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Chapter 1

Introduction

Heat treatment of metals is often necessary to optimise their mechanical properties both for

further processing and for �nal use. During the heat treatment, the metallurgical state of the

material changes. This change can either involve the phases being present or the morphology

of the various phases. Whereas the equilibrium phases often can be predicted quite accu-

rately from thermodynamic models, there are no general models for microstructural changes

nor general models for the kinetics of these changes. In the latter cases both the initial

morphology and the transformation mechanisms have to be speci�ed explicitly. One of these

processes, which is both of large industrial and scienti�c interest and amenable to modelling,

is the dissolution of second phase particles in a matrix with a uniform initial composition.

To describe this particle dissolution in rigid media several physical models have been devel-

oped, incorporating the e�ects of long-distance di�usion [20], [12], [14] and non-equilibrium

conditions at the interface [5], [1]. The long-distance di�usion models imply that the processes

at the interface between particle and matrix proceed in�nitely fast. Therefore, these models

provide an upper bound for the dissolution rate.

Whelan [20] considered particles dissolving in an in�nite medium using the stationary inter-

face approximation. He derived an analytical solution of the di�usion equation in an in�nite

medium for spherical co-ordinates by the use of the Laplace-transformation in time. The

accuracy of the model increases with increasing inter-particle distance, i.e. with increasing

cell size.

Mathematically particle dissolution is considered as a moving boundary problem, i.e. a Stefan-

problem [3], [17], [11], [18]. All references discussed below, transform the cell in which the

particle dissolves into a cell which is equally shaped as the particle, requiring the transformed

cell volume to be equal to the original cell volume. This allows a one-dimensional treatment of

the moving boundary problem which can be solved easily using a �nite di�erence discretiza-

tion method. This method can be used for planar, cylindrical and spherical geometry.

Baty, Tanzilli and Heckel [12] were the �rst authors to apply a numerical method using a

�nite di�erence method to evaluate the interface position as a function of dissolution time.

Their model is also applicable to situations in which the inter-particle distance is small, i.e.
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when soft impingement occurs. The model they proposed, is based on the assumption of local

equilibrium at all stages of the dissolution process. They applied their numerical analysis to

dissolving Al

2

Cu-particles in aluminium. In their models the Al

2

Cu-particles were assumed

to be spherical. The poor �t of their calculations with the experimental data is probably due

to the interface reactions or to the non-spherical shape of the regular particles, which were

not incorporated into their numerical model.

Tundal and Ryum [14] considered the e�ects of a �nite cell size for spherical particles as

well. They too applied a numerical method using a �nite di�erence method to predict the

dissolution kinetics. Their model is based on the assumption of local equilibrium during the

entire dissolution process. They introduced a lognormal distribution (logarithm according to

normal distribution) for both the particle and cell size. They showed that macroscopic disso-

lution rates depend strongly on the shape of the particle size distribution curve and possible

interactions between the neighbouring cells.

Nol�'s model [5] did not include the interface migration, but as far as we know, it is the �rst

model which incorporated non-equilibrium conditions at the interface. In the Nol� model non-

equilibrium conditions at the interface were incorporated by the introduction of a Robbins

condition, which relates the concentration gradient with the concentration at the interface.

This semi-analytical solution consists of an in�nite series solution for the concentration pro-

�le. Their method, however, is only accurate in the early stages of the dissolution process.

Aaron and Kotler [1] incorporated the non-equilibrium conditions at the interface too. How-

ever their approach is only applicable for those situations in which the inter-particle distance

is su�ciently large, i.e. the di�usion �elds do not impinge. They transformed the Robbins

problem of Nol� into a Dirichlet problem, in which the concentration is �xed at all stages of

the dissolution process. Combining Whelan's [20] analytical approach for the interface veloc-

ity as a function of the annealing time, with a relation between the interface concentration

and the interface position, they evaluated the interface position using a Picard-type iteration

method. Aaron and Kotler also incorporated the e�ects of the particle curvature into their

model using the Gibbs-Thomson equation [1]. In their model both the interface position and

the interface concentration were taken momentarily stationary during the evaluation of the

interface position as a function of time.

The e�ects of interfacial reactions on the rate of the dissolution of spherical particles in both

in�nite and �nite media was examined by Vermolen and Van der Zwaag numerically [15].

Using a �nite di�erence method it was shown, that interfacial reactions can have a signi�cant

e�ect on the dissolution rate and hence on the concentration pro�les in the matrix during

particle dissolution.

Due to surface tension, the dissolving particles may have a disk-like geometry. Hence, an

algorithm capable of solving two dimensional moving boundary problems is desired. In the

present work we introduce a general algorithm that can be used to solve two-dimensional

problems. It is based on the application of the �nite element method on two-dimensional

moving boundary problems. A reason to use �nite elements is that it allows the use of un-

structured grids. Hence the �nite element method is more 
exible than other discretization
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methods using structured grids only. Especially in moving boundary problems as the ones

that will be demonstrated in the remainder of this report, unstructured grids are essential.

Before we derive our numerical algorithm, we present the mathematical model we will apply

in Chapter 2. Actually, it turns out that this is a standard Stefan problem. Although it may

be well known, we repeat the derivation of the Stefan condition at the free boundary, since we

need this derivation to improve our numerical method. In Chapter 3 we derive a numerical

scheme to solve the Stefan problem. It will be shown, that straightforward discretization of

the equations and boundary conditions, may lead to unrealistic interfaces. These problems

are investigated and a new algorithm (Chapter 4) which produces nice results is presented.

