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Abstract
Simulation of two-phase flow through highly heterogeneous porous media re-

sults in ill-conditioned large systems of linear equations for the pressure when using,
e.g., sequential procedures. Solving the resulting linear system can be particularly
time-consuming. Therefore, there have been extensive efforts to find ways to address
this issue effectively.

Iterative methods, together with preconditioning techniques [1, 2], are the most
commonly chosen techniques to solve these problems. In the literature, we can also
find Reduced Order Models (ROM) [3–5] and deflation methods [6, 7], where system
information is reused to find a good approximation more quickly. For the deflation
techniques, an optimal selection of deflation vectors is crucial for a good performance.
The construction of deflation vectors based on information captured with ROM, in
particular, Proper Orthogonal Decomposition (POD), was recently presented for a
single-phase flow problem [8, 9].

The goal of this work is to further explore and develop the possibilities of com-
bining POD and deflation techniques for a two-phase flow simulation. We propose
selecting deflation vectors from a POD basis in two different ways. In the first one,
we obtain the basis on-the-fly during the simulation, to accelerate the upcoming time
steps. For the second one, the basis is obtained off-line in a training phase, and it is
used later to solve slightly different problems.

The convergence properties of the resulting POD-based deflation method is stud-
ied for an incompressible two-phase flow problem in heterogeneous porous media,
presenting a contrast in permeability coefficients of O(107). We compare the number
of iterations required to solve the above-mentioned problem using the Conjugate Gra-
dient method preconditioned with Incomplete Cholesky (ICCG), against the deflated
version of the same method (DICCG).

The efficiency of the method is illustrated with the SPE 10 benchmark, our largest
test case, containing O(106) cells. For this problem, the DICCG method requires only
20% of the number of ICCG iterations.
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1 Introduction

Solution of systems of linear equations are required when simulating flow through porous
media. Solving the pressure equation is the most time-consuming part, especially for large
and ill-conditioned systems. Furthermore, if we have a time-varying problem, it is required
to compute a large number of simulations, which makes the solution of this problem ex-
pensive. Some techniques have been developed to improve the linear solver speed. Among
others, Reduced Order Models (ROM) are used to capture relevant information of a high-
dimensional system and to project it into a lower-dimension space [5, 10–13], which is
easier to solve. These methods show that essential system information can be obtained
by computing a set of basis functions from a collection of system solutions (also known
as ’snapshots’). Proper Orthogonal Decomposition (POD) is a ROM method that has
recently been used to accelerate the solution of the linear pressure equation resulting from
reservoir simulation [3, 4, 14–16], among other applications. With POD procedures, only
a few basis functions capture most of the system variation [14].

For the computation of the POD basis, two main approaches are used. In the first
one, a training simulation is run and the solutions are stored as snapshots. A POD basis is
obtained from these snapshots and used to solve slightly different problems. This approach
is especially suited to solve problems with small changes in the input variables, e.g. the
same well configurations but different flow rates or bottom hole pressures (bhp) [3, 14, 15].
The basis can also be computed ’on-the-fly’, using, e.g., the solution of the latest time
steps [3, 4, 8]. With this approach, the basis has to be adapted during the simulation.

Once the basis is obtained, various POD-based strategies can be used to solve the
system. For the solution of a large-scale system, Markovinovic et al. [4] proposed using
POD techniques to compute a good initial guess that accelerates the iterative method.
Solving the problem in the small-scale domain and projecting it back to the large-scale
system was also approached by Astrid et al. [3]. Another approach was developed by
Pasetto et al. [5], who suggested constructing a preconditioner based on the POD basis
vectors. The use of the POD basis within a deflation operator was introduced by Diaz
Cortes et al. [8].

For many applications, Krylov subspace iterative methods are used [1, 17]1. The speed
of convergence of these methods depends on the condition number and the right-hand
side (rhs) of the system. If the condition number is very large, generally, preconditioning
techniques are needed to transform the original system into a better conditioned one. If
the system is Symmetric Positive (Semi) Definite (SP(S)D), a commonly used Krylov-
subspace method is Conjugate Gradient (CG) [7, 13, 18–20], for which the incomplete
Cholesky factorization is a popular preconditioning choice [2, 18].

