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Abstract

We study fast and robust iterative solvers for large systems of linear equations
resulting from simulation of flow trough strongly heterogeneous porous media. We
propose the use of preconditioning and deflation techniques, based on information
obtained from the system, to reduce the time spent in the solution of the linear sys-
tem.
An important question when using deflation techniques is how to find good deflation
vectors, which lead to a decrease in the number of iterations and a small increase in
the required computing time per iteration. In this paper, we propose the use of defla-
tion vectors based on a POD-reduced set of snapshots. We investigate convergence
and the properties of the resulting methods. Finally, we illustrate these theoretical
results with numerical experiments. We consider compressible and incompressible
single-phase flow in a layered model with variations in the permeability layers up to
103 and the SPE 10 benchmark model with a contrast in permeability coefficients of
107. Using deflation for the incompressible problem, we reduce the number of iter-
ations to 1 or 2 iterations. With deflation, for the compressible problem, we reduce
up to ∼ 80% the number of iterations when compared with the only-preconditioned
solver.
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1 Introduction.

Often, most computational time in the simulation of multi-phase flow through porous me-
dia is taken up by the solution of the pressure equation. This involves, primarily, solving
large systems of linear equations as part of the iterative solution of the time and space
discretized governing nonlinear partial differential equations. The time spent in solving
the linear systems depends on the size of the problem and the heterogeneity, i.e. the spa-
tial variations of rock permeability values within the medium (permeability is an inverse
measure of the resistance to flow which is related to the porosity and the pore structure
of the rock). Solution of problems with extreme contrasts in the permeability values may
lead to very large computing times.
Iterative methods are known to be the best option to solve such extreme problems. How-
ever, sometimes iterative methods are not sufficient to solve these problems in a reasonable
amount of time. As the systems become larger or ill-conditioned, finding a way to accel-
erate the convergence of these methods becomes necessary. Preconditioning is a way to
accelerate convergence, but new preconditioning techniques still need to be developed to
improve the performance of iterative methods [1, 2]. Reduced Order Models (ROM) have
also been studied to improve computational efficiency by reducing the model size with-
out losing essential information [3–5]. A potential ROM to reduce the computing time
for large-scale problems is Proper Orthogonal Decomposition (POD), a method that has
been investigated for flow problems in porous media in [6–15] among others. The use of a
POD-based preconditioner for acceleration of the solution is proposed by Astrid et al. [11]
to solve the pressure equation resulting from two-phase reservoir simulation, by Jiang et
al. [14] for a similar application and by Pasetto et al. [15] for groundwater flow models.
The POD method requires the computation of a series of ’snapshots’ which are solutions of
the problem with slightly different parameters or well inputs. Astrid et al. [11] use snap-
shots in the form of solutions of the pressure equation computed in a small number of short
pre-simulations, prior to the actual simulation, with diverse well configurations, reporting
promising speed ups with factors between three and five. They note that the overhead
required to pre-compute the POD solutions implies that the method will be particularly
attractive when many solutions of near-similar simulation models are required. A similar
approach is followed by Jiang [14], who concludes that POD-based pressure preconditioning
does not appear to be an ideal choice because of its dependence on the differences between
the right-hand sides (forcing terms) used in the pre-simulations and the actual simulation.
The snapshots computed by Pasetto et al. [15] are solutions of the previous time steps in
the full-model. Once the snapshots are computed, the POD method is used to obtain a set
of basis vectors that capture the most relevant features of the system, which can be used
to speed-up the subsequent simulations.
The method of Pasetto at al. [15] is partly based on the work of Markovinovic and Jansen
[8] who use a similar, but more restricted, approach in which the acceleration is achieved
by only improving the initial guess.
Problems with high contrast between the permeability coefficients are sometimes ap-
proached through the use of deflation techniques, see, e.g., [16]. These techniques involve
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the search of good deflation vectors, which are usually problem-dependent. In [16], subdo-
main based deflation vectors are used for layered problems with a large contrast between
permeability coefficients. However, these deflation vectors cannot be used if the distribu-
tion of the permeability coefficients is not structured, as is usually the case in reservoir
simulation models; see, e.g., the well-known SPE 10 benchmark problem [17].
Algebraic Multigrid (AMG)[18], Multi-level and Domain Decomposition [19] precondition-
ers have been studied in combination deflation techniques to accelerate the convergence of
iterative methods. In [8, 11] and [15], after computing a basis from the previously obtained
snapshots, the solution is computed in the subspace generated by this basis and then pro-
jected back to the original high-dimensional system. Carlberg et al. [20] also use POD to
obtain information from the system, in particular, the previous time step solutions. Then,
a Krylov-subspace is constructed using the information obtained previously.
Following the ideas of [8, 11, 15, 20], we propose the use of POD of many snapshots to
capture the system’s behavior and combine this technique with deflation to accelerate the
convergence of an iterative Krylov method. In this work, instead of computing the solution
in a low dimensional subspace, the basis obtained with POD is proposed as an alternative
choice for the deflation vectors to accelerate the convergence of the pressure solution in
reservoir simulation.
This work is divided into six sections. Section 2 is devoted to a detailed description of
the models used to simulate flow through a porous medium. In Section 3, we present
some theory about the linear solvers used in this work and we introduce preconditioning
and deflation techniques. In Section 4 we present some theory about POD. We prove two
lemmas that will help us in the choice of good deflation vectors for the incompressible case
in Section 5.
In Section 6 we present numerical experiments. We describe the problem that is studied,
the solver and the preconditioning and deflation techniques used to speed up the solver.
The results are also presented in this section. Finally, we end with the conclusions.
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2 Flow through porous media

Petroleum reservoirs are layers of sedimentary rock, which vary in terms of their grain size
and mineral contents. The volume fraction of the rock in-between the grains, i.e. the void
space, is called rock porosity, a scalar quantity indicated with φ. The ability of the rock
to transmit a single fluid when the void space is completely filled with fluid is known as
rock permeability, a tensor quantity indicated with K.
Reservoir simulation is a way to analyze and predict the fluid behavior in a reservoir. The
description of subsurface flow simulation involves two types of models: geological (static)
and flow (dynamic) models. The static model is used to describe spatial properties of
the reservoir, i.e. the porosities and permeabilities, which are parameters for the dynamic
model. The dynamic model is subsequently used to predict fluid pressures and flow taking
into account mass conservation and Darcy’s law, an empirical, simplified version of the
momentum conservation equations. The corresponding equations used to describe single-
phase flow through a porous medium are (see, e.g., [21–23]) :

∂(ρφ)

∂t
+∇ · (ρv) = q, v = −K

µ
(∇p− ρg∇z), (1)

or
∂(ρφ)

∂t
−∇ ·

(
ρK

µ
(∇p− ρg∇z)

)
= q, (2)

where the pressure p is the primary unknown, g is the constant of gravity, d is the reservoir
depth, ρ and µ are the fluid density and viscosity and q is a source term (i.e. an injection
or production well). The fluid density ρ = ρ(p) and the rock porosity φ = φ(p) can be
pressure-dependent. Rock porosity is related to the pressure via the rock compressibility.
The relation is given by:

cr =
1

φ

dφ

dp
=
d(ln(φ))

dp
,

If the rock compressibility is constant, the previous equation can be integrated as:

φ(p) = φ0e
cr(p−p0). (3)

The fluid density and the pressure are related via the fluid compressibility cf , according
to:

cf =
1

ρ

dρ

dp
=
d(ln(ρ))

dp
.

If the fluid compressibility is constant, the previous equation can be integrated as:

ρ(p) = ρ0e
cf (p−p0). (4)

To solve Equation (2), it is necessary to supply conditions at the boundary of the domain.
While, for parabolic equations, we also need to impose initial conditions. Boundary and
initial conditions will be discussed later for each problem.
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Incompressible fluid
If the density and the porosity are not pressure-dependent in Equation (2), we have an
incompressible model, where density and porosity do not change over time. Therefore, the
incompressible model is time-independent. Assuming no gravity terms and a fluid with
constant viscosity, Equation (2) then becomes:

−ρ
µ
∇ · (K∇p) = q. (5)

Discretization
The spatial derivatives are approximated using a finite difference scheme with cell central
differences. For a 3D model, taking a mesh with a uniform grid size ∆x, ∆y, ∆z where
(i, j, l) is the center of the cell in the position i in the x direction, j in the y direction, and
l in the z direction (xi, yj, zl), where pi,j,l = p(xi, yj, zl) is the pressure at this point.
For the x direction, we have (see, e.g., [21–23]):

∂

∂x

(
k
∂p

∂x

)
=

∆

∆x

(
k

∆p

∆x

)
+ O(∆x2)

=
ki+ 1

2
,j,l(pi+1,j,l − pi,j,l)− ki− 1

2
,j,l(pi,j,l − pi−1,j,l)

(∆x)2
+ O(∆x2),

where ki− 1
2
,j,l is the harmonic average of the permeability for cells (i− 1, j, l) and (i, j, l):

ki− 1
2
,j,l =

2
1

ki−1,j,l
+ 1

ki,j,l

. (6)

After discretization, Equation (5), together with boundary conditions, can be written as:

Tp = q, (7)

where T is known as the transmissibility matrix with elements in adjacent grid cells. The
transmissibility (Ti− 1

2
,j,l) between grid cells (i− 1, j, l) and (i, j, l) is defined as:

Ti− 1
2
,j,l =

2∆y∆z

µ∆x
ki− 1

2
,j,l, (8)

System (7) is a linear system that can be solved with iterative or direct methods. For the
solution of this system, it is necessary to define boundary conditions in all boundaries of
the domain. These conditions can be prescribed pressures (Dirichlet conditions), flow rates
(Neumann conditions) or a combination of these (Robin conditions).

Compressible fluid
If the fluid is compressible with a constant compressibility, the density depends on the
pressure Equation (4). Therefore, Equations (1) become:

∂(ρ(p)φ)

∂t
+∇ · (ρ(p)v) = q, v = −K

µ
(∇p− ρ(p)g∇z), (9)

6



Discretization
Using backward Euler time discretization, Equations (9) are approximated by:

(φρ(p))n+1 − (φρ(p))n

∆tn
+∇ · (ρ(p)v)n+1 = qn+1,

vn+1 = − K

µn+1
(∇(pn+1)− gρn+1∇z). (10)

Assuming no gravity terms, constant fluid viscosity and constant rock porosity, Equations
(10) become:

φ
ρ(pn+1)− ρ(pn)

∆tn
− 1

µ
∇ · (ρ(pn+1)K∇pn+1) + qn+1 = 0. (11)

Due to the dependence of ρ on the pressure, the latter is a nonlinear equation for p that
can be linearized with, e.g., the Newton-Raphson (NR) method. Equation (11) can be
discretized in space, using a finite differences scheme. After spatial discretization, Equation
(11) reads:

V(pn+1)−V(pn)

∆tn
+ Tpn+1 = qn+1. (12)

We note that in a more general case, where also the porosity is pressure-dependent, a
slightly more complex, mass conservative formulation is usually employed; see refs.[21–23].
As in the incompressible case, we need to define boundary condition to solve Equation
(12). Dirichlet, Neumann or Robin boundary conditions can be used. For this problem,
we also have a derivative with respect to time. Therefore, it is also necessary to specify
the initial conditions that are the pressure values of the reservoir at the beginning of the
simulation.
Well model
In reservoirs, wells are typically drilled to extract or inject fluids. Fluids are injected into
a well or produced from a well at constant rate or constant bottom-hole pressure (bhp).
When the bhp is prescribed, the flow rates into or from the wells are usually computed
with the aid of a well model, that takes into account the bhp and the average grid pressure
in the block containing the well. This model is a linear relationship between the bhp and
the flow rate in a well. For a cell (i, j, l) that contains a well, this relationship is given by:

q(i,j,l) = I(i,j,l)(p(i,j,l) − pbh(i,j,l)), (13)

where I(i,j,l) is the productivity or injectivity index of the well, p(i,j,l) is the reservoir pressure
in the cell where the well is located, and pbh(i,j,l) is a prescribed pressure inside the well.
Incompressible fluid
Using the well model for an incompressible fluid, Equation (7) transforms into:

Tp = Iw(p− pbh), (14)

where Iw is a diagonal matrix containing the productivity or injectivity indices of the wells
present in the reservoir. The diagonal elements are zero for cells without wells and have
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the value of the well index for each cell containing a well.
Compressible fluid
For a compressible fluid, using the well model, Equation (12) reads:

φ
ρ(pn+1)− ρ(pn)

∆tn
− 1

µ
∇ · (ρ(pn+1)K∇pn+1) + Iw(pn+1 − pn+1

bh ) = 0, (15)

or
V(pn+1)−V(pn)

∆tn
+ (T + Iw)pn+1 − Iw(pn+1

bh ) = 0.