This improved algorithm is based on the derivation of the Stefan boundary conditions of

Chapter 2. The algorithm of Chapter 4 may be applied for example, for the dissolution of

cylinders in a rectangular cell, which is a two-dimensional problem too. Besides that more

particles, dissolving in one cell, may be dealt with now as well. In Chapter 5 results of the

new algorithm applied to some practical problems, will be demonstrated. Finally Chapter 6

formulates the conclusions from this report.
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Chapter 2

A mathematical model for a

dissolution process

Consider an Al

2

Cu particle in an Al-Cu alloy at a given temperature. The initial concen-

tration of Al

2

Cu in the Aluminium phase is equal to c

0

(mol/m

3

), whereas c

part

denotes the

concentration of Al

2

Cu in the particle. When the temperature is increased, dissolution of the

Al

2

Cu particle sets in. At the interface the Al

2

Cu concentration is c

sol

(c

part

> c

sol

> c

0

).

To describe the mathematical model we use the geometry as given in Figure 2.1. The domain

S(t)

Γ Γ

Γ

Γ

Al-Cu
1

4

3

2

Ω (t)

Al Cu2

Figure 2.1: Geometry of anAl

2

Cu particle

in Aluminium.

t

∆

2

t

∆ t) xS(t +S(t)

Al-Cu Al Cu

Figure 2.2: The control volume

�lled with Aluminium is denoted by 
(t). The boundary of this domain consists of the in-

terface S(t) and the outer boundaries �

i

; i 2 f1; 2; 3; 4g. The outer boundaries are �xed in

time, except the intersections of �

1

and �

4

with S(t). In the Aluminium-rich phase 
(t), the

Al

2

Cu concentration c(x; y; t) satis�es the di�usion equation

@c

@t

= D�c; (x; y) 2 
(t); t 2 (0; T ]: (2.1)
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The di�usion coe�cient D (m

2

/s) is supposed to be constant. As initial condition we use

c(x; y; 0) = c

0

(x; y); (x; y) 2 
(0); (2.2)

where 
(0) is prescribed. We assume that there is no 
ux of Al

2

Cu through the outer

boundaries, so

@c

@n

(x; y; t) = 0; (x; y) 2 �

i

; i 2 f1; 2; 3; 4g; t 2 [0; T ]: (2.3)

At the interface the concentration satis�es the equation

c(x; y; t) = c

sol

; (x; y) 2 S(t); t 2 (0; T ]: (2.4)

To determine the position of the interface one extra condition is necessary. To derive this

boundary condition for a spatially three dimensional problem, we consider a small part of the

interface. Suppose that the interface is smooth, which means that it can locally be described

by di�erentiable functions. For a small time step �t the interface moves in the direction

perpendicular to the interface. The x-axis is chosen along the normal. With this choice

the position of the interface is locally described by the relation x = S(t). We consider a

control volume of width �y and �z. The intersection of the control volume with the surface

y = 0; z = 0 is shown in Figure 2.2. The balance of Al

2

Cu atoms leads to the following

equation:

(S(t+�t) � S(t))�y�zc

sol

= (S(t+ �t)� S(t))�y�zc

part

� D

@c

@x

�y�z�t :

(2.5)

Dividing (2.5) by �y�z�t and taking the limit �t! 0 one obtains

(c

part

� c

sol

)

dS

dt

= D

@c

@x

:

So the extra boundary condition at the interface is

(c

part

� c

sol

) v

n

(x; y; t) = D

@c

@n

(x; y; t); (x; y) 2 S(t); t 2 (0; T ] ; (2.6)

where n is the unit normal vector on the interface pointing outward with respect to 
(t)

and v

n

is the normal velocity of the interface. The moving boundary problem given by (2.1),

(2.2), (2.3), (2.4), and (2.6) is known as a Stefan problem [3].

The normalised concentration ĉ =

c�c

0

c

sol

�c

0

, together with a characteristic length scale L, and

time scale

L

2

D

are used to make the problem dimensionless. After replacing ĉ by c we obtain

the following Stefan problem: �nd a concentration c and an interface S such that

@c

@t

= �c; (x; y) 2 
(t); t 2 (0; T ] ; (2.7)

c(x; y; 0) = 0; (x; y) 2 
(0) ; (2.8)
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@c

@n

(x; y; t) = 0; (x; y) 2 �

i

; i 2 f1; 2; 3; 4g; t 2 [0; T ] ; (2.9)

c(x; y; t) = 1; (x; y) 2 S(t); t 2 (0; T ] ; (2.10)

v

n

(x; y; t) = �

@c

@n

(x; y; t); (x; y) 2 S(t); t 2 (0; T ] ; (2.11)

where the dimensionless number � is given by

� =

c

part

� c

0

c

part

� c

sol

: (2.12)

An extensive review of literature on Stefan problems is given in [13]. This bibliography

contains 2500 titles on moving boundary problems. In [9] a recent overview is given of

numerical methods to simulate convection/di�usion phase change problems.

Various numerical methods are known to solve Stefan problems. In Crank [3] the following

types of method are distinguished: front-tracking, front-�xing, and �xed-domain methods.

The latter two methods can only be used when the concentration on the interface is a constant.

