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1 Introduction 1

Summary.

Knowledge of the excess pressure is valuable in the prediction of the presence of oil and gas

reservoirs. A mathematical model for the prediction of excess pressures is given by a time-dependent

di�usion equation. Application of the �nite element method leads to a system of linear equations. A

complication is that the underground consists of layers with very large di�erences in permeability. This

implies that the symmetric and positive de�nite coe�cient matrix has a very large condition number.

Bad convergence behaviour of the CG method has been observed, moreover a classical termination

criterion is not valid in this problem. After scaling of the matrix the number of extreme eigenvalues

is reduced and equal to the number of layers with a high permeability. To annihilate the e�ect of

these eigenvalues a de
ated CG method is used. The convergence rate improves considerably and the

termination criterion is reliable. Finally a cheap approximation of the eigenvectors is proposed.

Keywords: porous media, preconditioned Conjugate Gradients, de
ation, Poisson equation,

discontinuous coe�cients across layers, eigenvectors, �nite element method

AMS Subject Classi�cation: 65F10, 65F15, 76S05

1 Introduction

One of the problems an oil company is confronted with when drilling for oil, is the presence

of excess 
uid pressures within the rock layers of the subsurface. Knowledge of the excess

pressure is valuable in the prediction of the presence of oil and gas in reservoirs and a key

factor in safety and environmental aspects of drilling a well.

A mathematical model for the prediction of excess pressures in a geological time scale is

based on conservation of mass and Darcy's law ([5] and [10]). This leads to a time-dependent

di�usion equation, where the region also changes in time, as rocks are deposited or eroded.

The Euler Backward is used for the time integration. In order to solve this di�usion equation,

the �nite element method is applied. As a consequence in each time-step a linear system of

equations has to be solved. Due to non-linear e�ects and the time-dependence of the region

the coe�cients of the di�usion equation change in each time-step.

In practical applications we are faced with large regions in a three-dimensional space and as

a consequence a large number of �nite elements is necessary. The matrix itself is sparse, but

due to �ll-in a direct method requires too much memory to �t in core. Moreover, since in each

time-step we have a good start vector, only iterative methods are acceptable candidates for

the solution of the linear systems of equations.

Since these equations are symmetric a preconditioned conjugate gradient method (ICCG) [18]

is a natural candidate. Unfortunately an extra complication of the physical problem we are

dealing with, is that the underground consists of layers with very large di�erences in per-

meability. For example in shale the permeability is of the order 10

�6

to 10

�11

(D), whereas in

sandstone it is of the order 1 to 10

�4

(D). Hence a contrast of 10

�7

is common in the system

of equations to be solved.

A large contrast in coe�cients usually leads to a very ill-conditioned system of equations to

be solved. Since the convergence rate of ICCG depends on the distribution of the eigenvalues

of the matrix one may expect a slow convergence rate. In Section 2 it is shown that this is

indeed the case. An even more alarming phenomenon is that numerical results suggest that

ICCG has reached a certain accuracy but that the actual accuracy is in fact orders worse.

This is due to the ill-conditioned matrix which results in the standard termination criterion
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no longer being reliable. To our knowledge this observation has not been made before.

An analysis of the problem in Section 3 shows that without preconditioning there are many

small eigenvalues in the matrix, but using an IC preconditioned matrix this number is re-

duced to the number of sandstone layers that not reach the earth surface. This surprising

observation is also new. This analysis suggests a way of solving the problems mentioned.

In Section 4 it is shown that the convergence and reliability of the termination criterion is

considerably improved by projecting the solution in each iteration onto the orthogonal com-

plement of the space spanned by the eigenvectors corresponding to the very small eigenvalues

of the preconditioned matrix. The idea is that, assuming that the vectors are written as linear

combination of eigenvectors, the components corresponding to these speci�c eigenvectors do

not play a role anymore. As a result one may expect a much faster convergence and a reliable

termination criterion. A clear disadvantage of this method is of course that one has to com-

pute the speci�c eigenvectors. In Section 5, however, it is shown, how one can approximate

these eigenvectors easily, based on physical arguments. Furthermore it is shown, that even

approximate eigenvectors lead to a fast convergence. Finally in Section 6 some numerical

evidence of our improved algorithm is given.

The CG [12] method, combined with a preconditioner, is a popular iterative method to solve

large algebraic systems of linear equations, when the system matrix is symmetric and positive

de�nite. Many practical preconditioners are based on an Incomplete Choleski factorization.