Solution procedure for compressible flow
As mentioned before, for the compressible problem, we have a nonlinear system that de-
pends on the pressure at the time step n and the pressure at time step n+ 1:

g(pn+1; pn) = 0. (16)

This nonlinear system can be solved with the NR method, the system for the (k + 1)-th
NR iteration is:

J(pk)δpk+1 = −g(pk; pn), pk+1 = pk + δpk+1,

where J(pk) = ∂g(pk;pn)
∂pk is the Jacobian matrix, and δpk+1 is the NR update at iteration

step k + 1.
Therefore, the linear system to solve is:

J(pk)δpk+1 = b(pk). (17)

with b(pk) being the function evaluated at iteration step k, b(pk) = −g(pk; pn).
The procedure to solve a compressible flow problem consists of three stages. During the
first stage, we increase the time with one time step and solve Equation (15) for the new
time. Because of the nonlinearity of Equation (15) we use an iterative Newton Raphson
procedure that involves linearization at each iteration, i.e. we perform a series of iterations
to find the zeros of Equation (16). For every NR iteration the linear system in Equation
(17) is solved. In this work, the solution of the linear system is performed with iterative
methods (see Section 3). A summary of this procedure is presented in Algorithm 1.

Algorithm 1

for t = 0, ..., %Time integration
Select time step

for NR iter = 0, ..., %NR iteration
Find zeros of g(pn+1; pn) = 0

for lin iter = 0, ..., %Linear iteration
Solve J(pk)δpk+1 = b(pk) for each NR iteration

end
end

end
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3 Iterative solution methods

When simulating single-phase flow through a porous medium, we obtain a linear system

Ax = b, (18)

for both compressible and incompressible models. Since A is SPD, we choose Conjugate
Gradient (CG) as iterative method accelerated with the Incomplete Cholesky precondi-
tioner. In this work, we also study the acceleration with deflation techniques. In this
section, we give a brief overview of the methods.

Conjugate Gradient Method
Given a starting solution x0 and the residual defined by rk = b − Axk, we define the
Krylov subspace Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0} and xk ∈ x0 + Kk(A, r0) has a
minimal error measured in the A-norm for all approximations contained in x0 +Kk(A, r0).
The error of this approximation is bounded by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ2(A)− 1√
κ2(A) + 1

)k+1

1. (19)

The pseudo code for CG is given in Algorithm 2.

Algorithm 2 Conjugate Gradient (CG) method, solving Ax = b.

Give an initial guess x0.
Compute r0 = b−Ax0 and set p0 = r0.

for k = 0, ..., until convergence

αk = (rk,rk)
(Apk,pk)

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = (rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 + βkpk

end

1The condition number κ2(A) is defined as κ2(A) =

√
λmax(ATA)√
λmin(ATA)

. If A is SPD, κ2(A) = λmax(A)
λmin(A) .
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Preconditioning
To accelerate the convergence of a Krylov method, one can transform the system into
another one containing an iteration matrix with a better spectrum , i.e, a smaller condition
number. This can be done by multiplying the system (18) by a matrix M−1.

M−1Ax = M−1b. (20)

The new system has the same solution but can provide a substantial reduction of the
condition number. For this preconditioned system, the error is bounded by:

||x− xk||A ≤ 2||x− x0||A

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

. (21)

M is chosen as an SPD matrix such that κ(M−1A) ≤ κ(A), and M−1b is cheap to com-
pute.

Deflation
Deflation is used to annihilate the effect of extreme eigenvalues on the convergence of an
iterative method ([16]). Given an SPD matrix A ∈ Rn×n, for a given matrix Z ∈ Rn×m

the deflation matrix P is defined as follows ([19, 24]):

P = I−AQ, P ∈ Rn×n, Q ∈ Rn×n,

where
Q = ZE−1ZT , Z ∈ Rn×m, E ∈ Rm×m,

with
E = ZTAZ.

The matrix E is known as the Galerkin or coarse matrix that has to be invertible. If
A is SPD and Z is full rank then E is invertible. The full rank matrix Z is called the
deflation − subspace matrix, and it’s columns are the deflation vectors or projection
vectors.
Deflated PCG Method
To obtain the solution of linear system (18), we have to solve the deflated system (see
Appendix D):

PAx̂ = Pb, (22)

with the CG method, for the deflated solution x̂. This deflated the solution is related to
the solution x of the original system as (see Appendix D):

x = Qb + PT x̂. (23)

The deflated linear system can also be preconditioned by an SPD matrix M. After pre-
conditioning, the deflated preconditioned system to solve with CG is [19]:

P̃Ãˆ̃x = P̃b̃,
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where:
Ã = M− 1

2 AM− 1
2 , ˆ̃x = M

1
2 x̂, b̃ = M− 1

2 b

This method is called the Deflated Preconditioned Conjugate Gradient DPCG method.
In practice M−1PAx = M−1Pb is computed and the error is bounded by:

||x− xi+1||A ≤ 2||x− x0||A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)i+1

,

were κeff = λmax(M−1PA)
λmin(M−1PA)

is the effective condition number and λmin(M−1PA) is the smallest

non-zero eigenvalue of M−1PA.

3.1 Choices of Deflation Vectors

The deflation method is used to remove the effect of the most unfavorable eigenvalues of
A. If the matrix Z contains eigenvectors corresponding to the unfavorable eigenvalues, the
convergence of the iterative method is achieved faster. However, to obtain and to apply
the eigenvectors is costly in view of memory and CPU time. Therefore, a good choice of
the matrix Z that efficiently approximate the eigenvectors is essential for the applicability
of the method.
A good choice of the deflation vectors is usually problem-dependent. Available information
on the system is, in general, used to obtain these vectors. Most of the techniques used to
choose deflation vectors are based on approximating eigenvectors, recycling [25], subdomain
deflation vectors [1] or multigrid and multilevel based deflation techniques [19, 26]. A
summary of these techniques is given below.

Recycling Deflation. A set of search vectors previously used is reused to build the
deflation-subspace matrix [25]. The vectors could be, for example, q − 1 solution
vectors of the linear system with different right-hand sides or of different time steps.
The matrix Z containing these solutions is:

Z = [x(1),x(2), ...,x(q−1)].

Subdomain Deflation. The domain is divided into several subdomains, using domain
decomposition techniques or taking into account the properties of the problem. For
each subdomain, there is a deflation vector that contains ones for cells in the subdo-
main and zeros for cells outside [1].

Multi Grid and Multilevel Deflation. For the multigrid and multilevel methods, the
prolongation and restriction matrices are used to pass from one level or grid to
another. These matrices can be used as the deflation-subspace matrices Z [19].
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4 Proper Orthogonal Decomposition (POD)

As mentioned before, in this work we want to combine deflation techniques and Proper
Orthogonal Decomposition method (POD) to reduce the number of iterations necessary to
solve the linear system obtained from reservoir simulation in a cheap and automatic way.
In this section, we give a brief overview of the POD method.
The POD method is a Model Order Reduction (MOR) method, where a high-order model
is projected onto a space spanned by a small set of orthonormal basis vectors. The high
dimensional variable x ∈ Rn is approximated by a linear combination of l orthonormal
basis vectors [11]:

x ≈
l∑

i=1

ciψi, (24)

where ψi ∈ Rn are the basis vectors and ci are their corresponding coefficients. In matrix
notation, equation (24) is rewritten as :

x ≈ Ψc,

where Ψ = [ψ1 ψ2 .. ψl], Ψ ∈ Rn×l is the matrix containing the basis vectors, and c ∈ Rl is
the vector containing the coefficients of the basis vectors.
The basis vectors ψi are computed from a set of ’snapshots’ {xi}i=1,..,m, obtained by simula-
tion or experiments [8]. In POD, the basis vectors {ψj}lj=1, are l eigenvectors corresponding
to the largest eigenvalues {σj}lj=1 of the data snapshot correlation matrix R.

R :=
1

m
XXT ≡ 1

m

m∑
i=1

xix
T
i , X := [x1,x2, ...xm], (25)

where X ∈ Rn×m is an SPSD matrix containing the previously obtained snapshots. The l
eigenvectors should contain almost all the variability of the snapshots. Usually, they are
chosen as the eigenvectors of the maximal number (l) of eigenvalues satisfying [8]:∑l

j=1 σj∑m
j=1 σj

≤ α, 0 < α ≤ 1, (26)

with α close to 1. The eigenvalues σj are ordered from large to small with σ1 the largest
eigenvalue of R. It is not necessary to compute the eigenvalues from XXT , instead, it is
possible to compute the eigenvalues of the much smaller matrix XTX (see Appendix C).
In this study, we normalize the snapshots, so ||xi||2 = 1.
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5 Deflation vector analysis.

As mentioned in Section 3, it is important to choose ’good’ deflation vectors if we want to
speed up an iterative method.
We can use solutions of systems slightly different from the original (snapshots) as deflation
vectors. For this, we need to choose a way of selecting these snapshots. The idea behind
this selection is to obtain a small number of snapshots and, at the same time, obtain the
largest amount of information from the system.
In this section, two lemmas are proved. The lemmas are helpful to select the systems used
to obtain the snapshots.

Lemma 1. Let A ∈ Rn×n be a non-singular matrix, and x is the solution of:

Ax = b. (27)

Let xi,bi ∈ Rn, i = 1, ...,m, be vectors linearly independent (l.i.) and

Axi = bi. (28)

The following equivalence holds

x =
m∑
i=1

cixi ⇔ b =
m∑
i=1

cibi. (29)

Proof ⇒

x =
m∑
i=1

cixi ⇒ b =
m∑
i=1

cibi. (30)

Substituting x from (30) into Ax = b leads to:

Ax =
m∑
i=1

Acixi = A(c1x1 + ...+ cmxm).

Using the linearity of A the equation above can be rewritten as:

Ac1x1 + ...+ Acmxm = c1b1 + ...+ cmbm = Bc. (31)

where B ∈ Rn×m, c ∈ Rm, and the columns of B are the vectors bi.
From (27) and (31) we get:

Ax = b = c1b1 + ...+ cmbm =
m∑
i=1

cibi.

