Hermitian

case: let  = kP

K

A(I�P

K

)k

2

, and consider any eigenvalue �

i

of A. Then there

is an eigenvector ~u associated with the approximate eigenvalue

~

� such that

sin �(u

i

; ~u) �

s

1 +



2

�

2

i

sin �(u

i

;K)

where �

i

is the distance between �

i

and the set of approximate eigenvalues other

than

~

�. This shows that in the Hermitian case, a good result is guaranteed if

the angle between the exact eigenvector and the subspace K is su�ciently small.

4.2 Properties of the Arnoldi and Lanczos meth-

ods

As mentioned earlier, the choice of a Krylov-subspace as the left subspace for an

orthogonal projection method results in a method called the Arnoldi method, or

the Lanczos method in the Hermitian case. This section gives some properties

which are speci�c for the Arnoldi and Lanczos methods. First, algorithms for

both methods are derived.

4.2.1 An Arnoldi algorithm

As explained in the previous chapter, the Arnoldi method applied to the n� n

matrix A consists of computing the eigenpairs of the Ritz-matrix A

p

= V

H

AV .

Here, V satis�es V

H

V = I and R(V ) = K

m

(A; v), with v arbitrary. So for given

A and v, the product V

H

AV needs to be computed. First we will show that

A

p

is upper-Hessenberg, which simpli�es the determination of its coe�cients

substantially.
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De�ne B to be the n�m matrix which has v;Av; : : : ; A

m�1

v as its columns.

This matrix B satis�es

AB = B

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0

1 0 0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

.

.

.

1 0 0

1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

+A

m

ve

T

m

Suppose that B has full column-rank, then its QR-factorization exists, say B =

QR, where Q is n � m and Q

H

Q = I and R is m � m, upper-triangular and

non-singular. With this, we have Q

H

AQ = Q

H

AQRR

�1

= Q

H

ABR

�1

, and

with the equality above, this is equal to

Q

H

AQ = R

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

.

.

.

1 0

.

.

.

1

.

.

.

.

.

.

.

.

.

.

.

.

R

�1

Q

H

A

m

v

.

.

.

0

.

.

.

1 0

.

.

.

1

.

.

.

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

R

�1

Clearly, this product is upper-Hessenberg and with the choice V = Q, Q

H

AQ

is equal to the Ritz-matrix.

Since we now know that A

p

is upper-Hessenberg, it is possible to build

the matrix V columnwise and simultaneously compute the entries of A

p

, also

columnwise. Suppose that we have found the �rst i columns of V , then all we

have to do is compute Av

i

and orthogonalise it to v

1

; : : : ; v

i

, and after that

normalize the resulting vector. This is achieved by the following algorithm:

Choose a starting vector v

1

of norm 1

for j = 1; 2; : : :;m do

begin

for i = 1; 2; : : : ; j do

h

ij

= (Av

j

; v

i

)

w

j

= Av

j

�

j

X

i=1

h

ij

v

i

h

j+1;j

= kw

j

k

2
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v

j+1

= w

j

=h

j+1;j

end

The coe�cients h

ij

resulting from this algorithm satisfy

Av

j

=

j+1

X

i=1

h

ij

v

i

When the h

ij

are written as the entries of the matrix H, then this equation is

exactly the column-wise version of an equation of the formAV = V H+C where

the columns of C are orthogonal to those of V . Pre-multiplying this equation

by V

H

shows that the matrix H satis�es V

H

AV = H, in other words, H is

equal to the matrix A

p

which we were looking for.

From this algorithm we see that we need not only store all the coe�cients

h

ij

, but also all of the vectors v

i

. In some cases this can require a huge amount

of memory.