The resulting ICCG method has been �rst described in [18]. Later on various alternatives have

been formulated, such as MICCG [11], RICCG [3], and ILUM [24]. An incomplete factoriza-

tion preconditioner for singular systems has been investigated in [22]. Recently a number of

preconditioners have been proposed for the discretized Poisson equation, where the rate of

convergence does not depend on the grid size. Examples are: NGILU [28] and DRIC [23]. A

comparison of these and related preconditioners has been given in [6].

It is well known that the convergence rate of CG depends on the ratio of the largest and

smallest eigenvalue of the system matrix. To explain the superlinear convergence of CG, Ritz

values have to be taken into account [29]. The convergence rate only depends on active eigen-

values. An eigenvalue is active when the error has a non zero component in the corresponding

eigenvector. This observation is used to solve singular systems with the CG method (see [2] p.

476-480). In [15] the initial approximation is projected such that the start residual is perpen-

dicular to the kernel of the matrix. In [1] the start approximation is projected in such a way

that the error has no components in the eigenvectors corresponding to small eigenvalues. This

increases the smallest active eigenvalue and thus the convergence rate. After the projection

the original CG method has been used in both papers.

In [21] and [20] a de
ated CG method has been proposed. In every CG iteration the residual

is projected onto a chosen subspace. The projected CG method used in this work (compare

[31]) is closely related to these de
ated CG methods. The main di�erence is the choice of the

subspace. We base our choice on the physical properties of the problem considered. Another

di�erence is the implementation. Various implementations are possible to incorporate a pro-

jection. We specify an implementation such that the basis of our subspace consist of vectors

with many zero elements. Related work [13], [26] has been presented at the Copper Mountain

conference on iterative methods.
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De
ation is also used in iterative methods for non-symmetric systems of equations [19], [16],

[9], [8], [7], [4]. In these papers the smallest eigenvalues have been shifted away from the origin.

The eigenvectors are in general obtained from the Arnoldi method. The motivation to use

de
ation is to enhance the convergence of restarted GMRES [25]. Finally de
ation techniques

have also been combined with solution methods for systems of non-linear equations [27] and

[30].

2 Statement of the problem and experiments with ICCG

As mentioned in the introduction, in each time-step we have to solve a system of equations

that arises from the discretization of a 3D time-dependent di�usion equation. In this paper,

however, we are only interested in the convergence behaviour of the ICCG process for problems

with layers with large contrasts in the coe�cients. For that reason we simplify the equation

considerably and assume that we have to solve the stationary linearized 2D di�usion equation,

in a layered region:

�div(�rp) = 0 ; (1)

with p the excess pressure and � the permeability. At the earth surface the excess pressure is

prescribed. At the arti�cial boundaries we take a zero 
ux condition. For our model problem

we assume that � in sandstone is equal to 1 and � in shale is equal to 10

�7

. Furthermore the

Dirichlet boundary condition at the earth surface is set equal to 1. The solution of equation

(1) with these boundary conditions is of course p = 1, but if we start with p = 0 or a

random vector, our linear solver will not notice the di�erence with a real problem. Numerical

experiments show that the choice of start vector has only marginal e�ects.

Equation (1) is discretized by a standard �nite element method using bilinear quadrilateral

elements. This results in a system of linear equations to be solved, which will be denoted as

Ax = b. In our �rst experiment we have solved this problem on a rectangular domain with

7 straight layers (Figure 1), using CG without preconditioner. The termination criterion is

based on the estimation of the smallest eigenvalue during the iterations by a Lanczos method

as described by Kaasschieter [14]. Figure 2 shows the norm of the residual, the norm of the

error and also the estimation of the smallest eigenvalue as function of the number of iterations.

In each layer 10 elements in the horizontal and 5 elements in the vertical direction are used.

From this �gure the following remarkable observations may be made.

1. The residual decreases monotonously between iterations 1 and 30. For the iterations

between 31 and 1650 we have an erratic behaviour of the residual. After iterations 1650

again we have a monotone decreasing of the residual.

2. If we require an accuracy of order 10

�2

, the process would stop after approximately 25

iterations, since then the residual divided by the estimation of the smallest eigenvalue is

small enough. Unfortunately the error is still large because the estimation of the smallest

eigenvalue is very inaccurate.