In the near future we want to simulate also dissolution processes with a varying concentration

on the interface (e.g. �rst order reaction at the interface [15], or dissolution in ternary Al-

alloys [16]). Therefore we choose a front-tracking method to solve our problem numerically.

The front-tracking method we apply, is a two-dimensional extension of the method of Murray

and Landis [8] as described in [10], [7], [6] and [19]. A detailed description of the adaptation

of the interface in time is lacking in most of the literature on front-tracking methods, except

[6]. We present various methods for this adaptation in Chapters 3 and 4. The results from

these methods are compared in Chapter 5 by numerical experiments.
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Chapter 3

Solution of the Stefan problem

As we have seen in Chapter 2, the problem to be solved can be modelled as a Stefan problem.

Our method runs as follows. In the �rst time-step the di�usion equation (2.7) together with

the initial (2.8) and boundary conditions (2.9) and (2.10) is solved. On the free boundary S

only the Dirichlet condition (2.10) is used. In the next time steps �rst the boundary is moved

using the boundary condition (2.11). This means that the co-ordinates of the free surface at

time t +�t are approximated by:

x(t+ �t) = x(t) + �tv

n

= x(t) + �

@c

@n

�t n: (3.1)

Once the boundary is moved, the concentration c can be computed in the new region using

equation (2.7). However, the computation of the concentration implies that we have to com-

pute

c(t+�t)�c(t)

�t

. We do not know c(t) in the nodal points, since due to the displacement

of the boundary also all nodes have been moved [2]. So either we have to interpolate the

concentration to the new nodes, or we have to make a correction for the displacement. Inter-

polation is of course possible, but relatively expensive. The correction is much more simple.

If we compute the time-derivative based on the old and the new points, then it is clear that

we actually use a material derivative

Dc

Dt

=

@c

@t

+ u

mesh

� rc; (3.2)

where the so-called mesh velocity is de�ned by

u

mesh

=

x(t+�t)� x(t)

�t

; (3.3)

with x the co-ordinate vector in a point. Substituting Equation (3.2) into Equation (2.7)

leads to:

Dc

Dt

� div(rc)� u

mesh

� rc = 0: (3.4)

The discretization of equation (3.4) is performed by a standard Galerkin �nite element method
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using linear triangles. The time-discretization is performed by an implicit Euler method. Ap-

pendix B discusses several alternatives with respect to the combination of Euler implicit and

the moving boundary.

A straight-forward method to compute the new position of the free boundary is given by

Algorithm 1.

Algorithm 1 Straight-forward computation of the displacement of the free boundary.

Compute the constant gradient of the concentration in the elements connected to the free

boundary.

Compute the gradient of the concentration in the vertices at the free boundary by averaging

over neighbouring elements.

De�ne the normal in the vertices by

for all i do

^
n

i

=

1

2

(n

i�

1

2

+ n

i+

1

2

); n

i

=

n̂

i

jjn̂

i

jj

.

end for

De�ne

@c

@n

in the vertices by the inner product of the gradient and the normal vector.

Apply formula (3.1) to compute the new positions of the vertices.

At the start of the computation we are faced with the fact that the normal of the interface

is not de�ned in the middle point of S (see Figure 2.1), where we have a corner of 90

�

. Note

that in fact the normal is not de�ned in vertices at the boundary unless the two surrounding

line elements have the same direction. For that reason the outward normal in a vertex point

is de�ned as the normalized mean value of the normals at the two line elements adjacent to

that point. Figure 3.1 shows the de�nition of these tangential and normal vectors for a curved

boundary. Using this de�nition of the normal vector, the displacement of the vertices of the

Figure 3.1: De�nition of tangential and normal vectors in vertices of boundary

boundary can immediately be deducted from equation (3.1).

A di�erent way of computing the normal in the vertices is presented by Lynch [6]. He pro-

poses to take a weighted average of the surrounding normals, where the weights are de�ned

8



by the length of the adjacent boundary elements. A clear disadvantage of this approach is

that the normal depends on the local grid size. For example, if at a 90

�

corner the mesh size

at one side is larger than at the other one, the normal will not be de�ned under an angle of

45

�

as in our method.

Figure 3.2 shows the free boundary during the �rst 10 time steps. Only the boundary in the

neighbourhood of the left-hand corner is plotted, the rest of the boundary remains unchanged.

It is clear that in the mid point of the free boundary, where we start with the 90

�

corner, the

free boundary moves more slowly than in the other points. However, from the physical point

of view one would expect this point to move faster than the surrounding points. To inves-

 
Figure 3.2: Free boundary in the �rst 10 time steps

tigate this strange behaviour we consider the arti�cial case where all the equi-concentration

lines are parallel to the free boundary. Figure 3.3 shows the boundary (solid line) and one

such a concentration line. The dashed line denotes the new position of the free boundary,

one would intuitively expect, after one time step �t = 1 with the parameter � equal to 1.

Let the di�erence in concentration between free boundary and the plotted equi-concentration

line be equal to �c. Let the distance between the points x and x' be equal to �x. Then the

value of

@c

@n

is approximately

�c

�x

. However, the distance between the points y and y' is equal

to

p

2�x. Hence along the line x'', x' the value of

@c

@n

is approximately

�c

p

2�x

. Since the

average normal is equal to n =

p

2

2

 

1

1

!

this implies that the free boundary in the point y

does not move to y'', but only to the point precisely in the middle of y and y''. Although

in practice the concentration lines are not parallel to the free boundary; the point y' will be
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y

y

’

y

’

’’x ’’

z z z’’

Figure 3.3: Assumed position of free boundary in case of parallel concentration lines

closer to y, still this e�ect is visible in Figure 3.2. The reason for this inconsistency is in fact,

that the Stefan boundary condition is derived under the assumption of a smooth boundary.