13



Proof ⇐

x =
m∑
i=1

cixi ⇐ b =
m∑
i=1

cibi. (32)

Substituting b from (32) into Ax = b leads to:

Ax =
m∑
i=1

cibi. (33)

Since A is non-singular, multiplying (28) and (32) by A−1 we obtain:

xi = A−1bi,

x = A−1

m∑
i=1

cibi =
m∑
i=1

ciA
−1bi,

then

x =
m∑
i=1

cixi. (34)

�

Lemma 2. If the the deflation matrix Z is constructed with a set of m vectors

Z =
[
x1 ... ... xm

]
, (35)

such that x =
∑m

i=1 cixi, with xi l.i., then the solution of system (27) is obtained with one
iteration of DCG.
Proof.
The relation between x̂ and x is given in Equation (23):

x = Qb + PT x̂.

For the first term Qb, taking b =
∑m

i=1 cibi we have:

Qb = ZE−1ZT

(
m∑
i=1

cibi

)

= Z(ZTAZ)−1ZT

(
m∑
i=1

ciAxi

)
using Lemma 1

= Z(ZTAZ)−1ZT (Ax1c1 + ...+ Axmcm)

= Z(ZTAZ)−1ZT (AZc)

= Z(ZTAZ)−1(ZTAZ)c

= Zc = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

=
m∑
i=1

cixi = x.
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Therefore,
x = Qb, (36)

is the solution to the original system.
For the second term of Equation (23), PT x̂, we compute x̂ from Equation (22):

PAx̂ = Pb

APT x̂ = (I−AQ)b using D f) and definition of P,

APT x̂ = b−AQb

APT x̂ = b−Ax = 0 taking Qb = x from above,

PT x̂ = 0 as A is invertible.

Then we have obtain the solution

x = Qb + PT x̂ = Qb,

in one step of DCG.

�

5.1 Accuracy of the snapshots.

If we use an iterative method to obtain an approximate solution xk for the system Ax = b,
we cannot compute the relative error er (Equation (37)) of the approximation with respect
to the true solution because the true solution is unknown,

er =
||x− xk||2
||x||2

. (37)

Instead, we compute the relative residual rr (Equation (38)),

rr =
||rk||2
||b||2

≤ ε, (38)

and we set a stopping criterium ε or tolerance, that is related to the relative error as follows
[27] (see Appendix B),

||x− xk||2
||x||2

≤ κ2(A)ε = rr.

Various tolerance values can be used in the experiments for the snapshots as well as for
the solution of the original system.
If the maximum relative residual for the snapshots (xi) is ε = 10−η, then, the error in the
snapshots is given by

||xi − xki ||2
||xi||2

≤ κ2(A)× 10−η = rr.
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From Equation (34), if we compute m snapshots with an iterative method such that
the solution of x is a linear combination of these vectors, after one iteration of DCG we
obtain

x1 =
m∑
i=1

cix
1(i)
i ,

where x
1(i)
i is the approximated solution of the snapshot i after one DCG iteration.

The error of this solution is given by:

||x− x1||2
||x||2

=
||
∑m

i=1 ci(xi − x1
i )||2

||
∑m

i=1 cixi||2
≤
∑m

i=1 |ci| × κ2(A)× 10−η

||
∑m

i=1 cixi||2
.

Which means that the approximation has an error of the order κ2(A)× 10−η.
From Lemma 2 we know that if we use the snapshots xi as deflation vectors, for the
deflation method the solution is given by (Equation (36)):

x = Qb.

If the approximation x1 has an error of the order κ2(A)×10−η, then, the solution achieved
with the deflation method will have the same error,

Qb− x1 = κ2(A)× 10−η.

Therefore, it is important to take into account the condition number of the matrix to
estimate the accuracy of the deflation vectors.

5.2 Boundary conditions.

From Lemma 2, we know that if we use as deflation vectors a set of m snapshots

Z = [x1 ... xm],

such that x =
∑m

i=1 cixi, where x is the solution of the system Ax = b, the solution of the
latter system is achieved with one DCG iteration.
In our application, only a small number (m) of elements of the right-hand side vector b
can be changed. This implies that every b can be written as b =

∑m
i=1 cibi. Using Lemma

1, this implies that x is such that x ∈ span{x1, ...,xm}, which is called the solution span.
Therefore, it is necessary to find the solution span of the system, such that the sum of the
elements in the solution span and the sum of right-hand sides give as result the original
system. In this section, we explore the subsystems that should be chosen, depending on
the boundary conditions of the original system.

16



Neumann Boundary conditions

When we have Neumann boundary conditions everywhere, the resulting matrix A is singu-
lar, and A[1 1 ... 1 1]T = 0, Ker(A) = span([1 1 ... 1 1]T ). Note that Ax = b
has only a solution if b ∈ span{a1, ..., an} (with ai the i− th column of A), which is equiv-
alent to b ⊥ Ker(A) [28]. This implies that if we have m sources with value si for the
vector bi, we need that

m∑
j=1

sji = 0.

Then, for each nonzero right-hand side we need to have at least two sources. Therefore, we
can have at most m− 1 linearly independent right-hand sides bi containing two sources.
This means that the solution space has dimension m − 1 and it can be spanned by
span{x1, ...,xm−1}. Each of these subsystems will have the same no-flux conditions (Neu-
mann) in all the boundaries. As the original system is a linear combination of the subsys-
tems (Lemma 1), the deflation vectors can be chosen as the solutions corresponding to the
subsystems. Therefore, the deflation matrix will be given by:

Z = [x1 ... xm−1],

and if the accuracy of the snapshots used as deflation vectors is high enough (see Section
5.1), the solution is expected to be achieved in one DCG iteration.

Dirichlet Boundary conditions

In this case, the right-hand side of the system can contain the values of the boundary
bb and the sources of the system si. If we have m sources, as in the previous case, the
right-hand side will be given by:

b =
m∑
i=1

cisi + bb.

The subsystems will be m+ 1, where one of them corresponds to the boundary conditions
Axb = bb, and the other m will correspond to the sources Axi = si. Therefore, snapshot
m + 1 will be the solution xb of the system with no sources and the Dirichlet boundary
conditions of the original system. The other m snapshots will correspond to the m sources
with homogeneous Dirichlet boundary conditions. Then, the solution space will be given
by span{x1, ...,xm,xb}. If we use the solution of the m+ 1 snapshots as deflation vectors,
with the correct accuracy, we will obtain the solution within one DCG iteration.
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6 Numerical experiments

6.1 Model problems.

We study the solution of systems of linear equations resulting from the discretization
of elliptic and parabolic partial differential equations for the description of single-phase
flow through a porous medium. The solution of the system is performed with the Deflated
Conjugate Gradient method preconditioned with Incomplete Cholesky (DICCG). We pro-
pose the use of snapshots and the snapshots-based POD vectors as deflation vectors for
the above-mentioned method.
In the present section, we give a general overview of the experiments that we perform, but
the specifications are presented below for each problem separately. In the first part, we
solve the elliptic problem (incompressible flow) and the second is devoted to the parabolic
problem (compressible flow). For the elliptic problem, a good choice of deflation vectors
depends on the boundary conditions of the problem. Hence, we study two cases with
different boundary conditions. For the first set of elliptic problems, Dirichlet boundary
conditions are used for an academic layered model with various contrasts in permeability
between the layers. In the second set of elliptic problems, we used Neumann boundary
conditions (no-flux) for the previous academic layered problem and for the SPE 10 bench-
mark problem. We investigate the behavior of the ICCG and DICCG methods with various
contrasts between the permeability layers for both cases.
We study the influence of the size of the problem in the performance of the ICCG and
DICCG methods. We vary the grid size of the SPE 10 benchmark, we study diverse grid
sizes of the 2nd layer, and the complete benchmark (85 layers).
For the compressible problem, we impose Neumann boundary conditions in all the bound-
aries. We study a layered permeability problem and the SPE 10 benchmark.

The model
The experiments simulate flow through a porous medium with a constant porosity field of
0.2. We model incompressible and compressible single-phase flow. For the incompressible
single-phase model the following properties of the fluid are used:

• µ = 1cp,

• ρ = 1014kg/m3,

In the compressible case, the compressibility of the fluid is:

• c = 1× 10−3.

In these experiments, a Cartesian grid with different grid sizes is used. Each grid cell has
a length of 1 meter. The length of the reservoir (Lx,Ly) is then the number of grid cells
in meters. Wells or sources are added to the system. The matrices corresponding to the
linear systems A and right-hand sides b are obtained with the Matlab Reservoir Simulation
Toolbox (MRST) [29].
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Snapshots
As mentioned above, for the DICCG method we need a set of deflation vectors. In the
first series of experiments (incompressible model), the deflation vectors are solutions of the
system with various wells configurations and boundary conditions. These solutions, called
snapshots, are obtained with ICCG, the tolerance of the linear solvers is given for each
problem. The configuration used to obtain each snapshot depends on the problem that we
are solving (see section 5). For the compressible problem, the snapshots are the solutions
at the first time steps, first with the same well configuration, and then with different wells
configurations. Solutions of the same problem with zero compressibility are also used as
snapshots. For each case, the configuration of the snapshots, as well as the configuration
of the solved system are presented.

The solver
The solution of the system is approximated with ICCG and DICCG.
For the DICCG method, we need a set of deflation vectors. In the first set of experiments,
we use a linearly independent set of solutions as deflation vectors. Then, we use as defla-
tion vectors a linearly dependent set of solutions, and finally, the deflation vectors are a
linearly independent basis of the latter dependent set obtained with POD. As tolerance or
stopping criterium we use the relative residual, defined as the 2-norm of the residual of the
kth iteration divided by the 2-norm of the right-hand side of the preconditioned system:

||M−1rk||2
||M−1b||2

≤ ε.

The stopping criterium is varied for each problem.

6.2 Incompressible Problem

Case 1: Dirichlet and Neumann boundary conditions.

Figure 1: Heterogeneous
permeability, 4 wells.

In the configuration of Case 1, four wells are positioned in a
square at distances equal to one-third of the reservoir length and
width. Two wells have a bottom hole pressure (bhp) of 5 bars
and two have a bhp of -5 bar. No-flux conditions are imposed at
the right and left boundaries and a pressure drop is prescribed
in the vertical direction. The pressure on the lower boundary
(y = 0) is 0 bars, and on the upper boundary (y = Ly ) is 3 bars.
The first four snapshots (z1 − z4) are obtained setting only one
well pressure different from zero, taking no-flux conditions at the
right and left boundaries and homogeneous Dirichlet conditions
at the other boundaries. A fifth snapshot is obtained setting all the wells pressures to zero
and setting the pressure drop in the vertical direction of the original system. A summary
is presented in Table 1.
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System configuration

Well pressures (bars) Boundary conditions (bars)

W1 W2 W3 W4 P (y = 0) P (y = Ly) ∂P (x=0)
∂n

∂P (x=Lx)
∂n

-5 -5 +5 +5 0 3 0 0

Snapshots

W1 W2 W3 W4 P (y = 0) P (y = Ly) ∂P (x=0)
∂n

∂P (x=Lx)
∂n

z1 -5 0 0 0 0 0 0 0

z2 0 -5 0 0 0 0 0 0

z3 0 0 -5 0 0 0 0 0

z4 0 0 0 -5 0 0 0 0

z5 0 0 0 0 0 3 0 0

Table 1: Table with the well configuration and boundary conditions of the system
and the snapshots used for the Case 1.

As mentioned above, we studied flow through a porous medium with heterogeneous
permeability layers. A grid of nx = ny = 64 elements is studied. We use 8 layers of the
same size, 4 layers with one value of permeability σ1, followed by a layer with a different
permeability value σ2. Figure 1 shows these layers. The permeability of one set of layers is
set to σ1 = 1mD, the permeability of the other set σ2 is changed. Therefore, the contrast
in permeability between the layers (σ2

σ1
= σ2), depends on the value of σ2.