3. In iterations 1-30 it looks as if the smallest eigenvalue is in order 10

�2

, whereas from

iteration 31 it is clear that the smallest eigenvalue is of order 10

�7

.

So we see that the bad condition leads to a large number of iterations. Moreover, for practical

values of the error, the termination criterion is not reliable.
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Fig. 1. Arti�cial con�guration with 7 straight layers
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Fig. 2. Convergence behaviour of CG

without preconditioning
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Fig. 3. Convergence behaviour of CG

with IC preconditioning

Repeating the same experiment using an IC preconditioning gives a drastic reduction of the

number of iterations, but still the same conclusions as for the case without preconditioning

can be drawn. Figure 3 shows the convergence behaviour. Note that the horizontal scales in

Figures 2 and 3 are quite di�erent. Although the number of iterations (48) is small compared

to the non-preconditioned algorithm (1650), still it is quite large compared to the number of

unknowns (385).

3 Analysis of the iteration matrix

In order to get more insight in the convergence behaviour, we have investigated the eigenval-

ues of the matrix. If we compute all eigenvalues of the discretization matrix, then we see that

the number of small eigenvalues (i.e. of order 10

�7

), is equal to the number of nodes that are
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entirely in the shale layers plus 3. One can expect that this number is at least equal to the

number of internal "shale" nodes, since all non-zero elements in the corresponding rows of

the matrix are of order 10

�7

. The number 3 will be explained later on. The iteration process

only converges, once all small eigenvalues have been "discovered".

When we use an IC preconditioner, and compute all eigenvalues of the discretization matrix

multiplied by the preconditioning matrix, we see that only 3 eigenvalues are of order 10

�7

. All

other eigenvalues are of order 1. This observation appears to be true for all kinds of precondi-

tioners, even for a simple diagonal scaling. The convergence behaviour shown in Figure 3 can

be explained by these 3 eigenvalues. Once a small eigenvalue has been "discovered" by the

CG process, the residual increases considerably. Only when all small eigenvalues have become

visible to the algorithm, the actual error decreases.

A possible explanation for the fact that there are only 3 small eigenvalues in the precondi-

tioned case is the following. The preconditioner will scale the Laplacian equation per layer in

such a way that the rows with small elements at the diagonal, will get elements of the order 1.

However, in a shale layer we have a Neumann boundary condition at the "side" walls. But at

the top and bottom we have a sandstone layer. Since the permeability in sandstone is much

larger than in shale, the pressure in the sandstone may be considered as more or less constant.

So from the view of a shale layer we have a kind of Dirichlet boundary condition for the top

and bottom. On the other hand for the sandstone layers, the shale layers may be regarded

as more or less impermeable. The interface condition is approximately a Neumann boundary

condition. So for each sandstone layer between two shale layers we have to solve a Laplacian

equation with approximately Neumann boundary conditions. Only at the top layer we have a

given Dirichlet boundary condition. Since the solution of the Neumann problem is �xed upon

an additive constant we way expect a small eigenvalue for each sandstone layer, that has no

explicit Dirichlet boundary conditions. So it is reasonable to expect 3 small eigenvalues in

this particular example. A mathematical proof of this observation is given below.

Let our rectangular region consist of a sequence of 2n + 1 plain layers of equal thickness

with at the top a sand layer and further downwards alternatingly shale and sand layers. The

permeability of the sand and shale layers is 1 respectively � > 0. We choose a rectangular

mesh with a uniform mesh size h in both x and y direction such that the sand/shale interfaces

coincide with element boundaries. We discretize (1) by applying the standard �rst order bilin-

ear FE-method and numerical integration with the element corner-points as the integration

points. Numbering the unknowns locally from left to right and top to bottom the element

matrix S for a single element in the sand is:

S =

0

B

B

B

@

1 �

1

2

�

1

2

0

�

1

2

1 0 �

1

2

�

1

2

0 1 �

1

2

0 �

1

2

�

1

2

1

1

C

C

C

A

:

The element matrix in shale is �S.

Assembling all the element matrices leads to a system of equations Ax = b, where A is a sym-

metric m�m M-matrix. If we group the equations and unknowns belonging to a single layer

together, add the unknowns and equations of each sand/shale interface to the corresponding
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sand group and order the groups from top to bottom, A becomes a block tridiagonal matrix

for which we introduce the following notation:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

H

0

I

T

1

I

1

L

1

J

T

1

J

1

H

1

I

T

2

I

2

L

2

J

T

2

J

2

.