In the case of a non-di�erentiable boundary, the limit does not exist and only the integral

form of the Stefan boundary condition makes sense.

A natural solution of the problem mentioned above is not to use the gradient and the normal

in the vertices, but only those in the mid-side points of the elements. Since the gradient of the

concentration is constant per triangle, the value of both the normal and the normal deriva-

tive in these mid-side points, is unique. So one can compute the displacement of the mid-side

points by equation (3.1) and the only remaining problem is to de�ne how the vertices must

be moved. An obvious choice is to choose the new positions of the vertices right in the middle

of the new positions of the mid-side points. The displacement in the two corner points can

be chosen exactly equal to the displacement of the corresponding mid point. This method is

described in Algorithm 2.

Algorithm 2 Displacement of the free boundary based on the mid-side points

Compute the constant gradient of the concentration in the elements connected to the free

boundary.

De�ne

@c

@n

in the mid-side points of the elements at the free boundary, by the inner product

of the gradient and the normal vector.

Apply formula (3.1) to compute the new positions of the mid-side points.

De�ne the new positions of the vertices by interpolation between mid-side points.

Figure 3.4 indicates the results of this action for the arti�cial case of Figure 3.3. It is clear

that in this case it is very unlikely that the erratic behaviour of Figure 3.2 will appear. Indeed

computations show a very smooth progress of the free boundary. However, there is one serious
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Figure 3.4: Assumed position of the

free boundary in case of the adapted

movement of the vertices

Figure 3.5: Position of the free

boundary in absence of a displace-

ment of the mid-side points

drawback in this method. Suppose that none of the mid-side points are moved, for example

because � = 0. In that case one would expect that the vertices also will be kept at their

old positions. However, as can be seen immediately from Figure 3.5, after the �rst step the

vertex corresponding to the 90

�

corner has been moved inwardly. In the next step an extra

smoothing is applied and if this process is repeated we end up with a straight line. For an

initial corner larger than 180

�

, the boundary even moves into the wrong direction. So we are

looking for a method that keeps the vertices �xed as long as the mid-side points do not move,

but also lacks the behaviour shown in Figure 3.2. In the next chapter we will introduce such

a method.

Before considering our new method we consider a variant of a method proposed by Lynch

[6]. Lynch suggests to use a weighted average method to compute the position of the new

boundary. However, for an equidistant mesh size along the boundaries his method is identical

to our Algorithm 1 and for non-equidistant mesh sizes it is even worse. Nevertheless, his

derivation based on a weak formulation of the Stefan condition 2.11, inspired us to use a

Galerkin approximation of Equation (2.11). The idea is that this is more an integral approach

than a di�erential approach. The Galerkin formulation of Equation (2.11) is given by

Z

S

v

n

�d� =

Z

S

�

@c

@n

�d�; (3.5)

with � an arbitrary test function. Exact integration of Equation (3.5) leads to a tridiagonal

system of equations, where the matrix to be inverted is the standard mass matrix along the

free boundary. Lumping of this matrix reduces this method to Algorithm 1. Figure 3.6 shows

the free boundary during the �rst 10 time steps, using the consistent mass matrix. Indeed the

boundary is better than the one shown in Figure 3.2, but still the corner problem is visible.
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Figure 3.6: Free boundary in the �rst 10 time steps computed by the "weak approach"
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Chapter 4

A new method to compute the

displacement of the boundary

Before deriving our new approach for the computation of the free boundary, we �rst formulate

two demands a good numerical method should satisfy.

� Let �x be a measure for the displacement of the boundary, then it is necessary that

the new boundary converges to the old boundary as �x ! 0. It would be even better

if the error between computed and true position is of order �x

2

.

� Suppose that the corner between two adjacent elements at the moving boundary, mea-

sured with respect to the dissolving material, is equal to �. If � < 180

�

then one

expects that this corner increases as soon as the material dissolves. The reason for

such a behaviour is that in the case of a straight boundary, di�usion can take place in

one direction only, whereas in a corner, di�usion is possible in various directions. So a

numerical method should satisfy this property too.

It is clear that the methods mentioned in Chapter 3 do not ful�l these two demands at the

same time. Algorithm 1 does not satisfy the second demand, whereas Algorithm 2 does not

ful�l the �rst demand.

We propose the following method.
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i+1

x xi-1 i

x

Figure 4.1: Area occupied by the re-

gion de�ned by the displacement of

the vertex

Figure 4.2: Area occupied by the re-

gion de�ned by the displacement of

both mid-side points

Algorithm 3 Improved scheme for the computation of the free boundary

Compute the constant gradient of the concentration in the elements connected to the free

boundary.

De�ne

@c

@n

in the mid-side points of the elements at the free boundary, by the inner product

of the gradient and the normal vector.

Apply formula (3.1) to compute the new positions of the mid-side points.

De�ne the new positions of the vertices along the normal, in such a way that, the area

occupied by the region de�ned by the displacement of the vertex and its surrounding mid-

side points (Figure 4.1) is equal to the mean values of the area de�ned by the displacement

of both mid-side points (Figure 4.2).