4.2.2 A Lanczos algorithm

If A is Hermitian, the Arnoldi algorithm substantially simpli�es. This is due

to the fact that the Ritz-matrix is then upper-Hessenberg and Hermitian and

therefore tridiagonal. Translated to the Arnoldi algorithm, this means that

h

ij

= 0 for i 6= j � 1; i 6= j; i 6= j + 1 and the Gram-Schmidt process turns

into a three-term recursion. Using the notation �

j

= h

jj

and �

j

= h

j�1;j

the

algorithm becomes

Choose a starting vector v

1

of norm 1:

Set �

1

= 0; v

0

= 0

for j = 1; 2; : : : ;m do

begin

w

j

= Av

j

� �

j

v

j�1

�

j

= (w

j

; v

j

)

w

j

= w

j

� �

j

v

j

�

j+1

= kw

j

k

2

v

j+1

= w

j

=�

j+1

end

Both the number of entries in the Ritz-matrix and the number of vectors which

have to be stored is considerably less than in the non-Hermitian case.

4.2.3 Changes of basis and convergence speed

A special property of the Krylov-subspace K

m

(A; v) is the fact that K

m

(A; v) =

K

m

(A � �I; v). The approximate eigenvalues of A are the exact eigenvalues
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of V

H

AV , the approximate eigenvalues of A � �I are the exact eigenvalues of

V

H

(A � �I)V = V

H

AV � �V

H

IV = V

H

AV � �I,where the columns of V

are an orthonormal basis of K

m

(A; v). From this, we see that the approximate

eigenvalues

^

�

i

of A��I are equal to

~

�

i

��. So a translation of origin does not

change the rate of convergence of the method, it is shift invariant. Therefore,

only gaps between eigenvalues seem to inuence the rate of convergence. Since

we also have K

m

(A; v) = K

m

(�A; v), multiplication of A by a scalar � results in

multiplication of the approximate eigenvalues by �, so a scaling of the problem

does not a�ect the rate of convergence. Therefore, not the gaps between the

eigenvalues determine the rate of convergence, but the ratios of the gaps between

the eigenvalues.

4.2.4 A closer look at the Ritz-matrix

As explained earlier, the Ritz-matrix, for the Arnoldi method applied to A,

represents the transformation A restricted to the subspace K, followed by the

projection onto K, all of this expressed in a basis of K. Since a change of basis

does not a�ect the eigenvalues of a matrix, the Ritz values are equal to the

eigenvalues of the Ritz matrix expressed with respect to a basis of K. If we

choose the basis v;Av; : : : ; A

m�1

v, the Ritz matrix can be expressed as follows:

A

0

p

=

0

B

B

B

B

B

B

B

B

B

B

B

@

0 �

0

1 0 �

1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

.

.

.

1 0 �

m�2

1 �

m�1

1

C

C

C

C

C

C

C

C

C

C

C

A

The last column in A

0

p

represents the orthogonal projection of A

m

v onto the

Krylov subspace, expressed in terms of the basis fv;Av; : : : ; A

m�1

vg. So P

K

A

m

v =

�

0

+�

1

v+ : : :+�

m�1

A

m�1

v. This means that �

0

v+�

1

Av+ : : :+�

m�1

A

m�1

v

is the best possible approximation for A

m

v taken from the Krylov subspace

spanfv;Av; : : : ; A

m�1

vg. Since this Krylov subspace can also be de�ned as the

set of all vectors p(A)v where p(A) is any polynomial of degree � m� 1, we see

that �

0

+ �

1

v + : : : + �

m�1

A

m�1

v � A

m

v is the unique monic polynomial of

degree m which has a minimum norm over all monic polynomials of degree m.