.

.

.

.

.

.

.

.

L

n

J

T

n

J

n

H

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Sand + interface

Shale

Sand+interface

Shale

Sand+ interface

Shale

Sand+ interface

S S S S S S S

a h a h a h a

n a n a n a n

d l d l d l d

e e e

Let �

N

h

, �

T

h

and �

D

h

be the FE-matrices of the Laplacian on a single layer with respectively

Neumann boundary conditions on all boundaries, Dirichlet boundary conditions on the top

boundary and Dirichlet boundary conditions on top and bottom boundaries. The matrices H

i

for i � 1 consist of two parts: the contribution of the elements in the sand and the contribution

of the neighbouring elements in the shale. The sand part is equal to�

N

h

, and the only non-zero

entries in the shale part are the diagonal elements for the interface unknowns and the entries

which relate neighbouring unknowns in the interface. Their values are respectively 2� (� on the

boundary) and ��=2. H

1

is equal to H

i

apart from the unknowns in the top boundary, which

are known and have been eliminated. The matrices L

i

are equal to ��

D

h

. I

i

and J

i

are have

only non-zero entries on the diagonal which relates interface unknowns to their neighbouring

shale unknown. Their values are �� (��=2 on the boundary).

Let D be the diagonal of A and

^

A = D

�1=2

AD

�1=2

the diagonally scaled matrix. Similarly

to A, D can be partitioned into submatrices D

H

i

, the diagonal of H

i

, and D

L

i

, the diagonal

of L

i

. The diagonal elements of D

H

i

are 4 (2 on the boundary) except for the interface nodes

where the values are (2 + 2�) ((1+ �) on the boundary). The diagonal elements of D

L

i

are 4�

(2� on the boundary).

^

A can be partitioned into submatrices

^

H

i

, ,

^

L

i

,

^

I

i

and

^

J

i

with

^

H

i

= (D

H

i

)

�1=2

H

i

(D

H

i

)

�1=2

;

^

L

i

= (D

L

i

)

�1=2

L

i

(D

L

i

)

�1=2

;

^

I

i

= (D

L

i

)

�1=2

I

i

(D

H

i�1

)

�1=2

;

^

J

i

= (D

H

i

)

�1=2

J

i

(D

L

i

)

�1=2

:

To study the in
uence of the parameter � on the eigenvalues f�

^

A

j

g

0�j�m

of

^

A, we split

^

A into

an � dependent and an � independent part :
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^

A =

^

�+ E ; (2)

where

^

� is the block-diagonal matrix with as �rst block

^

�

T

h

, the diagonally scaled �

T

h

, and

then further down alternatingly

^

�

D

h

, the scaled �

D

h

, and

^

�

N

h

, the scaled �

N

h

. The eigenvalues

�

^

�

j

of

^

� are equal to the eigenvalues of all its diagonal blocks. Let f�

T

j

g

0�j�m

1

, f�

D

j

g

0�j�m

2

and f�

N

j

g

0�j�m

3

be the ordered eigenvalues of respectively

^

�

T

h

,

^

�

D

h

and

^

�

N

h

. It is well known

that:

�

N

0

= 0; (3)

and that there exists a c2(h) such that

c2(h) � �

N

j

� 2 for 1 � j � m

3

;

c2(h) � �

T

j

� 2 for 0 � j � m

2

; (4)

c2(h) � �

D

j

� 2 for 0 � j � m

3

:

The blocks of the symmetric tridiagonal block matrix E are given by:

E

1;1

=

^

H

0

�

^

�

T

h

and for 1 � i � n;

E

2i�1;2i

=

^

I

T

i

;

E

2i;2i

=

^

L

i

�

^

�

D

h

; (5)

E

2i;2i+1

=

^

J

T

i

;

E

2i+1;2i+1

=

^

H

i

�

^

�

N

h

:

For 0 � i � n, E

2i+1;2i+1

contain only non-zero matrix entries which relates nodes in the

interface with their neighbouring interior nodes. Their values are

�1 +

p

1 + �

2

p

2 + 2�

= O(�): (6)

For 1 � i � n, E

2i;2i

= 0 and E

2i�1;2i

, E

2i;2i+1

, E

2i;2i+1

and E

2i+1;2i

have only non zero elements

on the o�-diagonal, relating interface nodes to their direct neighbour in the low permeable

layer. The value of these entries is:

�

p

�

2

p

2 + 2�

= O(

p

�): (7)

Let Q be the block-diagonal orthogonal matrix such that Q

T

^

� Q = �

^

�

; and B a block

diagonal matrix of which the blocks are de�ned by:

B

2i+1;2i+1

= (

p

�=c3) I for 0 � i � n;

B

2i;2i

= I for 1 � i � n; (8)

where c3 is an arbitrary constant. If we now de�ne

�

A = B

�1

Q

T

^

A Q B then

�

A = B

�1

Q

T

^

� Q B + B

�1

Q

T

E Q B =

�

�+

�

E : (9)

The blocks of

�

� just contain the eigenvalues of

^

� (which satisfy equation (3) and inequalities

(4)) and for the blocks of

�

E we �nd that
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the elements of

�

E

2i+1;2i+1

= O(�);

the elements of

�

E

2i�1;2i

and

�

E

2i+1;2i

= O(c3); (10)

the elements of

�

E

2i;2i+1

and

�

E

2i+2;2i+1

= O(�=c3);

the elements of

�

E

2i;2i

= 0:

If we now choose c3 < c2(h)=4 and subsequently � small enough, apply Gershgorin's theorem

to

�

A and account for the fact that each eigenvalue of

^

A is also an eigenvalue of

�

A and in the

interval (0,2) then

0 < �

^

A

j

= O(�) for 0 � j � n� 1;

c2(h)=2+ O(�) � �

^

A

j

< 2 for n � j � m: (11)

This proves the following theorem:

Theorem 3.1. For � small enough the diagonally scaled matrix D

�1=2

AD

�1=2

has only n

eigenvalues of O(�), where n is the number of sand layers between shale layers.

4 The De
ated ICCG method

In this section we derive a De
ated Incomplete Choleski Conjugate Gradient method. This

method can be used to solve the system of linear equations for the excess pressure. In the

previous section it has been shown that the preconditioned matrix has only a small number

of very small eigenvalues. The de
ation is used to annihilate the e�ect of these eigenvalues

on the convergence of the ICCG method.

Let Ax = b be the system of equations to be solved, where A is a symmetric and positive

de�nite (SPD) matrix. Let M be the Incomplete Choleski decomposition of A satisfying

A � LL

T

=M , where L is a sparse lower triangular matrix and M is SPD. ICCG consists of

the application of CG to the following preconditioned system

L

�1

AL

�T

y = L

�1

b ; x = L

�T

y :

De�ne

~

A = L

�1

AL

�T

and

~

b = L

�1

b. Note that

~

A is SPD.

To de�ne the De
ated ICCG method we assume that the vectors v

1

; :::; v

m

are given and

form an independent set. These vectors de�ne a space V = spanfv

1

; :::; v

m

g and a matrix

V = [v

1

:::v

m

]. A special choice for v

i

are the eigenvectors corresponding to the smallest

eigenvalues of

~

A hence

~

Av

i

= �

i

v

i

; 0 < �

1

� �

n

::: � �

n

.

The operator P de�ned by P = I � VE

�1

(

~

AV )

T

with E = (

~

AV )

T

V ; is a projection with

the following properties (the matrix E 2 R

m�m

is symmetric and positive de�nite):

Theorem 4.1. The operator P has the following properties:

i PV = 0 and P

T

~

AV = 0 ;

ii P

2

= P ;

iii

~

AP = P

T

~

A.
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Proof. Properties i) and iii) are easily checked. The proof of ii) runs as follows

P

2

= (I � VE

�1

(

~

AV )

T

)(I � VE

�1

(

~

AV )

T

)

= P � VE

�1

(

~

AV )

T

+ V E

�1

(

~

AV )

T

V E

�1

(

~

AV )

T

= P :

�

Corollary 4.1. The matrix

~

AP is symmetric and positive semi-de�nite.

Remark 4.1. When v

i

are eigenvectors of

~

A with norm equal to 1 then P = I �V V

T

because

v

T

i

v

j

= �

ij

.