This method combines the smoothing properties of Algorithm 2 with the non-displacement

of the vertex in case the mid-side points remain unchanged.

The motivation for this approach is the following. From the derivation of the Stefan boundary

condition it follows that the area of the particle that has been dissolved is equal to the amount

of di�used material. The 
ux through the element (x

i�1

; x

i

) is approximately equal to:

D

@c

@n

(x

i�

1

2

)l

i

�t; (4.1)

with l

i

the length of the line element (x

i�1

; x

i

). Hence the amount of di�used material through

the boundary (x

i�

1

2

; x

i+

1

2

) is equal to

�t

2

(D

@c

@n

(x

i�

1

2

)l

i

+ D

@c

@n

(x

i+

1

2

)l

i+1

): (4.2)

The amount M of material dissolved, is approximately equal to (c

part

� c

sol

)O, where O is

the area de�ned in Figure 4.1. Due to the balance of atoms M must be equal to the amount
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of di�used material given in Equation (4.2). Making this equation dimensionless this is equal

to (see (2.12))

O =

��t

2

(

@c

@n

(x

i�

1

2

)l

i

+

@c

@n

(x

i+

1

2

)l

i+1

): (4.3)

The right-hand side of (4.3) is the mean value of the areas de�ned in Figure 4.2.

There is a drawback of Algorithm 3, which can be explained as follows. Once the displacement

of the vertices has been computed by means of Algorithm 3, the mid-side points are moved

to new positions, since they are always in the middle of two vertices. As a consequence the

amount of dissolved material is no longer equal to M . If we want to have a displacement

which gives an amount of dissolved material that is exactly equal to M , the situation is more

complex. Consider two adjacent line elements (x

i�1

; x

i

), and (x

i

; x

i+1

), with length l

i

and

l

i+1

respectively (Figure 4.3). The mid-side points of these elements are denoted by x

i�

1

2

and

i+1

x x

x

i-1 i

Figure 4.3: Two adjacent elements in the free boundary

x

i+

1

2

. Let the from formula (3.1) computed displacement in the mid-side points, be equal

to �x

i�

1

2

and �x

i+

1

2

. The new position of vertex x

i

is denoted by
^
x

i

. The length of the

displacement is given as �x

i

= jj
^
x

i

�x

i

jj. Once the displacement in the vertices is computed,

also the displacements in the mid-side points change. In order to get both a local and global

equilibrium in the amount of dissolved material, it is necessary, that the new area is identical

to

1

2

l

i

�x

i�

1

2

+

1

2

l

i+1

�x

i+

1

2

: (4.4)

The area O depends on �x

i

, �x

i�

1

2

and �x

i+

1

2

, where �x

i�

1

2

is the adapted length of the

displacement in x

i�

1

2

. Since �x

i�

1

2

and �x

i+

1

2

depend on �x

i�1

, �x

i

and �x

i+1

the relation

is non-linear. In order to solve this system of non-linear equations we propose the following

algorithm:
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Algorithm 4 "Exact" satisfaction of balance between dissolution and di�usion

for all i do

Compute �x

i

from �x

i�

1

2

and �x

i+

1

2

according to Algorithm 3.

^
x

i

= x

i

+ �x

i

n

i

.

end for

while not converged do

for all i do

^
x

i�

1

2

=

1

2

(
^
x

i�1

+
^
x

i

).

Compute �x

i

from Algorithm 3 using the areas occupied by the known quadrilaterals

(x

i�

1

2

;x

i

;
^
x

i

;
^
x

i�

1

2

) and (x

i+

1

2

;x

i

;
^
x

i

;
^
x

i+

1

2

).

^
x

i

=
^
x

i

+ !(x

i

+�x

i

n

i

�
^
x

i

).

end for

end while

All formulae from this algorithm can be found in appendix A.

Numerical experiments showed that, in the case of a relaxation parameter ! equal to 1,

Algorithm 4 did not converge. The free surface switched between two states, for successive

iterations. This behaviour is caused by an overestimation of the correction in each iteration.

To solve this problem an under-relaxation factor ! < 1 has been tried. Practical computations

show that the iteration process is rather insensitive for the value of the !. For ! = 0:5 we

usually got convergence within 5 iterations. The process is stopped as soon as the di�erence

between the area due to the mid-side displacements, as de�ned in Equation (4.2) and the

�nal area is less than 1%.

In �rst instance we did not expect much di�erence between Algorithm 3 and Algorithm 4. But

from Figures 4.4 and 4.5 it is clear that, especially during the �rst time-steps, the behaviour

is quite di�erent. To get an idea of the mesh, Figure 4.6 shows the original coarse mesh in

the neighbourhood of the free surface. In order to compare the accuracy of both algorithms

we halved the space-step, i.e. we increased the number of elements by a factor 4. In Figure

4.8 the free boundary computed by Algorithm 4 is plotted, whereas Figure 4.7 gives the free

boundary after the �rst time-step, using Algorithm 3. It is clear from this picture, that

the boundary of Algorithm 3 is unacceptable, whereas that of Algorithm 4 seems reasonably

good. The reason for this strange behaviour is that the displacement of the two mid-side

points around the sharp corner, is very close to the line x = y (Figure 4.9). As a consequence

the �rst estimate is very inaccurate. Iteration as used in Algorithm 4, however, is able to

solve this problem nicely.