In recent years, deflation techniques have been developed to accelerate the convergence
of Krylov subspace methods [7, 19–22]. For a good performance of this method, a deflation
subspace needs to be found, such that, the smallest eigenvalues of the system are no longer

1Given a linear system Ax = b, and the initial residual r0 = b − Ax0, with x0 an initial guess of
x, we define the Krylov subspace as Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}. That is, the set of linear
combinations of powers of A times r0.
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hampering the convergence of the iterative method.
In this work, we introduce the capture of information via POD methods with a training

phase and a moving window approach for the construction of the above-mentioned deflation
subspace. For a single-phase incompressible problem, the resulting linear pressure system
is of the form Ax = b. If the deflation matrix consists in all the linearly-independent (l.i.)
systems Axi = bi, the convergence is achieved in one iteration [8, 23]. In that case, the
l.i. systems have the same matrix A and different rhs. For a two-phase flow problem, the
system matrix varies for each time step A(n)x(n) = b(n). However, in our examples, the
change in the A(n) matrix is small enough that information can be captured with POD
and it can be used to accelerate the convergence of the solution of similar problems.

We explore the applicability of this methodology with single and two-phase flow prob-
lems in large-scale, highly heterogeneous porous media.

In Section 2, we present the governing equations used for the simulation of a two-phase
flow problem. In Section 3, we describe the models used in this work. Later, in Section
4, we give a brief overview of the methods we use to solve the linear systems. Section 5
is devoted to the numerical experiments, where we give some examples and present some
results. Finally, we formulate the conclusions.

2 Two phase flow through porous media

For simulation of two-phase flow through a porous medium, we can consider the phases
as separated, i.e., they are immiscible and there is no mass transfer between them. The
contact area between the phases is known as the interface. We usually consider one of the
fluids as the wetting phase (w), which is more attracted to the mineral particles than the
other phase, known as non-wetting phase (nw). In the case of a water-oil system, water is
considered the wetting phase.

The saturation of a phase (Sα), is the fraction of void space filled with that phase in
the medium, where a zero saturation indicates that the phase is not present. Fluids inside
a reservoir are usually filling completely the empty space, this property is expressed by the
following relation for a two-phase system,

Snw + Sw = 1. (1)

The surface tension and the curvature of the interface between the fluids causes a
difference in pressure between the two phases. This difference is known as the capillary
pressure, pc, which depends on the saturation:

pc(Sw) = pnw − pw. (2)

The pressure of the non-wetting fluid is higher than the pressure of the wetting fluid;
therefore, the capillary pressure is always a positive quantity. The relation between the
capillary pressure and the saturation is an empirical model based on experiments. The cap-
illary curve depends on the difference in pore-size distributions, porosity, and permeability
of the medium.
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When modeling two phases, the permeability of each phase, α, will be affected by the
presence of the other phase. Therefore, an effective permeability Kα has to be used instead
of the absolute permeability K. The sum of all of the phase permeabilities is less than one,
due to interfacial tensions. This can be expressed as:∑

αK
e
α

K
< 1.

A variable relating the absolute and effective permeabilities is the saturation-dependent
relative permeability, which is defined as:

krα(Sα) = Ke
α/K.

The saturation dependence of the relative permeabilities can be expressed with the Corey
model:

krw = (Ŝw)nwk0w,

krnw = (1− Ŝw)nnwk0nw.
(3)

where nw > 1, nnw > 1 and k0α are fitting parameters.
As in the single-phase case, the governing equations for two-phase flow in a porous

medium are the mass conservation and Darcy’s law. The mass balance equation for a
phase α is given by:

∂(φραSα)

∂t
+∇ · (ραvα) = ραqα, (4)

and the Darcy’s law reads:

vα = −krα
µα

K(∇pα − ραg∇d). (5)

Where, ρα, µα, qα and pα are the density, viscosity, sources and pressure of each phase, g
is the gravity constant, and d is the depth of the reservoir.

To simplify notation, we introduce the phase mobilities

λα(Sα) =
Kkrα(Sα)

µα
. (6)

Combining Darcy’s law (5), the mass balance equation (4) and using the phase mobilities,
the system reads:

∂(φραSα)

∂t
−∇ · (ραλα(∇pα − ραg∇d)) = ραqα, (7)

which is a parabolic equation for pressures and saturations.
The previously-mentioned equations can be separated into a pressure equation and a

saturation or transport equation via the fractional flow formulation. For an immiscible,
incompressible flow, the pressure equation becomes elliptical and the transport equation
becomes hyperbolic. With this formulation, the pressure and transport equations are
solved in separate steps. In the next subsection we describe in more detail the fractional
flow formulation.
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Fractional flow formulation

In the case of incompressible flow, the porosity φ and the densities ρα do not depend on
the pressure. Therefore, Equation (7) reduces to:

φ
∂Sα
∂t
−∇ · (λα(∇pα − ραg∇d)) = qα. (8)

Taking a two-phase system with a wetting (w) and a non wetting phase (nw), the resulting
governing equations are:

φ
∂Sw
∂t

+∇ · vw =φ
∂Sw
∂t

+∇ · (λw(∇pw − ρwg∇d)) = qw,

φ
∂Snw
∂t

+∇ · vnw =φ
∂Snw
∂t

+∇ · (λnw(∇pnw − ρnwg∇d)) = qnw. (9)

To solve this system, we define the total Darcy’s velocity as the sum of the velocity in the
wetting and non wetting phases:

v = vw + vnw = −λnw∇pnw − λw∇pw + (λnwρnw + λwρw)g∇d
= −(λnw + λw)∇pnw + λw∇pc + (λnwρnw + λwρw)g∇d. (10)

If we add the two continuity equations (System (9)) and use the relationship Snw+Sw = 1,
we have:

φ
∂(Sw + Snw)

∂t
+∇ · (vw + vnw) = φ

∂(Sw + Snw)

∂t
+∇ · v = q, (11)

where q = qnw + qw is the total source term. Defining the total mobility as λ = λnw + λw,
and using Darcy’s law, Equation (11) becomes:

−∇ · (λ∇pnw) = q −∇[λw∇pc + (λnwρnw + λwρw)g∇d], (12)

which is an equation for the pressure of the non wetting phase. This equation depends on
the saturation via the capillary pressure pc and the total mobility λ.

Multiplying each phase velocity by the relative mobility of the other phase and sub-
tracting the result, together with Equation (10), we get:

λnwvw − λwvnw = λvw − λwv

= λwλnw[∇pc + (ρw − ρnw)g∇d].

Therefore, for the wetting-phase velocity, vw, we have:

vw =
λw
λ

v +
λwλnw
λ

[∇pc + (ρw − ρnw)g∇d]. (13)

We introduce the fractional flow function,

fw(Sw) =
λw(Sw)

λw(Sw) + λnw(Snw)
,
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which, together with the previously computed velocity vw, transforms the transport Equa-
tion (4) to:

φ
∂Sw
∂t

+∇ · [fw(v + λnw∆ρg∇d)] +∇ · (fwλnw∇pc) = qw, (14)

where ∆ρ = ρw − ρnw.
With this approach, the system is expressed in terms of the non wetting phase pressure,

Equation (12), and the saturation of the wetting phase, Equation (14). In the pressure
equation, the coupling to saturation is present via the phase mobilities (Equation (6)), and
the derivative of the capillary function. For the saturation, we have an indirect coupling
with the pressure through the total Darcy velocity, Equation (10).

Besides the governing equations, we need to define boundary conditions. These condi-
tions can be prescribed pressures (Dirichlet conditions), flow rates (Neumann conditions)
or a combination of these (Robin conditions). A description of the discretization methods
used in this work is presented in the next section.

3 Discretization methods

In this work, we use the sequential procedure to simulate two-phase flow. With this
approach, an unknown is fixed, e.g. the saturation of the wetting phase (Sw), and the
resulting elliptic Equation (12) is solved for the pressure of the non-wetting phase (pnw).
Once pnw is computed, we update the total velocity (v), Equation (10), and solve the
parabolic transport equation for Sw, Equation (14).

The resulting system depends on space and time. The space derivatives are discretized
using finite differences; for the temporal discretization we use the backward Euler method.
Both discretization methods are presented in this section. In the examples presented in
Section 5, the discretization is performed with the Matlab Reservoir Simulation Toolbox
(MRST [24]).

Spatial discretization

Using the sequential scheme, for a given time step n, we fix the wetting-phase saturation
(Snw) and we compute the non-wetting phase pressure (pnnw). Then, the system to solve
is Equation (12). This equation contains only spatial derivatives that are approximated
using a finite difference scheme, in particular cell central differences. We use a mesh with a
uniform grid size ∆x, ∆y, ∆z where (i, j, l) is the center of the cell in the position i in the x
direction, j in the y direction, and l in the z direction (xi, yj, zl), and pi,j,l = pnnw(xi, yj, zl)
is the pressure at this point. Using the harmonic average (λi− 1

2
,j,l = λi− 1

2
,j,l(S

n)) for the

mobility at the interface between cells (i−1, j, l) and (i, j, l), the derivative in the x direction
becomes (see, e.g. [25–28]):

∂

∂x

(
λ
∂pnw
∂x

)
=
λi+ 1

2
,j,l(pi+1,j,l − pi,j,l)− λi− 1

2
,j,l(pi,j,l − pi−1,j,l)