We investigate the dependence on the contrast between permeability layers for the ICCG
and DICCG methods. The permeability σ2 varies from σ2 = 10−1mD to σ2 = 10−3mD.
The tolerance is set as 10−11 for the snapshots as well as for the original problem.

κ2 (mD) 10−1 10−2 10−3

ICCG 75 103 110

DICCG 1 1 1

Table 2: Table with the number of iterations for different contrasts
between the permeability of the layers for the ICCG and DICCG
methods.

Table 2 shows the number of iterations required to achieve convergence for ICCG and
DICCG for various permeability contrasts between the layers.
The plot of the residual and the solution to the problem are presented in Figures 2 and 3
for a value of permeability σ2 = 10−2.
In Table 2 we observe that the number of iterations increases when the contrast between
the permeability layers increases for ICCG. For DICCG, we observe that we only need one
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iteration despite the change in permeability contrast between the layers.

Figure 2: Convergence for the heteroge-
neous problem, 64 x 64 grid cells, σ2 =
10−2mD.

Figure 3: Solution of the heterogeneous
problem, 64 x 64 grid cells, σ2 = 10−2mD.

Case 2: Neumann boundary conditions everywhere.

In this case, four wells are positioned in the corners and have a bhp of -1 bar. One well is
positioned in the center of the domain and has a bhp of +4 bars (see Figure 4). Homoge-
neous Neumann boundary conditions are imposed on all boundaries. For this case, we use
a set of four linearly independent snapshots as deflation vectors. We also use a linearly
dependent set of 15 snapshots and the basis of POD (linearly independent set) obtained
from the 15 snapshots. We set the same boundary conditions as in the original problem for
all the snapshots. The four linearly independent snapshots (z1 − z4) are obtained giving a
value of zero to one well and non-zero values to the other wells, such that the sum of the
well pressures is equal to zero. The set of 15 snapshots are all the possible combinations
of wells that satisfy that the flow in equals the flow out of the reservoir. A summary of
the configurations is presented below.
Heterogeneous permeability layers
As in the previous case, single-phase flow through a porous medium with heterogeneous
permeability layers is studied. A grid of nx = ny = 64 elements is investigated. The de-
flation vectors used in this case are the 4 snapshots (z1-z4), a set of 15 linearly dependent
vectors and 4 basis vectors obtained for the POD method from the latter set.
The snapshots and the solutions are obtained with a tolerance of 10−11.
Table 4 shows the number of iterations required to reach convergence for the ICCG
method and the deflation method with four linearly independent snapshots as deflation
vectors DICCG4, 15 linearly dependent snapshots DICCG15 and the basis vectors of POD,
DICCGPOD

2.
For the deflation vectors of DICCGPOD we plot the eigenvalues of the snapshot correla-

tion matrix R = XTX (see section 4) in Figure 5. We observe that there are 4 eigenvalues
much larger than the rest of the eigenvalues which are responsible for the divergence of the
method. In DICCGPOD we use the eigenvectors corresponding to the larger eigenvalues as

2The * means that the solution is not reached.
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System configuration

Well pressures (bars)

W1 W2 W3 W4 W5

-1 -1 -1 -1 -1

Snapshots (4 linearly independent)

W1 W2 W3 W4 W5

z1 0 -1 -1 -1 3

z2 -1 0 -1 -1 3

z3 -1 -1 0 -1 3

z4 -1 -1 -1 0 3

Snapshots (linearly dependent)

W1 W2 W3 W4 W5

z5 -1 -1 -1 -1 4

z6 -1 0 0 -1 2

z7 -1 -1 0 0 2

z8 -1 0 -1 0 2

z9 0 -1 -1 0 2

z10 0 -1 0 -1 2

z11 0 0 -1 -1 2

z12 -1 0 0 0 1

z13 0 -1 0 0 1

z14 0 0 -1 0 1

z15 0 0 0 -1 1

Table 3: Table with the well configuration of the system and the snapshots used for the Case 2, we use
homogeneous Neumann boundary conditions.

Figure 4: Heterogeneous permeability, 5
wells.

Figure 5: Eigenvalues of the snapshot cor-
relation matrix R = XXT , if 15 snapshots
are used.

deflation vectors.
The plot of the residual and the solution of the problem are presented in Figure 6 and 7
for the ICCG and DICCG methods for the case of σ2 = 10−2.
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σ2 (mD) 10−1 10−2 10−3

ICCG 90 115 131

DICCG4 1 1 1

DICCG15 200* 200* 200*

DICCGPOD 1 1 1

Table 4: Table with the number of iterations for different contrast in the permeability
of the layers for the ICCG, DICCG4, DICCG15, and DICCGPOD methods, tolerance
of solvers and snapshots 10−11.

In Table 4, for the ICCG method, we observe that the number of iterations increases
if the contrast in the permeability increases. For the DICCG method with 4 linearly in-
dependent deflation vectors and 4 basis vectors of POD, convergence is reached within
one iteration. However, for the case of 15 linearly dependent vectors, the solution is not
reached within the 200 iterations allowed for this problem.

Figure 6: Convergence for the heteroge-
neous problem, 64 x 64 grid cells, σ2 =
10−2.

Figure 7: Solution of the heterogeneous
problem, 64 x 64 grid cells, σ2 = 10−2.

SPE 10 model
This model has large variations in the permeability coefficients, the contrast between co-
efficients is of the order of 107. It has 5 sources or wells, four producers in the corners
(negative) and one injector in the center (positive). The model contains 60 x 220 x 85
cells. We study the dependence of the ICCG and the DICCG method on the size of the
problem. One layer is studied with various grid sizes 16 x 56, 30 x 110, 46 x 166 and 60 x
220, and the complete model containing 85 layers. Permeability is upscaled averaging the
permeability in each grid using the harmonic-arithmetic average algorithm from MRST.
The permeability of the coarser grid (16 x 56 cells) is shown in Figure 8 and the complete
model in Figure 9. The permeability contrast for the diverse grid size problems is shown in
Table 5. From this table, we observe that the contrast in the permeability for different grid
sizes varies slightly, but that the order of magnitude remains the same for all the cases.
Snapshots are obtained solving the system with different well configurations (Configuration
2 ). As before, we simulate single-phase incompressible flow.
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The system and snapshots are solved with an accuracy of 10−11. In the first experiment
with the deflation method, the four linearly independent snapshots are used as deflation
vectors (DICCG). Then, 15 linearly dependent vectors and finally 4 vectors of the POD
basis are used as deflation vectors (DICCGPOD).

Figure 8: SPE 10 benchmark, 2nd layer 16
x 56 grid cells, permeability field.

Figure 9: SPE 10 benchmark, permeability
field.

Grid size 16x56x1 30x110x1 46x166x1 60x220x1 60x220x85

Contrast (×107) 1.04 2.52 2.6 2.8 3

Table 5: Table with the number of iterations for different grid sizes for the ICCG, DICCG4, DICCG15,
and DICCGPOD methods, tolerance of solvers and snapshots 10−11.

The number of iterations required to achieve convergence with the ICCG and DICCG
methods for various grid sizes is presented in Table 6.
The convergence and the solution obtained with the ICCG and DICCG methods are pre-
sented in Figure 10 and Figure 11 for the complete problem. In Table 6 we observe that
for the ICCG method the required iterations to reach convergence increases as the size of
the grid increases. Meanwhile, for the deflated methods only a few iterations are required
and it does not depend on the size of the grid. The large contrast in the permeability field
may require higher accuracy in the snapshots to find the solution with a deflated method
within one iteration (see [30]) within the imposed tolerance. However, we observe in Fig-
ure 10 that the first iteration has a relative residual smaller than 10−10 for the DICCG4

and DICCGPOD methods. We also observe that for the deflated method with 15 linearly
dependent snapshots as deflation vectors (DICCG15), the relative residual is close to 10−7

for the first time steps, and then it increases, which shows that this choice leads to an
unstable method (note that the matrix E is a nearly singular matrix).
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Method 16x56x1 30x110x1 46x166x1 60x220x1 60x220x85

ICCG 45 101 178 219 1011

DICCG15 500* 500* 500* 500* 2000*

DICCG4 1 2 3 2 2

DICCGPOD 1 2 3 2 2

Table 6: Table with the number of iterations for ICCG and DICCG methods, various grid sizes.

Figure 10: Convergence for the SPE 10 benchmark,
60 x 220 x 85 grid cells, accuracy of the snapshots
and solvers 10−11.

Figure 11: Solution of the SPE 10 benchmark,
60 x 220 x 85 grid cells, accuracy of the snap-
shots and solvers 10−11.
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6.3 Compressible Problem

6.3.1 Model parameters

In this section we model single-phase flow through a porous medium for a case when the
density depends on the pressure according to Equation (4). We solve Equation (12) for a
fluid with the a compressibility of c = 1 × 10−3 and the same viscosity and density as in
the compressible case. Equation (12) is non-linear due to the dependence of the density on
the pressure. Therefore, we need to linearize this equation via the Newton-Raphson (NR)
method and to solve the resulting linear system. After linearization, we obtain the linear
system (17) and we solve it with an iterative method, a summary of the procedure is pre-
sented in Algorithm 1. The simulation, with exception of the linear solvers, is performed
with MRST. Automatic Differentiation (AD) is used for the NR loop [29]. The resulting
linear system is solved with ICCG and DICCG methods. We compute the solution of the
system for the first 10 time steps with the ICCG method. The rest of the time steps is
solved with DICCG, using as deflation vectors the solution of the previous ten time steps
and POD basis vectors computed from these solutions. The number of POD deflation
vectors is specified for each problem.

Figure 12: Heterogeneous per-
meability, 5 wells, compressible
problem.

We study an academic layered problem that consists of
layers with two different permeability values (see Figure 12).
The first layer has a permeability of σ1 = 30mD, and the
permeability of the second layer is varied σ2 = [3mD, 0.3mD,
0.03mD]. Therefore, the contrast between the layers is 10−1,
10−2 and 10−3. The domain is a square with five wells, Four
of which are positioned in the corners of the domain and one
well is placed in the center. The length of the domain is 70
m and three different grid sizes are studied: 35, 70 and 105
grid cells in each dimension. We use homogeneous Neumann
boundary conditions on all boundaries.
The initial pressure of the reservoir is set as 200 bars. The
pressure in the corner wells is 100 bars and in the central
well is 600 bars.

The simulation was performed during 152 days with 52 time steps and a time step of
3 days. The tolerance of the NR method and the linear solvers is 10−5.

Different contrast in permeability.
As mentioned previously we change the contrast between the permeability layers, in this
section we present the results obtained for three different contrast for a 2D Cartesian grid
of 35 × 35 grid cells covering an area of 70 × 70 m2. As a first set of experiments, we
compute 10 snapshots, solutions to the first 10 time steps, with ICCG and we use these
snapshots as deflation vectors to solve the rest of the time steps with deflation DICCG10.
After the first these snapshots are computed, we update the snapshots with the most
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recently computed solution, such that the ten snapshots correspond to the ten solutions
of the ten previous time steps. We compute SVD of the matrix constructed with these
snapshots as columns and we study the eigenvalues obtained to select as deflation vectors
the eigenvectors corresponding to the largest eigenvalues.

Contrast between permeability layers of 10−1.
In Figure 13, the solution obtained with the ICCG method is presented, the solution is
the same for all methods. The upper left figure represents the pressure field at the final
time step. The upper right figure represents the pressure across the diagonal joining the
(0,0) and (35,35) grid cells for all the time steps. We observe the initial pressure (200 bars)
across this diagonal and the evolution of the pressure field through time. In the lower
figure, we observe the surface volume rate for the five wells during the simulation.