If we enlarge the time-step somewhat more, the displacement of the mid-side points may

even cross the line x = y. In that case both algorithms fail, since they produce a negative

displacement for the vertex at y = x. Hence reducing the space-step, implies that we also

have to decrease the time-step. Figures 4.10 and 4.11 show the free boundaries for the �ner
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Figure 4.4: Free boundary during

the �rst 10 time-steps using Algo-

rithm 3

 

Figure 4.5: Free boundary during

the �rst 10 time-steps using Algo-

rithm 4

 

Figure 4.6: Coarse mesh in the neighbourhood of the free boundary

mesh with the time-step divided by two. The boundaries are plotted at the same time-levels

as the ones in Figures 4.4 and 4.5. Further halving of the space- and time-steps leads to

nice pictures for Algorithm 4. However, Algorithm 3 produces in the �rst time-step, a free

boundary as the one depicted in Figure 4.7. Of course, at that moment the mesh generator

fails to create a new mesh.

Some �nal remarks concern the generation of the mesh and the free boundaries during the

time-stepping process.

At the start of the computation a mesh is generated using the initial boundary. In each time-

step the boundary is updated according to one of the algorithms of this report. The new free

boundary is approximated by a spline. The number of nodes is not changed. The nodes along

this spline are distributed in such a way that local re�nement in the initial free boundary

is kept. Hence the relative distribution of nodes along the initial boundary is maintained

17



 

Figure 4.7: Free boundary during

the �rst time-step using Algorithm

3, mesh-size has been halved

 

Figure 4.8: Free boundary during

the �rst 10 time-steps using Algo-

rithm 4, mesh-size has been halved

Figure 4.9: Displacement of the mid-side points is too close to the line x = y

during the whole process. Once the boundary is changed, the mesh is updated. In �rst

instance all points in the mesh are repositioned by taking the mean value of the co-ordinates

of neighbouring nodes. This averaging process is performed in a number of steps in a Gauss-

Seidel like procedure.

When the mesh is created, the quality of the mesh and the distances at the free boundary

are checked. If the angles of the triangles in the new mesh are too large, or if the distances

between nodes at the free boundary di�er too much from the original distances, the mesh is

completely regenerated. In that case also the nodes at the free boundary are recomputed and

the number of nodes at this boundary may be changed. After that, the just computed solution

is interpolated to the new mesh. Of course this remeshing technique is quite expensive and

so it is only carried out if necessary.
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Figure 4.10: Free boundary during

the �rst 10 even time-steps using Al-

gorithm 3; mesh-size and time-step

have been halved

 

Figure 4.11: Free boundary during

the �rst 10 even time-steps using Al-

gorithm 4; mesh-size and time-step

have been halved
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Chapter 5

Experiments

An algorithm has been developed, suitable for use to investigate the dissolution kinetics for

a two-dimensional case. One of the goals of the algorithm is to determine the dissolution

kinetics of disk-like particles. Before two-dimensional problems are considered, we compare

the outcomes of our algorithm to one-dimensional results. In all our examples we have chosen

the following parameters:

di�usion coe�cient D = 0:1,

concentration at the interface c

sol

= 1,

initial concentration c

0

= 0,

D

c

part

�c

sol

= 0.0101.

5.1 Axial symmetric problems

The �nite element results are compared to the �nite di�erence answers [15] obtained for the

one-dimensional case with axial symmetry. The two-dimensional �nite element method is ap-

plied to a circular particle with radius 1, dissolving in a circular cell with radius 5. For both

algorithms the concentration pro�les at t = 20s; 40s; 60s and 80s are displayed in Figures

5.1 and 5.2. The di�erences between the results obtained from the one-dimensional �nite

di�erence method and the two-dimensional �nite element method are very small. This indi-

cates that the algorithm based on the �nite element method is reliable for the axi-symmetric

problem.
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Figure 5.1: Concentration pro�les at various times from the 1D FDM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

C
on

ce
nt

ra
tio

n

−. t=20

.... t=40

−− t=60

__
t=80

Figure 5.2: Concentration pro�les on a line perpendicular to the cylinder at various times

from the 2D FEM
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5.2 Disk-like problems

Next we consider the dissolution of disk-like particles. This problem is in fact three-dimensional,

but due to the axi-symmetry it can be solved as a two-dimensional problem. Figure 5.3 shows

the con�guration of the particle in the (r; z) plane. The disk length is D and the cell length

L. Various values of D are considered. The radius of disk and cell are respectively 1 and 5,

whereas L has the �xed value of 5. The �nite element method uses axi-symmetrical elements.

Firstly we consider the special case ofD = L. The resulting problem is again one-dimensional.

DiskD

L

Figure 5.3: Con�guration of the axial-symmetric disk; Disk length D; Cylinder length L

In Figure 5.4 Curve I corresponds to the 1D axi-symmetric �nite di�erence code. The one-
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Figure 5.4: Radius of cross-section of the dissolving cylinder with the OXY -plane

dimensional di�erence method can be applied for planar, cylindrical and spherical geometries.
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From a comparison of the 1D �nite di�erence method (fdm) with an analytical method ([4])

during the �rst iterations for spherical geometry, the fdm method used, may be considered

as reliable. The results from the �nite element method are shown as Curve II. Both results

are nearly the same.