We assume that the start vector x

0

is zero. If x

0

6= 0 the De
ated ICCG algorithm should be

applied to A(x � x

0

) = b � Ax

0

. To speed up the convergence of ICCG we assume that the

space V is chosen such that it contains the slow converging components and split the vector

y into two parts

y = (I � P )y + Py : (12)

The �rst part (I � P )y is the component of y contained in V , whereas the second part Py is

perpendicular to V in the (:; :)

~

A

inner product. The �rst part is determined from:

(I � P )y = V E

�1

(

~

AV )

T

y = V E

�1

V

T

~

b : (13)

To compute the second part Py we use

~

APy = P

T

~

Ay = P

T

~

b ; and solve y from

P

T

~

Ay = P

T

~

b : (14)

The singular system (14) has a solution because P

T

~

b is an element of the Range (P

T

~

A). A

solution y of (14) may contain an arbitrary element of Null (P

T

~

A) = V . Since PV = 0; Py

is uniquely determined.

When we apply the CG algorithm to the symmetric positive semi-de�nite system (14) we get

the De
ated ICCG algorithm:

DICCG1

k = 0; y

0

= 0; ~p

1

= ~r

0

= P

T

L

�1

b;

while k~r

k

k > " do

k = k + 1;

�

k

=

(~r

k�1

;~r

k�1

)

(~p

k

; P

T
~

A~p

k

)

;

y

k

= y

k�1

+ �

k

~p

k

;

~r

k

= ~r

k�1

� �

k

P

T

~

A~p

k

;

�

k

=

(~r

k

;~r

k

)

(~r

k�1

;~r

k�1

)

;

~p

k+1

= ~r

k

+ �

k

~p

k

;

end while

In order to get an approximation of y(= L

T

x) the vector y

k

is multiplied by P and substituted

in (12).

In order to determine the matrix V we have to compute (or approximate) the eigenvectors
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of the matrix

~

A. Unfortunately these eigenvectors contain many non-zero elements in our

application. Furthermore they are hard to predict on physical grounds. The eigenspace of the

matrix L

�T

L

�1

A corresponding to the m smallest eigenvalues can be approximated by the

span of m sparse vectors, which are obtained on physical grounds. For that reason we rewrite

the De
ated ICCG algorithm as follows:

De�ne

�

P = L

�T

PL

T

; ~r

k

= P

T

L

�1

r

k

= L

�1

�

P

T

r

k

= L

�1

r̂

k

, with r̂

k

=

�

P

T

r

k

, and z

k

=

L

�T

L

�1

r̂

k

. Since y

k

= L

T

x

k

and L

T

x

k

= L

T

x

k�1

+�

p

~p

k

, we choose ~p

k

= L

T

p

k

. Substitution

in DICCG1 leads to

DICCG2

k = 0; y

0

= 0; r̂

0

=

�

P

T

r

0

; p

1

= z

1

= L

�T

L

�1

r̂

0

;

while kr̂

k

k > " do

k = k + 1;

�

k

=

(r̂

k�1

;z

k�1

)

(p

k

;

�

P

T

Ap

k

)

;

x

k

= x

k�1

+ �

k

p

k

;

r̂

k

= r̂

k

� �

k

�

P

T

Ap

k

;

z

k

= L

�T

L

�1

r̂

k

;

�

k

=

(r̂

k

;z

k

)

(r̂

k�1

;z

k�1

)

;

p

k+1

= z

k

+ �

k

p

k

;

end while

It is easy to verify that the projection

�

P = L

�T

PL

T

has the following properties:

Properties of

�

P

1.

�

P = I �

�

V E

�1

(A

�

V )

T

where

�

V = L

�T

V and E = (

~

AV )

T

V = (A

�

V )

T

�

V ,

2.

�

P

�

V = 0, and

�

P

T

A

�

V = 0,

3.

�

P

T

A = A

�

P .

The vector x can be splitted into two parts (compare equation (12)):

x = (I �

�

P )x+

�

Px : (15)

The �rst part can be calculated as follows

(I �

�

P )x =

�

V E

�1

�

V Ax =

�

VE

�1

�

V

T

b :

For the second part we project the solution x

k

obtained from DICCG2 to

�

Px

k

.