Figure 13: Solution of the compressible problem solved with the ICCG
method for a layered problem with a contrast between permeability layers
of 10−1 in a domain of 70× 70 m2.

As a second set of experiments, we use basis vectors of POD as deflation vectors of
the DICCG method, these basis vectors are the eigenvectors corresponding of the largest
eigenvalues of the snapshot correlation matrix X (see Section 4). The snapshot correlation
matrix is constructed with the previously computed solutions, i.e., the solutions of the
previous time steps. As mentioned before, for each time step, the previous 10 solutions are
used as snapshots to compute the POD basis. The eigenvalues of the snapshot correlation
matrix R = 1

m
XXT constructed with the previous ten time steps are presented in Figure

15 for the 20th time step. In this figure, we observe that six eigenvalues are larger than the
rest. Therefore, we use the eigenvectors corresponding to these six eigenvalues as deflation
vectors (DICCG6).

For this problem, only the first time step requires more than two NR iterations. There-
fore, we solely study the behavior of the linear solvers during the first two NR iterations.
The number of iterations necessary to reach convergence with the linear solvers is pre-
sented for the first two NR iterations in Figure 16 for the ICCG method, Figure 18 for the
deflated method DICCG10 using 10 snapshots as deflation vectors and Figure 20 using 6
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Figure 14: Eigenvalues of the original ma-
trix J, time step 1 for a layered problem
with a contrast between permeability lay-
ers of 10−1 in a domain of 70× 70 m2.

Figure 15: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20 for a layered problem with a con-
trast between permeability layers of 10−1

in a domain of 70× 70 m2.

POD basis vectors as deflation vectors. The eigenvalues of the matrices are presented in
Figure 14 for the original system matrix J for the first time step, Figure 17 for the pre-
conditioned system, Figure 19 for DICCG10 and Figure 21 the deflated system DICCG6.
The preconditioned system is studied for the first time step, and the deflated systems are
studied for the 11th time step. For the preconditioned and the deflated system, the same
scale is used for the comparison.

Figure 16: Number of iterations of the
ICCG method for the first two NR itera-
tions for a layered problem with a contrast
between permeability layers of 10−1 in a
domain of 70× 70 m2.

Figure 17: Eigenvalues of the precondi-
tioned matrix, time step for a layered prob-
lem with a contrast between permeability
layers of 10−1 in a domain of 70× 70 m2.

From Figure 17, Figure 19 and Figure 21 we observe that the smallest eigenvalues are
not longer visible in the system. This is because we use the same scale for the plots in
all the figures and with the deflation methods we remove the smallest eigenvalues, they
are sent to zero, in this case to a very small value. As they are very small, they are not
longer important for the convergence of the system. After removing these eigenvalues, the
condition number is reduced and therefore we obtain an acceleration in the convergence of
the method. From the spectrum of these systems, we observe that after the deflation pro-
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Figure 18: Number of iterations of the
DICCG10 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−1

in a domain of 70× 70 m2.

Figure 19: Eigenvalues of the deflated sys-
tem DICCG10 for a layered problem with
a contrast between permeability layers of
10−1 in a domain of 70× 70 m2.

Figure 20: Number of iterations of the
DICCG6 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−1

in a domain of 70× 70 m2.

Figure 21: Eigenvalues of the deflated sys-
tem DICCG6 for a layered problem with
a contrast between permeability layers of
10−1 in a domain of 70× 70 m2.

cedure we reduce in one order of magnitude the condition number (see Table 7), the order
the magnitude of the eigenvalues is the same for both deflation cases (10 and 6 deflation
vectors).
From Figure 16, Figure 18 and Figure 20, we observe that the reduction of the condition

Matrix λmax λmin κ2 = λmax

λmin

M−1J 1 ≈ 10−2 ≈ 102

PM−1J 1 ≈ 10−1 ≈ 101

Table 7: Condition number of the preconditioned and deflated systems for
a layered problem with a contrast between permeability layers of 10−1 in
a domain of 70× 70 m2.
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number results in a reduction of the number of iterations for the first and second NR it-
erations of the deflated methods (DICCG10, DICCG6) compared with the ICCG method.
For the ICCG method, we need on average 15 and 19 linear iterations in the first two NR
iterations to reach the desired tolerance. In contrast, for the deflated methods, we need
on average 1 or 2 linear iterations for the first NR iteration. For the second NR iteration,
after the computation of the snapshots, instead of computing the solution for all the re-
maining 42 time steps computed for the ICCG method, we only need to compute 18 times
steps with an average of 3 and 11 linear iterations. Which implies that the convergence is
already achieved after the first NR iteration for the rest of the time steps. A summary of
the average number of iterations is presented in Table 8 and Table 9.
Contrast between permeability layers of 10−2.
We repeat the experiments of previous sections. In this case, the contrast between per-
meability layers is 10−2. The solution obtained with the ICCG method is presented in
Figure 22, the solution is the same for the DICCG method. The eigenvalues of the snap-
shot correlation matrix R for the 20th time step are presented in Figure 24. From this
figure, we observe that there are 7 eigenvalues of the correlation matrix larger than the
rest. Therefore, the largest amount of information might be contained in these vectors.
For this problem, we studied the deflation method using 6 (DICCG6) and 7 (DICCG7)
POD basis vectors as deflation vectors as well as the DICCG10 method with 10 snapshots
as deflation vectors.

Figure 22: Solution of the compressible problem solved with the ICCG
method for a layered problem with a contrast between permeability layers
of 10−2 in a domain of 70× 70 m2.

As in the previous case, we study the behavior of the linear solvers only for the first two
NR iterations. The number of iterations necessary to reach convergence with the linear
solvers is presented for the first two NR iterations in Figure 25 for the ICCG method,
Figure 27 for the deflated method DICCG10, Figure 29 for DICCG6 and Figure 31 for
DICCG7. The eigenvalues of the matrices are presented in Figure 23 for the original sys-
tem matrix J for the first time step, Figure 26 for the preconditioned system, Figure 28
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Figure 23: Eigenvalues of the original ma-
trix J, time step 1 for a layered problem
with a contrast between permeability lay-
ers of 10−2 in a domain of 70× 70 m2.

Figure 24: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20 for a layered problem with a con-
trast between permeability layers of 10−2

in a domain of 70× 70 m2.

the deflated system DICCG10, Figure 30 the deflated system DICCG6 and Figure 32 for
DICCG7. From the previously mentioned figures, we observe that some eigenvalues from
the preconditioned system are not longer in the plot for deflated systems, this is because
they are very small and they are not longer visible in the system. When we use 10 snap-
shots as deflation vectors, we remove more eigenvalues than when use 6 or 7, but the order
of magnitude of the smallest eigenvalue is the the same for all cases, which means that the
behavior should be similar. Comparing the cases when we have 6 and 7 deflation vectors,
we observe that both spectra are almost the same except for one eigenvalue that is smaller
than the case when we use 6 deflation vectors (Figure 30). Hence, we expect a slightly
better behavior when using 7 deflation vectors.

Figure 25: Number of iterations of the
ICCG method for the first two NR itera-
tions for a layered problem with a contrast
between permeability layers of 10−2 in a
domain of 70× 70 m2.

Figure 26: Eigenvalues of the precondi-
tioned matrix, time step 1 for a layered
problem with a contrast between perme-
ability layers of 10−2 in a domain of 70×70
m2.
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Figure 27: Number of iterations of the
DICCG10 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−2

in a domain of 70× 70 m2.

Figure 28: Eigenvalues of the deflated sys-
tem DICCG10 for a layered problem with
a contrast between permeability layers of
10−2 in a domain of 70× 70 m2.

Figure 29: Number of iterations of the
DICCG6 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−2

in a domain of 70× 70 m2.

Figure 30: Eigenvalues of the deflated sys-
tem DICCG6 for a layered problem with
a contrast between permeability layers of
10−2 in a domain of 70× 70 m2.

From Figure 25, Figure 27, Figure 29 and Figure 31, we observe that the number of
iterations of the first and second NR iterations is lower for the deflated methods compared
with the ICCG method. For the ICCG method, we need on average 12 and 16 linear
iterations in the first two NR iterations to reach the desired accuracy. In contrast, for
the deflated method DICCG10 we need in average 1 iteration for the first NR iteration, 2
for DICCG6 and 1 for the DICCG7 method. For the second NR iteration, besides the 10
snapshots, we only need to compute the solution for 6, 20 and 20 extra time steps with an
average of 15, 13 and 14 linear iterations for the DICCG10, DICCG6 and DICCG7 methods
(see Tables 8 and 9).
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Figure 31: Number of iterations of the
DICCG7 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−2

in a domain of 70× 70 m2.

Figure 32: Eigenvalues of the deflated sys-
tem DICCG7 for a layered problem with
a contrast between permeability layers of
10−2 in a domain of 70× 70 m2.

Contrast between permeability layers of 10−3.
The solution obtained with the ICCG method is presented in Figure 33, the solution is the
same for the DICCG method. The eigenvalues of the snapshot correlation matrix R for
the 20th time step are presented in Figure 35. From this figure, we observe that there are 6
eigenvalues larger than the rest, but the 7th eigenvalue is also large compared with the rest
of the eigenvalues. Therefore, we study the deflation methods using the 10 previous time
steps as deflation vectors DICCG10 and 6 and 7 POD basis vectors DICCG6, DICCG7.

Figure 33: Solution of the compressible problem solved with the ICCG
method for a layered problem with a contrast between permeability layers
of 10−3 in a domain of 70× 70 m2.

The number of iterations necessary to reach convergence with the linear solvers is pre-
sented for the first two NR iterations in Figure 36 for the ICCG method, Figure 38 for
the deflated method DICCG10 using 10 snapshots as deflation vectors, Figure 40 for the
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Figure 34: Eigenvalues of the original ma-
trix J, time step 1 for a layered problem
with a contrast between permeability lay-
ers of 10−3 in a domain of 70× 70 m2.

Figure 35: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20 for a layered problem with a con-
trast between permeability layers of 10−3

in a domain of 70× 70 m2.

deflated method DICCG6 using 6 POD basis vectors as deflation vectors and Figure 42
using 7 POD basis vectors as deflation vectors DICCG7.
The eigenvalues of the matrices are presented in Figure 34 for the original system matrix
J for the first time step, Figure 37 for the preconditioned system, Figure 39 the deflated
system DICCG10, Figure 41 for DICCG6 and Figure 43 for DICCG7. As in the previous
cases, we observe that the smallest eigenvalues of the preconditioned system (Figure 37)
are removed with the deflation methods. We also observe that the spectra of the three
deflatad systems is similar, except for the case when we use 6 defaltion vectors (DICCG6),
where we have an eigenvalue smaller than the rest of the spectrum. Hence, we expect a
slightly worst behavior with this selection of deflation vectors.

Figure 36: Number of iterations of the
ICCG method for the first two NR itera-
tions for a layered problem with a contrast
between permeability layers of 10−3 in a
domain of 70× 70 m2.

Figure 37: Eigenvalues of the precondi-
tioned matrix, time step 11 for a layered
problem with a contrast between perme-
ability layers of 10−3 in a domain of 70×70
m2.
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Figure 38: Number of iterations of the
DICCG10 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−3

in a domain of 70× 70 m2.

Figure 39: Eigenvalues of the deflated sys-
tem DICCG10 for a layered problem with
a contrast between permeability layers of
10−3 in a domain of 70× 70 m2.

Figure 40: Number of iterations of the
DICCG6 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−3

in a domain of 70× 70 m2.