Secondly we consider the position of the intersection of the free boundary and �

4

as a func-

tion of time for various disk-heights. Curves III, IV, V and VI correspond to a disk-length of

0:99L, 0:95L, 0:90L and 0:75L, respectively. In the limit (Curves III and IV), the position

approaches that of the one-dimensional case with axial symmetry. Note that for a small value

of D (D = 0:75L), the �nal position of the intersection is close to zero, whereas the �nal

position in the one-dimensional problem is approximately equal to 0:35. So we may conclude

that the behaviour of a disk-like particle is di�erent from a cylindrical one, especially when

the time increases.

Figure 5.5 gives the concentration c at r = 5; z = 0, as a function of the disk length for di�er-
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Figure 5.5: Concentration at r = 5; z = 0 as function of the disk-length

ent dissolution times. It can be seen in Figure 5.5 that the in
uence of the disk length on the

concentration at r = 5 increases with increasing dissolution time. This is in accordance with

what one expects physically, because at early stages of the dissolution process the di�usion

�elds are small, so the the shape of the particle hardly in
uences the concentration at the

intersection of �

3

and �

4

.

5.3 A cylinder dissolving in a bar

In metallurgical literature only one-dimensional algorithms are used to investigate dissolution

kinetics. This requires the use of an equally shaped cell in which the particle dissolves such

that the cell volume equals the real volume around the particle. Since the two-dimensional

algorithm has been developed, the error of the last mentioned approach may be analysed. The
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dissolution kinetics of a cylinder, dissolving in a bar, has been compared to the dissolution

of a cylinder dissolving in a cylinder with an equal volume. As can be expected for cases

in which the cell size is large, the approach with an equally shaped cell is most accurate.

The average distance between the free boundary and the origin does not di�er much for

both geometries of the cell. However, for the case of a bar-like cell, the movement of the

free boundary near the intersections with the co-ordinate axes, will be smaller than the

movement of the free boundary near the intersection with the line y = x, causing a shape

change during dissolution. These e�ects will be more pronounced as dissolution proceeds. For

both approaches iso-concentration lines have been sketched in Figures 5.6 and 5.7. In these

examples the following data have been used:

radius particle = 1,

radius outer cylinder = 5,

edge of square = 4.43 (hence the area of the square and the cylinder are equal).

 

Figure 5.6: Iso-concentration lines

for a cylinder dissolving in a bar

 

Figure 5.7: Iso-concentration lines

for a cylinder dissolving in a cylinder

Reducing the cell size with respect to the particle size, would reveal a larger di�erence between

both approaches. However, such small cell sizes are not likely to occur in metallurgy, so the

approach made in literature can be considered as reasonable.

5.4 A bar dissolving in a bar

The free boundary of a square dissolving in a square has been sketched at di�erent stages of

the dissolution process in Figure 5.8. The edge of the particle has length 1; the edge of the

cell has length 5. One sees that the shape of the free boundary becomes more rounded as

dissolution proceeds. The shape of the free boundary even becomes almost circular at later

stages of the dissolution process. The same has been done for the dissolution of a disk in a
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Figure 5.8: Free boundary of a bar

dissolving in a bar at various stages

of the dissolution process.

 
Figure 5.9: Free boundary of a disk

dissolving in a disk at various stages

of the dissolution process.

disk in Figure 5.9. In this axi-symmetric case the inner radius is equal to 1 and the outer

radius equal to 5. Furthermore we used D = 1 and L = 5. The same shape transition is

observed.

5.5 Two particles dissolving in one cell

In metallic systems the particle size is nonuniform. Most authors in literature incorporate a

particle size distribution using the assumptions

� all particles dissolve in an equally shaped cell,

� the average concentration of alloying element is equal in each cell.

This implies a unique correspondence between the cell size and the particle size. Moreover

most authors assume that there is no mass transfer between the cells, except Tundal and

Ryum [14]. When the smallest particle is dissolved completely, the cells related to the residual

particles are enlarged by them such that the volume of the cells equal the sum of the volumes

of the original cells.

In our two-dimensional numerical method, these assumptions can be released. Therefore we

compute the dissolution of two particles in one cell. In this problem the length of the edge of

the square is equal to 5, whereas the radii of the particles are equal to 2 and 0.5 respectively.

The movement of the free boundaries is visualised in Figure 5.10. As soft-impingement occurs,

i.e. the interaction of the di�usion �elds around the particles, movement of the free boundary

is in
uenced by the presence of di�erent particles. Iso-concentration lines for this case have

been sketched in Figure 5.11. These lines can be compared to the iso-concentration lines for

one particle in a bar-like cell, as have been sketched in Figure 5.6. It is a straightforward

exercise to extend these calculations to a system with more cells.
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Figure 5.10: the movement of two

circular free boundaries in a cell in

which two particles dissolve.

 
Figure 5.11: Iso-concentration lines

in a cell in which two particles dis-

solve.
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Chapter 6

Conclusions

In this report we have investigated particle dissolution in rigid media by numerical techniques.

The mathematical model used is that of a free boundary problem of Stefan type. These equa-

tions are solved by a two-dimensional �nite element method. It has been shown that this

approach leads to an accurate solution of the problem.

With respect to the adaptation of the free boundary during time-stepping it has been demon-

strated that sharp corners require a special algorithm. Several algorithms have been devel-

oped. From these algorithms, the non-linear approach, based on the discretization of the

integral balance between dissolution and di�usion, has proven to be superior.