For the special choice that v

i

are eigenvectors of

~

A; �v

i

are eigenvectors of L

�T

L

�1

A. In that

case the projection can be written as

�

P = I �

�

V (LL

T

�

V )

T

:

A well known convergence result for CG applied to

~

Ay =

~

b is ([17] p.187):

ky � y

k

k

~

A

� 2ky � y

0

k

~

A

 

p

K � 1

p

K + 1

!

k

; (16)

where K = K

2

(

~

A) =

�

n

�

1

. Since the results obtained from DICCG1 and DICCG2 are equal

we restrict our convergence research to DICCG1. When we choose V = [v

1

:::v

m

] where v

i

are

the normalized eigenvectors of

~

A, it is easy to verify that
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P

T

~

Av

i

= 0 for i = 1; :::; m ;

P

T

~

Av

i

= �

i

v

i

for i = m+ 1; :::; n :

On the space spanfv

m+1

; :::; v

n

g the norm k � k

P

T
~

A

= k � k

~

AP

is well de�ned. Using this norm

together with Inequality (16) it can be proved that

kPy � Py

k

k

2

� 2

p

KkPy � Py

0

k

2

 

p

K � 1

p

K + 1

!

k

;

where K =

�

n

�

m+1

. This inequality predicts a speed up of convergence when �

m

� �

m+1

.

Since Py and Py

k

are elements of spanfv

m+1

; :::; v

n

g the following expression holds:

kP

T

~

b� P

T

~

Ay

k

k

2

= k

~

APy �

~

APy

k

k

2

� �

m+1

kPy � Py

k

k

2

: (17)

So the following termination strategy can be used: estimate �

m+1

via Kaasschieter's method

[14] and terminate DICCG1 when

kP

T

~

b� P

T

~

Ay

k

k

2

�

"

�

m+1

:

This together with Inequality (17) implies that kPy�Py

k

k

2

� ". For DICCG2 a comparable

termination criterion can be derived.

5 A choice of projection vectors

A good choice of the projection vectors is important to obtain an e�cient De
ated ICCG

method. In this section we restrict ourselves to the class of problems de�ned in Section 2. An

analysis of the matrix (Section 3) shows that the spectrum of this matrix contains many small

eigenvalues (of order 10

�7

). For the preconditioned matrix, the number of small eigenvalues

is drastically reduced. This number is proportional to the amount of sandstone layers. In

Section 4 a De
ated ICCG method is given, which is very suitable to problems where the

matrix has a small number of extreme eigenvalues.

We consider the problem as shown in Figure 1. As a �rst choice we take v

1

; v

2

; v

3

equal to

the three eigenvectors of

~

A corresponding to the small eigenvalues. We use DICCG1 with

P = I � V V

T

. The vectors v

i

should be stored, so 3n extra memory positions are needed.

Furthermore in every iteration of DICCG1, the projection P should be applied to a vector,

which costs 3 inner products and 3 vector updates extra per iteration.

Drawbacks of this choice are:

1. the determination of the eigenvectors can be expensive,

2. the amount of extra memory and work per iteration grows, when the number of small

eigenvalues increases.

For the determination of the eigenvectors an inverse (Krylov) iteration can be used, however

this costs more work than the solution of the original system. In our application the excess

pressure is needed in every time iteration. The di�erences in the matrices in consecutive time-

steps are relatively small. In such a problem DICCG1, with eigenvectors as projection vectors,
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can be feasible when the eigenvectors are only computed at a small number of time steps.

Because of these drawbacks we use another approach, motivated by the properties of the

eigenvectors �v

i

= L

�1

v

i

of L

�T

L

�1

A, corresponding to the small eigenvalues. For the problem

considered a vertical cross section of the eigenvectors is plotted in Figure 4. The cross sections
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Fig. 4. The vertical cross section of the eigenvectors corresponding to the small eigenvalues

have the following properties:

- their value is constant in sandstone layers,

- their value is zero in the �rst sandstone layer,

- in the shale layers their graph is linear.

So the space spanf�v

1

; �v

2

; �v

3

g is identical to the space spanfw

1

; w

2

; w

3

g, where the vertical

cross sections of w

i

are de�ned by:

- the value of w

i

is one in the i+ 1

th

sandstone layer and zero in the other sandstone layers,

- their graph is continuous in the whole domain and linear in the shale layers.

So instead of DICCG1 with the eigenvectors DICCG2 is applied with V = spanfw

1

; w

2

; w

3

g.

Since the vectors w

i

are no eigenvectors it is necessary to store w

i

and Aw

i

. Due to the

sparseness 2 memory vectors are su�cient to store all w

i

. Furthermore the elements of Aw

i

are only non-zero at the grid points connected to the interfaces of the i

th

shale layer. Thus

2 memory vectors are also su�cient to store all vectors Aw

i

. In the same way the sparseness

can be used to save CPU time. It is possible to implement the projection such that the extra

amount of work per iteration is less than 2 inner products and 2 vector updates independent

of the number of small eigenvalues. This makes the DICCG2 algorithm very attractive for

this kind of problems.