Figure 41: Eigenvalues of the deflated sys-
tem DICCG6 for a layered problem with
a contrast between permeability layers of
10−3 in a domain of 70× 70 m2.

From Figure 36, Figure 38, Figure 40 and Figure 42, we observe that the number of
iterations for the first and second NR iterations is lower for the deflated methods compared
with the ICCG method. For the ICCG method, we need on average 7 and 17 linear
iterations for the first two NR iterations to reach the desired tolerance. For the deflated
method DICCG10, we need on average 1 iteration, 4 for DICCG6 and 1 for the DICCG7

for the first NR iteration. After the computation of the snapshots, we need to compute the
solution for 6 (DICCG10), 40 (DICCG6) and 10 (DICCG7) time steps during the second
NR iteration for the deflated methods, this means that the solution is already achieved for
the rest of the time steps during the first NR iteration. On average, 15, 13 and 15 linear
solver iterations are required for the DICCG10, DICCG6 and DICCG7 for these 10 time
steps (see Tables 8 and 9).
In Table 8 and Table 9 the average number of linear iterations (Average L-iter) is presented

35



Figure 42: Number of iterations of the
DICCG7 method for the first two NR it-
erations for a layered problem with a con-
trast between permeability layers of 10−3

in a domain of 70× 70 m2.

Figure 43: Eigenvalues of the deflated sys-
tem DICCG7 for a layered problem with
a contrast between permeability layers of
10−3 in a domain of 70× 70 m2.

for the ICCG, DICCG10, DICCG6 and DICCG7 methods. The number of time steps
computed with each method (Time steps) is also presented in the tables. However, for the
deflated methods we first compute 10 snapshots with ICCG, these iterations are separated
from the iterations performed with the deflated methods in the table. The total number
of iterations is also computed (Tot L-iter = Average L-iter * Time steps).

For the first NR iteration, we observe a significant reduction in the total number of
linear iterations. For the case when we have a contrast between permeability layers of
10−1 we observe that with ICCG we need 780 linear iterations to compute the solution
for the 52 time steps. By contrast, when we use the deflated method, we need 140 linear
iterations to compute the snapshots during the first ten time steps and 42 and 84 for the
42 remaining time steps computed with DICCG10 and DICCG6. Then, we need in total
182 and 224 linear iterations to compute the solution for the 52 time steps, which is 23%
and 29% of the linear iterations required with (see Table 11).
When we have a contrast in permeability of 10−2, the required average of linear iterations
to solve the 52 time steps is 624. With the deflated methods, taking into account the com-
putation of the snapshots, we require 142 for the DICCG10 method, 184 for the DICCG6

method and 142 for the DICCG7 method. That is the 23%, 30% and 23% of the ICCG
iterations. Then, for the DICCG7 and DICCG10 methods we have a larger acceleration
during the solution of the linear system. However, we note that with 6 deflation vectors
we also have a good improvement.
For a contrast between permeability layers of 10−3 we require 364 linear iterations for
the 52 time steps with the ICCG method. We require 62, 188 and 62 iterations for the
DICCG10,DICCG6 and DICCG7 methods. That is 17%, 51% and 17% of the ICCG itera-
tions. For this case, the larger reduction is achieved when we use 10 or 7 deflation vectors,
where we observe a similar behavior (see Table 10).
For some time steps, it is not necessary to compute a second NR iteration, because the

solution is already achieved during the first NR iteration when we use deflation methods.
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1st NR Iteration

Method σ2
σ1

Time steps Average L-iter Tot L-iter

10−1 52 15 780

ICCG 10−2 52 12 624

10−3 52 7 364

ICCG DICCG ICCG DICCG ICCG DICCG

Snapshots Snapshots Snapshots

DICCG10 10−1 10 42 14 1 140 42

DICCG6 10 42 14 2 140 84

DICCG10 10 42 10 1 100 42

DICCG6 10−2 10 42 10 2 100 84

DICCG7 10 42 10 1 100 42

DICCG10 10 42 2 1 20 42

DICCG6 10−3 10 42 2 4 20 168

DICCG7 10 42 2 1 20 42

Table 8: Average number of linear iterations for the first NR iteration for various contrast between
permeability layers.

Therefore, not only the number of linear iterations but also the NR iterations are reduced
with deflation. For the second NR iteration, we also observe a significant reduction in the
total number of linear iterations. For the case when we have a contrast between permeabil-
ity layers of 10−1 we observe that with ICCG we need 988 linear iterations to compute the
solution for the 52 time steps. By contrast, when we use the deflated method, we need 180
linear iterations to compute the snapshots during the first ten time steps and 78 and 198
for the 42 remaining time steps with the DICCG10 and DICCG6 methods. Therefore we
need in total 258 and 378 linear iterations to compute the solution for the 52 time steps,
which is 26% and 38% of the linear iterations required with ICCG (see Table 11). When
we have a contrast in permeability of 10−2, the required linear iterations to solve the 52
time steps are 832. With the deflated methods, taking into account the computation of
the snapshots, we require 230 iterations for DICCG10, 400 for DICCG6 and 294 for the
DICCG7 method. That means the 28%, 48% and 33% of the ICCG iterations. We can
observe that there is a significant difference when we use 6 deflation vectors compared with
10 or 7. For a contrast between permeability layers of 10−3, we require 884 linear iterations
for the 52 time steps. For the DICCG10, DICCG6 and DICCG7 methods, we require 200,
630 and 260 iterations . That is 23%, 71% and 29% of the ICCG iterations. As in the
previous cases, a larger reduction in the number of iterations is achieved when we use 10
snapshots as deflation vectors or 7 POD basis vectors as deflation vectors.
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2nd NR Iteration

Method σ2
σ1

Time steps Average L-iter Tot L-iter

10−1 52 19 988

ICCG 10−2 52 16 832

10−3 52 17 884

ICCG DICCG ICCG DICCG ICCG DICCG

Snapshots Snapshots Snapshots

DICCG10 10−1 10 26 18 3 180 78

DICCG6 10 18 18 11 180 198

DICCG10 10 6 14 15 140 90

DICCG6 10−2 10 20 14 13 140 260

DICCG7 10 11 14 14 140 154

DICCG10 10 6 11 15 110 90

DICCG6 10−3 10 40 11 13 110 520

DICCG7 10 10 11 15 110 150

Table 9: Average number of linear iterations for the second NR iteration for various contrast between
permeability layers.

1st NR Iteration
σ2
σ1

Method Total ICCG DICCG Total % of total

ICCG (only) Snapshots ICCG+DICCG ICCG

10−1 DICCG10 780 140 42 182 23

DICCG6 140 84 224 29

DICCG10 100 42 142 23

10−2 DICCG6 624 100 84 184 30

DICCG7 100 42 142 23

DICCG10 20 42 62 17

10−3 DICCG6 364 20 168 188 51

DICCG7 20 42 62 17

Table 10: Comparison between the ICCC and DICCG methods of the average number of linear iterations
for the first NR iteration for various contrast between permeability layers.
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2nd NR Iteration
σ2
σ1

Method Total ICCG DICCG Total % of total

ICCG (only) Snapshots ICCG+DICCG ICCG

10−1 DICCG10 988 180 78 258 26

DICCG6 180 198 378 38

DICCG10 140 90 230 28

10−2 DICCG6 832 140 260 400 48

DICCG7 140 154 294 33

DICCG10 110 90 200 23

10−3 DICCG6 884 110 520 630 71

DICCG7 110 150 260 29

Table 11: Comparison between the ICCC and DICCG methods of the average number of linear iterations
for the second NR iteration for various contrast between permeability layers.

Different grid sizes.
In the previous section, we presented the results for the different contrast between perme-
abilities, for a grid of 35× 35 cells in a reservoir of 70× 70 m2. In this section, we change
the size of the grid to 70 and 105 grid cells. We study a layered problem with a contrast
between permeability layers of 10−1.

Grid size 70× 70.
In this case, we study the number of iterations needed to reach convergence for a problem
with 70× 70 grid cells in a reservoir of 70× 70 m2. As in the previous cases, only the first
time step requires more than two NR iterations. Therefore, we solely study the behavior
of the linear solvers during the first two NR iterations. In Figure 44 the eigenvalues of the
snapshot correlation matrix are presented. We observe that there are 6 eigenvalues larger
than the rest, which implies that most of the information is contained in these eigenvalues.
Therefore, we study the deflation method with 10 snapshots as deflation vectors and 6
eigenvectors corresponding to the largest eigenvalues of Figure 44 are used as deflation
vectors.
The number of iterations necessary to reach convergence with the linear solvers is presented
for the first two NR iterations in Figure 45 for the ICCG method, Figure 46 for the deflated
method DICCG10 using 10 snapshots as deflation vectors, and Figure 47 with 6 POD basis
vectors as deflation vectors.

From Figures 46 and 47 we observe that the number of iterations needed for the
DICCG10 and DICCG6 methods is on average 84 and 126 for the first NR iteration, and
144 and 483 for the second NR iteration after the snapshots are computed, 390 linear it-
erations. Comparing with the ICCG method (Figure 46) that requires 1848 iterations for
this problem, the number of iterations is considerably reduced. A summary of the number
of linear iterations is presented in Tables 12 and 13.
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Figure 44: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20, Grid size 70× 70.

Figure 45: Number of iterations of the
ICCG method for the first two NR iter-
ations, grid size 70× 70, contrast between
permeability layers 10−1.

Figure 46: Number of iterations of the
DICCG10 method for the first two NR iter-
ations, grid size 70× 70, contrast between
permeability layers 10−1.

Figure 47: Number of iterations of the
DICCG6 method for the first two NR iter-
ations, grid size 70× 70, contrast between
permeability layers 10−1.

Grid size 105× 105.
In this case, we study the number of iterations needed to reach convergence for a problem
with 105× 105 grid cells in a reservoir of 70× 70 m2. In Figure 48 the eigenvalues of the
snapshot correlation matrix are presented. We observe that there are 6 eigenvalues larger
than the rest, which implies that most of the information is contained in these eigenvalues.
Therefore, we study the deflation method with 10 snapshots as deflation vectors and 6
eigenvectors corresponding to the largest eigenvalues of Figure 48 are used as deflation
vectors.
The number of iterations necessary to reach convergence with the linear solvers is presented
for the first two NR iterations in Figure 49 for the ICCG method, Figure 50 for the deflated
method DICCG10 using 10 snapshots as deflation vectors, and Figure 51 with 6 POD basis
vectors as deflation vectors.

The computation of the first 10 snapshots with ICCG requires an average of 390 linear
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Figure 48: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20, grid size 105 × 105, contrast be-
tween permeability layers 10−1.

Figure 49: Number of iterations of the
ICCG method for the first two NR itera-
tions, grid size 105×105, contrast between
permeability layers 10−1.

Figure 50: Number of iterations of the
DICCG10 method for the first two NR it-
erations, grid size 105 × 105, contrast be-
tween permeability layers 10−1.

Figure 51: Number of iterations of the
DICCG6 method for the first two NR itera-
tions, grid size 105×105, contrast between
permeability layers 10−1.

iterations for the first NR iteration and 510 for the second. From Figures 50 and 51 we
observe that, after the computation of the snapshots, the number of iterations needed for
the DICCG10 and DICCG6 methods is on average 84 and 126 for the first NR iteration,
and 180 and 468, on average, for the second NR iterations. Comparing with the ICCG
method (Figure 50) that requires 2823 iterations for this problem, the number of iterations
is considerably reduced. A summary of the number of linear iterations is presented in
Tables 12 and 13.