The �nite element method applied is based upon a displacement of all nodes. The free

boundary is approximated by a spline and the nodes are redistributed in order to maintain

the original coarseness of the nodes. If necessary remeshing is applied.

It has been shown that for some types of particles two-dimensional e�ects can not be ne-

glected. For those cases it is not su�cient to run a one-dimensional code and our 2D �nite

element method gives a very attractive alternative.
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Appendix A Detailed description of Algorithm 4

Algorithm 4 "Exact" satisfaction of balance between dissolution and di�usion

Compute the constant gradient of the concentration in the elements connected to the free

boundary.

De�ne the normal in the vertices by

for all i do

^
n

i

=

1

2

(n

i�

1

2

+ n

i+

1

2

); n

i

=

n̂

i

jjn̂

i

jj

.

end for

for all i do
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2
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2

Compute �x

i

from �x

i�

1

2

and �x
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1

2

according to Algorithm 3.

The equivalence of the areas gives:
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); (7.1)

where x and y denote the components of the vector x.

Substitution of
^
x
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+�x
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i�

1

2

)(x

i�

1

2

� x

i

)�

(x

i+

1

2

� x

i

)(y

i

� ŷ
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with n

x

i

and n

y

i

the components of n

i

.

^
x

i

=
^
x

i

+ !(x

i

+ �x

i

n

i

�
^
x

i

).

end for

while not converged do

for all i do

^
x

i�

1

2

=

1

2

(
^
x

i�1

+
^
x

i

).

Compute �x

i

from equation (7.2).

end for

end while
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Appendix B Various implementations of the implicit Euler method in combina-

tion with the free boundary problem

In this appendix we consider three possible implementations of the combination of Euler

backward with the moving boundary. First we start with the most explicit formulation, next

we consider a somewhat more implicit formulation and �nally the complete implicit method

is treated.

Explicit treatment of the moving boundary problem

In this approach we start in step n by updating the free boundary explicitly using the concen-

tration c at level n. By interpolating the co-ordinates of the mesh, we get the new co-ordinates

x

n+1

. The mesh velocity at level n + 1 is now de�ned by Equation (3.3) using x

n+1

and x

n

.

u

mesh

=

x

n+1

� x

n

�t

; (8.3)

Furthermore the convective term is treated explicitly, hence the time discretization may be

written as:

c

n+1

(x

n+1

)� c

n

(x

n

)

�t

��c

n+1

(x

n+1

)� u

n

mesh

� rc

n

= 0: (8.4)

The motivation of this approach is as follows:

Once we have updated the mesh we can solve the di�usion equation (2.7) by Euler implicit.

Hence:

c

n+1

(x

n+1

)� c

n

(x

n+1

)

�t

��c

n+1

(x

n+1

) = 0: (8.5)

The problem is however, that c

n

(x

n+1

) is not known. Since we do not want to interpolate we

use a Taylor expansion:

c

n

(x

n+1

) = c

n

(x

n

) +rc

n

(x

n

) � (x

n+1

� x

n

): (8.6)

Substitution of (8.6) into (8.5) leads to expression (8.4).

A disadvantage of this approach is that the boundary update in the �rst step may be incorrect

since boundary conditions and initial conditions do not match. Another problem might be

that remeshing can only be performed after the solution at t

n+1

has been computed. Hence,

it may be possible that the mesh has been distorted so much, that solution of the convection

di�usion equation is not possible anymore. The consequence is that remeshing must be

performed with more care, since either the new mesh must be acceptable or the old mesh be

remeshed �rst.

Semi implicit treatment of the moving boundary problem

To prevent the disadvantages of the previous approach, we make a slight modi�cation. In the

�rst step of the process we solve the di�usion equation at the original mesh. Hence we start

with u

mesh

= 0. In this way the transient problem is avoided.
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At time level t = t

n

the mesh is updated using c

n

. Thereafter u

n

mesh

is computed. If remeshing

is required we do not only interpolate c

n

to the new nodes but also u

n

mesh

. Finally we solve

the convection di�usion equation (3.2) implicitly, including the convective terms. However,

the mesh velocity just computed is used. The time discretization may be written as:

c

n+1

(x

n+1

)� c

n

(x

n

)

�t

��c

n+1

(x

n+1

)� u

n

mesh

� rc

n+1

= 0: (8.7)

In this case we do not have the remeshing problem. However, one might consider the usage

of the implicit convection in combination with the explicit mesh velocity as inconsequent.

An experiment in which we changed the convection term from implicit to explicit showed

negligible di�erences. For example the di�erence between the positions of the free boundaries

in the explicit and implicit case was less than 0.1%.

Fully implicit treatment of the moving boundary problem

If one expects stability problems it might be a good idea to use a complete implicit scheme.

In that case we have to solve

c

n+1

(x

n+1

)� c

n

(x

n

)

�t

��c

n+1

(x

n+1

)� u

n+1

mesh

� rc

n+1

= 0: (8.8)

This is a nonlinear problem since we do not know the new region nor the mesh velocity at

the new time-level. Hence we must start with an estimate of the new region and accordingly

the mesh velocity. The �nal region and mesh velocity at t

n+1

is found by iteration.

The fully implicit treatment of the free boundary applied to the test example of Chapter 3,

showed a di�erence less than 0.25% in the free boundary. Hence for our computations it is

not necessary to use the fully implicit method.
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