We have also solved problems where shale and sandstone layers are slightly curved. Again

DICCG2, with projection vectors de�ned in the same way as above, proved to be an e�cient

solution algorithm. If we assume that the sandstone layers without a Dirichlet condition are

numbered from 1 to m, the we propose to use DICCG2 with the projection vectors w

i

chosen

as:

- the value of w

i

is one in the i

th

sandstone layer and zero in the other sandstone layers,

- in the shale layers, w

i

satis�es

�div(��w

i

) = 0; (18)
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and on the interfaces it satis�es a Dirichlet boundary condition equal to the constant value

0 or 1 of the neighbouring sandstone layer.

For our original problem, this choice leads to the same projection vectors as before. The

solution of (18) amounts to solving the same system of equations at a much smaller domain

without the extreme contrasts in the coe�cients. In fact this process is similar to a domain

decomposition method.

6 Numerical experiments

In order to test the De
ated ICCG method we have applied DICCG2 to the 7 straight

layers problem de�ned in Section 2. The 3 projection vectors are de�ned as in the previous

section. For this straight layers case these vectors span exactly the space of the 3 eigenvectors

corresponding to the small eigenvalues. Figure 5 shows the convergence behaviour of the

DICCG2 method, the estimation of the smallest eigenvalue as well as the error. It is clear

that we have an enormous improvement compared to the results without projection as shown

in Figure 3. Because of the sparse structure of the approximate eigenvectors the overhead

per iteration is very moderate. Besides that, the decrease of the residual is now a measure

for the error, so that we have a reliable termination criterion. Our intention is to use the
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Fig. 5. Convergence behaviour of

DICCG2 for the straight layers problem
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Fig. 6. Convergence behaviour of

DICCG2 for the parallel arcs problem

DICCG2 method also for the case that we have "approximate" eigenvectors. Therefore we

have replaced the straight layers in our example by curved layers as shown in Figure 7a and

7b. The number of elements is exactly the same as for the straight layers region. For these

examples the graphs of the vertical cross sections of the eigenvectors are no longer linear

in the shale layers. Nevertheless we use exactly the same projection vectors in DICCG2 as

for the straight layers problem. The convergence behaviour of the DICCG2 method applied

to the mesh of Figure 7a is shown in Figure 6. The number of iterations has been increased

compared to the straight layers case, but the overall behaviour is the same. Application of the

DICCG2 method to the mesh of Figure 7b leads to the same convergence behaviour as the one

for the straight layers (Figure 5). Presumably, the projection vectors are good approximations
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Fig. 7. a) Curved mesh consisting of parallel arcs b) Curved mesh with straight and curved

layers

of the eigenvectors in these cases. From our limited number of experiments it is clear that

the DICCG2 method is an enormous improvement compared to the classical ICCG method,

provided the approximate eigenvectors are a reasonable estimate of the true eigenvectors.

7 Conclusions

It has been shown that the preconditioned Conjugate Gradient method for layered problems

with extreme contrasts in the coe�cients has a very erratic convergence behaviour. The re-

sidual shows large bumps and moreover the decrease of the residual cannot be used as reliable

termination criterion. Only when all eigenvectors corresponding to small eigenvalues are de-

tected, the smallest Ritz values are converged to the smallest eigenvalues, the convergence

behaviour is more or less as usual. In order to solve this problem a new method called DICCG

has been developed that projects the contribution of the eigenvectors corresponding to the

small eigenvalues onto the null space. This new method has excellent convergence properties

and more important a reliable termination criterion. Even if we use approximations of these

eigenvectors based on physical arguments still the de
ated ICCG method performs very good.

It is our aim to apply the DICCGmethod to large time-dependent 3D problems with a realistic

number and shape of layers. A point to be solved, however, is how to create the approximate

eigenvectors in more general con�gurations including inclusions. We think that it is su�-

cient to solve the original problem for each completely enclosed shale layer with approximate

boundary conditions. Since we are only dealing with approximate eigenvectors we expect that
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the solution of the sub-problem may be done with a moderate accuracy. The choice of the

approximate eigenvectors as well as the sensitivity of the method to the accuracy of these

approximate eigenvectors is the subject of our present research.
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