In Tables 14 and 15 we compare the number of iterations necessary to reach convergence
with the ICCG method and the deflation methods DICCG10, DICCG6 with various grid
sizes. We observe that we have a considerable reduction on the number of linear iterations
when we use deflation methods. For the first NR iteration, we need around 24% of the
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1st NR Iteration

Size Method Time steps Average L-iter Tot L-iter

35× 35 52 15 780

70× 70 ICCG 52 28 1479

105× 105 52 43 2238

ICCG DICCG ICCG DICCG ICCG DICCG

Snapshots Snapshots Snapshots

35× 35 DICCG10 10 42 14 1 140 42

DICCG6 10 42 14 2 140 84

70× 70 DICCG10 10 42 26 2 260 84

DICCG6 10 42 26 3 260 126

105× 105 DICCG10 10 42 39 2 390 84

DICCG6 10 42 39 3 390 126

Table 12: Average number of linear iterations for the first NR iteration for various grid sizes.

2nd NR Iteration

Size Method Time steps Average L-iter Tot L-iter

35× 35 52 19 988

70× 70 ICCG 52 36 1848

105× 105 52 54 2823

ICCG DICCG ICCG DICCG ICCG DICCG

Snapshots Snapshots Snapshots

35× 35 DICCG10 10 26 18 3 180 78

DICCG6 10 18 18 11 180 198

70× 70 DICCG10 10 16 37 9 370 144

DICCG6 10 21 37 23 370 483

105× 105 DICCG10 10 12 51 15 510 180

DICCG6 10 13 51 36 510 468

Table 13: Average number of linear iterations for the first NR iteration for various grid sizes.

number of ICCG iterations for all cases. We also note that the difference between the defla-
tion methods is small for this case. For the second NR iteration, we also have a reduction
in the linear iterations. We require around 25% for the DICCG10 method, and around 40%
for the DICCG6 method. This means that, for this case, the performance of the DICCG6
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method is slightly better, but with the DICCG6 we also have a good improvement with
respect to the ICCG method.

1st NR Iteration

Size Method Total ICCG DICCG Total % of total

ICCG (only) Snapshots ICCG+DICCG ICCG

35× 35 DICCG10 780 140 42 182 23

DICCG6 140 84 224 29

70× 70 DICCG10 1479 260 84 344 23

DICCG6 260 126 386 26

105× 105 DICCG10 2238 390 84 474 21

DICCG6 390 126 516 23

Table 14: Comparison between the ICCG and DICCG methods of the average number of linear iterations
for the first NR iteration for various grid sizes.

2nd NR Iteration

Size Method Total ICCG DICCG Total % of total

ICCG (only) Snapshots ICCG+DICCG ICCG

35× 35 DICCG10 988 180 78 258 26

DICCG6 180 198 378 38

70× 70 DICCG10 1848 370 144 514 28

DICCG6 370 483 853 46

105× 105 DICCG10 2823 510 180 690 24

DICCG6 510 468 978 34

Table 15: Comparison between the ICCG and DICCG methods of the average number of linear iterations
for the second NR iteration for various grid sizes.
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SPE 10
We study the SPE 10 benchmark in 2D and 3D. For the 2D case, we use the second layer
that consists of 60×220 grid cells. For the 3D case, we use the complete model that consist
of 60×220×85 grid cells. To solve the linear system obtained after the NR linearization, we
use 10 snapshots (the previous 10 time step solutions), and POD basis vectors as deflation
vectors, the number of POD basis vectors depends on the problem. As in the previous
experiments, only the first time step requires more than two NR iterations. Therefore, we
solely study the behavior of the linear solvers during the first two NR iterations.

Second layer SPE 10
The second layer of the SPE 10 benchmark is studied, this layer contains 60 × 220 grid
cells and has a contrast in permeability of 2.8× 107.
In Figure 52 the eigenvalues of the snapshot correlation matrix are presented. We observe
that there are 7 eigenvalues larger than the rest, which implies that most of the information
is contained in these eigenvalues. Therefore, we study the deflation method with 10 snap-
shots as deflation vectors and 7 POD basis vectors, the largest eigenvectors corresponding
to the largest eigenvalues of Figure 52 used as deflation vectors.
The number of iterations necessary to reach convergence with the linear solvers for each
time step is presented for the first two NR iterations in Figure 53 for the ICCG method,
Figure 54 for the deflated method DICCG10 using 10 snapshots as deflation vectors, and
Figure 55 with 7 POD basis vectors as deflation vectors (DICCG7).

Figure 52: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20, second layer of the SPE 10 bench-
mark.

Figure 53: Number of iterations of the
ICCG method for the first two NR iter-
ations, second layer of the SPE 10 bench-
mark.

From Figures 53, 54 and 55 we observe that there is a considerable reduction in the
number of iterations necessary to solve the linear system when we used the DICCG10 and
DICCG7 methods compared with the ICCG method. For the first NR iteration, from Tables
19 and 17 we observe that the total average number of linear iterations necessary to achieve
convergence with the ICCG method is 4644. For the deflated methods it is necessary to
perform 994 and 1120 iterations for DICCG10 and DICCG6 which is the 21% and 24% of
the linear iterations required with the ICCG method. For the second NR iteration, from
Tables 19 and 17 we observe that the total average number of linear iterations necessary
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Figure 54: Number of iterations of the
DICCG10 method for the first two NR iter-
ations, second layer of the SPE 10 bench-
mark.

Figure 55: Number of iterations of the
DICCG7 method for the first two NR iter-
ations, second layer of the SPE 10 bench-
mark.

to achieve convergence with the ICCG method is 2808. For the deflated methods it is
necessary to perform 1428 and 624 iterations for DICCG10 and DICCG6, which is the 50%
and 54% of the linear iterations required with the ICCG method. We also observe that
the number of total iterations required for the deflated methods is less than the required
total iterations with the ICCG method, which means that an important part of the work
necessary to solve this problem is performed to compute the initial snapshots.

1st NR Iteration

Method Time steps Average L-iter Tot L-iter

ICCG 52 89 4644 %

ICCG DICCG ICCG DICCG ICCG DICCG Total

Snapshots Snapshots Snapshots

DICCG10 10 42 91 2 910 84 994 21

DICCG7 10 42 91 5 910 210 1120 24

Table 16: Average number of linear iterations for the first NR iteration, second layer of the SPE 10
benchmark.
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2nd NR Iteration

Method Time steps Average L-iter Tot L-iter

52 88 2808 %

ICCG DICCG ICCG DICCG ICCG DICCG Total

Snapshots Snapshots Snapshots

DICCG10 10 12 90 44 900 528 1428 50

DICCG7 10 13 90 48 900 624 1524 54

Table 17: Average number of linear iterations for the second NR iteration, second layer of the SPE 10
benchmark.

SPE 10 full model
In this section, we study the SPE 10 complete benchmark that consist of 60 × 220 × 85
grid cells and has a contrast in permeability of 3× 107. In Figure 56 the eigenvalues of the
snapshot correlation matrix are presented. We observe that there are 4 eigenvalues larger
than the rest, which implies that most of the information is contained in these eigenvalues.
Therefore, we study the deflation method with 10 snapshots as deflation vectors and 4 POD
basis vectors, the largest eigenvectors corresponding to the largest eigenvalues of Figure 56
used as deflation vectors.
The number of iterations necessary to reach convergence with the linear solvers is presented
for the first two NR iterations in Figure 53 for the ICCG method, Figure 58 for the deflated
method DICCG10 using 10 snapshots as deflation vectors, and Figure 59 with 4 POD basis
vectors as deflation vectors (DICCG4).

Figure 56: Eigenvalues of the data snap-
shot correlation matrix R = XXT , time
step 20, full SPE 10 benchmark.

Figure 57: Number of iterations of the
ICCG method for the first two NR iter-
ations, full SPE 10 benchmark.

For the first NR iteration, we observe that the average number of iterations required for
the ICCG method (Figure 58) is considerably reduced. The average number of iterations
required with the ICCG method is 10173 for the first NR iteration and 10231 for the second
(see Tables 19 and 17). With the deflated methods DICCG10 and DICCG4, for the first
NR iteration, we only need to perform 28% and 32% of the linear iterations required with
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Figure 58: Number of iterations of the
DICCG10 method for the first two NR it-
erations, full SPE 10 benchmark.

Figure 59: Number of iterations of the
DICCG4 method for the first two NR it-
erations, full SPE 10 benchmark.

the ICCG method. For the second NR iteration, the deflated methods require only 20%
of the ICCG linear iterations. For the first NR iteration, we need 1770 linear iterations to
compute the snapshots and 1134 to compute the solution of the rest of the snapshots. For
the second NR iteration, the number of linear iterations is 1830 for the snapshots and 200
for the deflated methods. This shows that the largest amount of work is carried out in the
computation of the snapshots, which is more evident for the second NR iteration.

1st NR Iteration

Method Time steps Average L-iter Tot L-iter

ICCG 52 196 10173 %

ICCG DICCG ICCG DICCG ICCG DICCG Total

Snapshots Snapshots Snapshots

DICCG10 10 42 177 27 1770 1134 2904 28

DICCG4 10 42 177 37 1770 1554 3324 32

Table 18: Average number of linear iterations for the first NR iteration, full SPE 10 benchmark.
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2nd NR Iteration

Method Time steps Average L-iter Tot L-iter

ICCG 52 197 10231 %

ICCG DICCG ICCG DICCG ICCG DICCG Total

Snapshots Snapshots Snapshots

DICCG10 10 1 183 200 1830 200 2030 20

DICCG4 10 1 183 200 1830 200 2030 20

Table 19: Average number of linear iterations for the second NR iteration, full SPE 10 benchmark.
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Conclusions

Acceleration of the Conjugate Gradient (CG) method for systems with high contrast in
permeability and for large systems is studied in this work. Preconditioning techniques are
combined with deflation to speed-up convergence of the CG method. In this work, the
deflated Conjugated Gradient preconditioned with Incomplete Cholesky method (DICCG)
is studied with snapshots, solutions of the system with diverse characteristics, and POD
basis vectors as deflation vectors. The performance of this method is compared with the
Conjugate Gradient method preconditioned with Incomplete Cholesky (ICCG).
Flow through a porous medium is studied for an incompressible and a compressible fluid.
We study an academic layer problem with different permeability values in the layers and
the 2D and 3D SPE 10 benchmark, a model with large variations in the permeability field,
both problems with diverse grid sizes.
For the incompressible case, the number of linear iterations required with ICCG is reduced
to only a few iterations with DICCG. The number of linear iterations required with defla-
tion methods is independent of the contrast in permeability or the size of the grid for both,
the academic and the SPE 10 problems. To solve the incompressible problem, we propose
the use of solutions of the problem with different well configurations as deflation vectors.
Results show that, if we have a linearly dependent set of deflation vectors, we have an
unstable method that leads to a bad approximation of the solution. The combination of
POD with deflation techniques is shown to be a way to obtain the main information about
the system to speed-up the iterative method and to avoid instabilities. For this problem,
we prove two Lemmas where we show that if we have a linearly independent set of deflation
vectors that span the solution, convergence is achieved in one iteration with deflation. To
select this linear set of vectors, it is necessary to take into account the boundary conditions
of the problem. To find the solution within one iteration it is also necessary to take into
account the condition number and, therefore, a correct accuracy of the snapshots.
For the compressible case, we propose the use of solutions of previous time steps, snapshots,
and POD basis vectors as deflation vectors. We use 10 snapshots as deflation vectors. Com-
puting the POD basis is also done with 10 snapshots. The required number of POD basis
vectors to achieve a good acceleration of the method depends on the problem. Only a
limited number of deflation vectors is necessary to obtain a good speed-up (less than eight
for the problems here studied). The performance of the DICCG method with snapshots
and POD basis vectors as deflation vectors is similar. We observe an important reduction
of the number of linear iterations with the DICCG method with respect to the ICCG
method. The number of POD basis vectors used as deflation vectors increases when we
have a higher contrast between permeability layers varying from 6 when we have a con-
trast of 10−1 to 7 when we have a contrast of 10−2 and 10−3. For a grid of 35 × 35 grid
cells, with the DICCG method, we only need to compute on average 23% and 33% of the
number of ICCG iterations for the first and second NR iterations. We also observe that
a considerable part of this work is carried out to compute the snapshots with the ICCG
method. The performance of the deflated method with 10 snapshots as deflation vectors is
similar with different grid sizes. Meanwhile, a slightly larger variation is observed for the
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deflated method with POD basis vectors as deflation vectors, which might indicate that
more POD basis vectors are necessary. However, we observe an important reduction in
the number of linear iterations when compared with the ICCG method in all cases. For
the deflated method with snapshots as deflation vectors, we require on average 24% of
the linear iterations required with the ICCG method for all the grid sizes. The deflated
method with POD basis vectors as deflation vectors requires on average 32% of the ICCG
linear iterations. For the second layer of the SPE 10 problem, with the deflated methods,
we require on average 22% of the ICCG iterations to achieve convergence for the first NR
iteration, and 52% for the second. For the complete model, we require 30% for the first
NR iteration and 20% for the second.
For the full SPE 10 problem with four deflation vectors, each DICCG iteration needs
around 1.4 times the number of flops of the ICCG iteration and the computation of the
POD basis requires around 104 flops, which is less than the number of cells of the problem
(see Appendix E).
The deflation techniques here presented are not restricted to these methods and could
be combined with different preconditioners, e.g. SSOR or AMG, and diverse iterative
methods.
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A List of notation