Taking a closer look at A

0

p

, however, we see that it is of a companion form,

which means that its characteristic polynomial equals p

c

(z) = �

0

+ �

1

z + : : :+

�

m�1

z

m�1

�z

m

. For p

c

(A)v we have p

c

(A)v = �

0

v+�

1

Av+: : :+�

m�1

A

m�1

v�

A

m

v. We have just mentioned that this is the unic monic polynomial of degree

m which has a minimumnorm over all monic polynomials of degree m and there-

fore we can conclude that the characteristic polynomial p

c

of the Ritz matrix

minimizes kp(A)vk over all monic polynomials of degree m. Some consequences

of this conclusion are given in the following section.
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�

m�1

r

1

r

2

Figure 4.1: An example of the Gershgorin-circles. The Ritz-values are in the

shaded area. The dashed circles have unit radius. As explained in the text,

r

1

= maxf1 + max

1�i�m�2

j�

i

j; j�

0

jg and r

2

=

P

k=m�2

k=0

j�

k

j

Applying the Gershgorin theorem to the matrices A

0

p

and (A

0

p

)

T

results in

a region in which the Ritz-values can be found. First, looking at A

0

p

, we see

that all Ritz-values are situated in the union of the unit circle in the complex

plane which has �

m�1

as its center and the circle which has the origin as its

center and a radius equal to maxf1+max

1�i�m�2

j�

i

j; j�

0

jg. If these two circles

are disjunct, then exactly one Ritz-value is situated in the unit circle around

�

m�1

, the others are in the other circle. Gershgorin applied to (A

0

p

)

T

shows

that all Ritz-values are situated in the union of the unit circle around the origin

and the circle which has �

m�1

as its center and

P

k=m�2

k=0

j�

k

j as its radius. If

these to circles are disjunct, then one of the Ritz-values is situated in the circle

around �

m�1

and the others all lie in the unit circle around the origin. Finally,

the intersection of these two unions (this is the intersection of the union of two

circles) gives an area which encloses all Ritz-values. An example is visualized

in �gure 4.1.

4.2.5 The methods as a polynomial approximation prob-

lem

As explained in the prevoius section, the Arnoldi method can be formulated in a

di�erent way: if p̂

m

is the characteristic polynomial of the Ritz-matrix when an

orthogonal projection method onto a Krylov subspace is applied to A then p̂

m

minimizes the norm kp(A)vk

2

over all monic polynomials of degree m. In other
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words, the Arnoldi method solves the problem of �nding the best approximation

for A

m

v in the subspace spanfv;Av; : : : ; A

m�1

vg.

This section gives a selection of the results of the di�erent formulation of

the Krylov subspace, these are taken from [1], section 4.7.

Let P

i

be the spectral projector associated with the eigenvalue �

i

(see section

2.6) for Hermitian A. Then, if P

i

v

i

6= 0, we have

tan �(u

i

;K

m

) = min

p2P

m�1

;p(�

i

)=1

kp(A)y

i

k

2

tan �(u

i

; v)

in which P

m�1

represents the set of polynomials of degree � m � 1 and

y

i

=

8

<

:

(I � P

i

)v

k(I � P

i

)vk

2

if (I � P

i

)v 6= 0

0 otherwise

With the Chebyshev polynomials of the �rst kind, written as C

k

for the Cheby-

shev polynomial of degree k, this minimization property results in the following

inequality:

tan �(u

i

;K

m

) �

�

i

C

m�i

(1 + 2

i

)

tan �(u

i

; v);

where

�

1

= 1; �

i

=

i�1

Y

j=1

�

j

� �

n

�

j

� �

i

for i > 1

and



i

=

�

i

� �

i+1

�

i+1

� �

n

A two-sided inequality for the di�erence between the i-th exact and the

approximate eigenvalues is given by

0 � �

i

� �

(m)

i

� (�

1

� �

n

)

�

�

(m)

i

tan �(u

i

; v)

C

m�i

(1 + 2

i

)

�

2

where

�

(m)

1

� 1; �

(m)

i

=

i�1

Y

j�1

�

(m)

j

� �

n

�

(m)

j

� �

i

; for i > 1

and 

i

is given in the previous result.