Symbol Quantity Unit

φ Rock porosity

K Rock permeability Darcy (D)

cr Rock compressibility Pa−1

v Darcy’s velocity m/d

ρ Fluid density kg/m3

µ Fluid viscosity Pa · s
p Pressure Pa

g Gravity m/s2

cf Fluid compressibility Pa−1

q Sources

Table 20: Notation
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B Stopping criteria

When we use an iterative method, we always want that our approximation is close enough
to the exact solution. In other words, we want that the error [27, pag. 42]:

||ek||2 = ||x− xk||2,

or the relative error:
||x− xk||2
||x||2

,

is small.
When we want to chose a stopping criteria, we could think that the relative error is a good
candidate, but is has the disadvantage that we need to know the exact solution to compute
it. What we have instead is the residual

rk = b−Axk,

that is actually computed in each iteration of the CG method. There is a relationship
between the error and the residual that can help us with the choice of the stopping criteria.

||x− xk||2
||x||2

≤ κ2(A)
||rk||2
||b||2

.

With this relationship in mind, we can choose the stopping criteria as an ε for which

||rk||2
||b||2

≤ ε.

But we should keep to have in mind the condition number of the matrix A, because the
relative error will be bounded by:

||x− xk||2
||x||2

≤ κ2(A)ε.
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C Singular Value Decomposition for POD

If we perform SVD in X, we have
X = UΣVT , U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m.
Then we have

R = XXT

= UΣVT (UΣVT )T

= UΣVTVΣTUT , VTV = I

= UΛUT , Λ = ΣΣT ∈ Rn×n

RT = XTX

= (UΣVT )TUΣVT

= VΣTUTUΣVT , UTU = I

= VΛTVT , ΛT = ΣTΣ ∈ Rm×m.

X = UΣVT

U = XVΣ−1

U = XVΛ− 1
2

If we compute ΛT , we can compute U as follows:

U = XV(ΛT )−
T
2 = XV(ΛT )

1
2
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D Deflation method

In this appendix, we explain how to obtain the solution of the linear system (18) with
deflation. Some properties of the matrices used for deflation that will help us to find the
solution of system (18) are [19]:

a) P2 = P.

b) APT = PA.

c) (I−PT )x = Qb.

d) PAQ = 0n×n.

e) PAZ = 0n×l.

To obtain the solution of the linear system (18), we start with the splitting:

x = x−PTx + PTx = (I−PT )x + PTx. (39)

Multiplying expression (39) by A, using the properties of the deflation matrices, we have:

Ax = A(I−PT )x + APTx, P roperty :

Ax = AQb + APTx, c)

b = AQb + PAx, b),

multiplying by P and using the properties PAQ = 0n×n and P2 = P, properties d) and
a), we have:

PAQb + P2Ax = Pb,

PAx = Pb,

where PAx = Pb is the deflated system. Since PA is singular, the solution of Equation
(40) can contain components of the null space of PA, (N (PA)). A solution of this system,
called the deflated solution, is denoted by x̂. Then, the linear system to solve is:

PAx̂ = Pb. (40)

As the solution of Equation (40) can contain components of N (PA), x̂ can be decomposed
as:

x̂ = x + y, (41)

with y ∈ R(Z) ⊂ N (PA), and x the solution of Equation (18).
Note: If y ∈ R(Z), then

y =
m∑
i=1

αizi,
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PAy = PA(z1α1 + ...+ zmαm) = PAZα,

from property e) we have:
PAy = 0.

Therefore R(Z) ⊂ N (PA), and using property b) we have:

PAy = APTy = 0.

As A is invertible, we have:
PTy = 0. (42)

Multiplying Equation (41) by PT we obtain:

PT x̂ = PTx + PTy.

substituting Equation (42) we arrive to:

PT x̂ = PTx. (43)

Substitution of Equation (43) and property c) in Equation (39) leads to:

x = Qb + PT x̂, (44)

which gives us the relation between x̂ and x.
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E Operation counts

The number of operations necessary to perform the deflation procedure is computed in this
section for full matrices and sparse matrices.
First, we compute the number of operations between vectors and matrices necessary for
ICCG method (see Table 21) and DICCG method (see Table 23).
With the numbers previously computed, we compute the number of operations necessary
to perform the ICCG (see Table 22) and DICCG methods (see Table 24). In Table 25, we
compute the number of operations necessary to perform the ICCG and DICCG methods
for different sparsity of the matrix (m) and a diverse number of deflation vectors (p).

Let A, B ∈ Rn×n, and x,y ∈ Rn, α ∈ R.

Operation Number of Operations

Full matrix Sparse matrix (m non zero entries)

xTy n(∗) + n− 1(+) = 2n− 1 2n− 1

x(+/−)y n n

αx n n

Ax (n(∗) + n− 1(+))n (r) = 2n2 − n (m(∗) +m− 1(+))n (r) = 2mn− n
AB [(n(∗) + n− 1(+))n (r)]n (c) = [(m(∗) +m− 1(+))n (r) ]m (c) =

= 2n3 − n2 = 2m2n− nm
A ∈ Rm×nB ∈ Rn×p

AB mp(2n− 1)

A = LLT 1/3n3

Lx = y n2 nm

LTx = y n2 nm

Table 21: Number of operations between matrices and vectors.
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Algorithm 1 ICCG method, solving Ax = b. Operations

Split preconditioner Full matrix Sparse matrix

Give an initial guess x0.

Compute r0 = b−Ax0. 2n2 2mn

Compute r̂0 = L−1r0. n2 nm

Compute p̂0 = L−T r̂0. n2 nm

for k = 0, ..., until convergence

wk = Apk 2n2 − n 2nm− n
ryk = (r̂k,yk) 2n− 1 2n− 1

αk = ryk

(pk,ŵk)
2n 2n

xk+1 = xk + αkpk 2n 2n

r̂k+1 = r̂k − αkL−1ŵk n2 + 2n nm+ 2n

βk = (r̂k+1,ŷk+1)
ryk 2n 2n

pk+1 = L−T rk+1 + βkpk n2 + 2n nm+ 2n

end

Total each k 4n2 + 11n− 1 4nm+ 11n− 1 ∼
∼ (4m+ 11)n

Table 22: Number of operations needed to perform the ICCG method.
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Algorithm 2 Deflation, Operations

solving Ax = b.

Full matrix Sparse matrix

Let Z ∈ Rn×p and A ∈ Rn×n

V = AZ ∈ Rn×p np(2n− 1) np(2m− 1)

ZTV np(2n− 1) np(2m− 1)

E = ZTAZ 2np(2n− 1) 2np(2m− 1)

E−1 p3 p3

B = AZE−1 = VE−1 ∈ Rn×p np(2p− 1) np(2p− 1)

y = ZTx 2np− p 2np− p
z = By ∈ Rn n(2p− 1) n(2p− 1)

w = E−1y 2p2 − p 2p2 − p
Q = Zw 2pn− n 2pn− n
Qx = ZE−1ZTx (4p− 1)n+ p2 − 2p (4p− 1)n+ p2 − 2p

QEx = ZE−1ZTx (4np+ 2p− 1)n− 2p+ p3 (4mp+ 2p− 1)n− 2p+ p3

(computing E and E−1)

Vw (2p− 1)n (2p− 1)n

AQx = AZE−1ZTx =

= [AZE−1][ZTx] = [B][ZTx] [2np− p] + [n(2p− 1)] [2np− p] + [n(2p− 1)]

(without computing B) = n(4p− 1)− p = n(4p− 1)− p
Px = (I−AQ)x = x−B[ZTx] 4np− p 4np− p
(without computing B)

(2n+ 4np+ 2p− 1)n− (2m+ 4mp+ 2p− 1)n−
PEx = (I−AQ)x −2p+ p3 −2p+ p3

Table 23: Number of operations needed to compute some matrices and vectors necessary to perform the
DICCG method.
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Algorithm 3 DICCG method, Operations

solving Ax = b.

Split preconditioner Full matrix Sparse matrix

Give an initial guess x0.

Compute:

r0 = b−Ax0 2n2 2mn

V = AZ np(2n− 1) np(2m− 1)

r̂0 = Pr0 4np− p 4np− p
y0 = L−1r̂0 n2 nm

p0 = L−Ty0 n2 nm

for k = 0, ..., until convergence

wk = Apk 2n2 − n 2nm− n
ŵk = Pwk 4np− p 4np− p
ryk = (r̂k,yk) 2n− 1 2n− 1

αk = ryk

(pk,ŵk)
2n 2n

xk+1 = xk + αkpk 2n 2n

r̂k+1 = r̂k − αkL−1ŵk n2 + 2n nm+ 2n

βk = (r̂k+1,ŷk+1)
ryk 2n 2n

pk+1 = L−T rk+1 + βkpk n2 + 2n nm+ 2n

end

Total each k 4n2 + 4pn+ 11n− p− 1 4nm+ 4pn+ 11n− p− 1

∼ (4m+ 4p+ 11)n

Table 24: Number of operations needed to perform the DICCG method.
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m p=10 p=4

ICCG (4m+11)n 23n 23n 23n

m=3 DICCG (4m+11+4p)n (23+4p)n 63n 39n

DICCG/ICCG 63/23=2.7 39/23=1.7

ICCG (4m+11)n 31n 31n 31n

m=5 DICCG (4m+11+4p)n (31+4p)n 71n 47n

DICCG/ICCG 71/31=2.3 47/31=1.5

ICCG (4m+11)n 39n 39n 39n

m=7 DICCG (4m+11+4p)n (39+4p)n 79n 55n

DICCG/ICCG 79/39=2 55/39=1.4

Table 25: Number of operations for the ICCG and DICCG methods for different sparsity of the matrices
and different deflation vectors.
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