For the sine of the angle between the i-th exact and approximate eigenvector

the following inequality holds:

sin �(u

i

; ~u

i

) �

�

i

q

1 + �

2

m+1

=�

2

i

C

m�i

(1 + 2

i

)

tan �(u

i

; v)

For Arnoldi, the following inequality is the most important result of conver-

gence analysis: assume that A is diagonalizable and that the initial vector v in
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Arnoldi's method has the expansion v =

P

k=n

k=1

�

k

u

k

with respect to the eigen-

basis fu

1

; : : : ; u

n

g in which ku

k

k

2

= 1 and �

i

6= 0. Then the following inequality

holds:

k(I �P

m

)u

i

k

2

� �

i

"

(m)

i

where

�

i

=

n

X

k=1;k 6=i

j�

j

j

j�

i

j

Here, "

(m)

i

is de�ned by

"

(m)

i

� min

p2P

�

m�1;i

max

�2�(A)��

i

jp(�)j;

where P

�

m�1;i

represents the set of all polynomials of degree not exceeding m�1

such that p(�

i

) = 0.

The quantity "

i

is an important parameter in this inequality. For "

1

, it is

known that if m < n, then there exist m eigenvalues of A which can be labeled

�

2

; �

3

; : : : ; �

m+1

such that

"

(m)

1

=

�

m+1

X

j=2

m+1

Y

k=2;k 6=j

j�

k

� �

1

j

j�

k

� �

j

j

�

�1

4.2.6 Ideal Arnoldi

The polynomial interpretation as given in section 4.2.4 implies that the Arnoldi

method solves the problem of �nding the best approximation for A

m

v in the

subspace spanfv;Av; : : : ; A

m�1

vg. Intuitively, this is not the most natural min-

imisation problem for approximation of the eigenvalues. The exact characteris-

tic polynomial p

c

of A satis�es p

c

(A) = 0 and therefore a better approximating

problem might be given by minimizing kp(A)k over all monic polynomials of

degree m and then �nding the roots of that polynomial. This method, however,

is useful for theoretical purposes only. It is proposed by Greenbaum and Tre-

fethen in [3], they have given it the name \ideal Arnoldi". Ideal Arnoldi consists

of �nding the best approximation for A

n

in the linear span of I; A; : : : ; A

n�1

.
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Chapter 5

Open questions

Many questions about the behaviour of both the Arnoldi and Lanczos methods

are still unanswered. The aim of this chapter is to give a selection of these

questions, especially those concerning the Arnoldi methods, and to give an im-

pression of further work that could be done.

5.1 A list of open questions

� Is it possible to extend the convergence analysis from the previous chapter

to a somewhat more practical convergence analysis?

� If an approximate eigenpair

~

�; ~u is found, what can be said about the

error in this approximation? In the chapter about linear algebra basics,

we have seen that if A is diagonalisable, with X the eigenvector matrix,

then there exists an eigenvalue � of A such that j��

~

�j � kXk

2

kX

�1

k

2

krk.

Assumed that nothing about X is known, is it possible to approximate

the condition of X by using the approximate eigenvectors? What can be

said about the average quality of this approximation if the starting vector

is chosen randomly?

� How does the starting vector v a�ect the results given by the methods? If

we see the starting vector v 2 C

n

as an input parameter for the Arnoldi

method and a vector l 2 C

m

which contains the m approximating eigen-

values, as output, then the method can be seen as a continuous, non-linear

mapping from C

n

to C

m

. A simple dimension argument shows that there

must be many starting vectors v which result in exactly the same m Ritz-

values, for a certain m. Scaling the vector v, for example , does not a�ect

the results at all. What can be concluded about these observations? Anal-

ogously, what can be said about pairs A; v which give the same results?

Is it possible to make choices which result in exactly the same results for

all iteration steps?
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� It might be interesting to study the convergence behaviour of certain

matrices with a special eigenvalue distribution. Examples are matrices

with no complex eigenvalues or with only one pair of complex eigenvalues.

What can be said about convergence behaviour for these simpli�ed cases?

� For ideal Arnoldi (see [3]) Greenbaum and Trefethen have given �ve open

questions which might give more insight in the usual Arnoldi methods as

well.
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