(∆x)2
+ O(∆x2).
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We define the transmissibility (Ti− 1
2
,j,l) between grid cells (i− 1, j, l) and (i, j, l) as:

Ti− 1
2
,j,l =

2∆y∆z

µ∆x
λi− 1

2
,j,l, (15)

Using the previouslydefined transmissibility, Equation (12), together with boundary con-
ditions, is rewritten as:

Tpnnw = q, (16)

where T is known as the transmissibility matrix. This system is SPD; therefore, we use
the Conjugate Gradient (CG) iterative method to solve it throughout this work. More
information about this method is given in Section 4.

Well model

In reservoir simulation, besides boundary conditions, we can also have sources. They are
fluids injected or extracted through wells or through boundaries. To describe the injection
or production through wells, we use the Peaceman well model. This model gives a linear
relationship between the bhp and the flow rate via the productivity or injectivity index
I(i,j,l) of the well. This relationship is given by:

q(i,j,l) = I(i,j,l)(p(i,j,l) − pbh(i,j,l)), (17)

for a cell (i, j, l) that contains the well. In Equation (17), p(i,j,l) is the reservoir pressure in
the cell containing the well and pbh(i,j,l) is a prescribed pressure inside the well.

Incompressible fluid

Combining Equation (16) with Equation (17) we obtain:

Tpnnw = Iw(pnnw − pnbh), (18)

where Iw is a diagonal matrix containing the productivity or injectivity indices of the wells
present in the reservoir.

Temporal discretization

Once we have computed the pressure of the non-wetting phase (pnw), we update the
Darcy velocity (vn), Equation (10). This velocity is then update in the transport Equation
(14). This equation depends on time; thus, we need to discretize the temporal derivative.
This discretization can be performed using two schemes: implicit and explicit.

In the explicit scheme, the time derivative is approximated using the fractional flow,
mobilities, capillary pressure and Darcy velocity computed in the previous time step. After
the update, the system reads:

φ
(Sn+1

w − Snw)

∆t
+∇·[fw(Snw)(vn+λnw∆ρg∇z)]+∇·(fw(Snw)λnw(Snw)∇pc(Snw)) = qn+1

w . (19)
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For the implicit solution, a backward Euler time discretization scheme can be used. With
this scheme, Equation (14) is:

φ
(Sn+1

w − Snw)

∆t
+∇· [fw(Sn+1

w )(vn+λnw∆ρg∇z)]+∇·(fw(Sn+1
w )λnw(Sn+1

w )∇pc(Sn+1
w )) = qnw,

(20)
or:

Sn+1
w − Snw −

∆t

φ

(
qw −∇ · [fw(Sn+1

w )(vn + λnw∆ρg∇z)]
)

+
∆t

φ

(
∇ · (fw(Sn+1

w )λnw(Sn+1
w )∇pc(Sn+1

w ))
)

= 0. (21)

If we use the implicit scheme, the resulting system is nonlinear (Equation (21)) and depends
on the saturation at time step n and n + 1. The nonlinear system can be solved using,
e.g. the Newton-Raphson (NR) method. With this method, for the (k+ 1)-th iteration we
have:

J(Sk)δSk+1 = −F (Sk, Sn), Sk+1 = Sk + δSk+1,

where

F (Sk, Sn) = Skw − Snw −
∆t

φ

(
qw −∇ · [fw(Skw)(vn + λnw∆ρg∇z)]

)
+

∆t

φ

(
∇ · (fw(Skw)λnw(Skw)∇pc(Skw))

)
, (22)

J(Sk) = ∂F (Sk,Sn)
∂Sk is the Jacobian matrix, and δSk+1 is the NR update at iteration step

k + 1. Therefore, the linear system to solve is:

J(Sk)δSk+1 = b(Sk). (23)

where b(Sk) is the function evaluated at iteration step k, b(Sk) = −F (Sk, Sn), and δSk+1 is
the unknown. Once we have computed a δSk+1 accurate enough, we update the saturation
of the actual time step,

Sn+1
w = Snw + δSn+1

w .

Then, we compute the pressure for this time step pn+1
nw , and we repeat the process for the

rest of time steps.
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4 Solution methods for linear systems

Solving a large pressure linear system is time-consuming. Therefore, iterative techniques
are preferred over direct methods to approximate the solution. When the system matrix is
SPD (Symmetric Positive Definite), the Conjugate Gradient (CG) is preferred as iterative
method. This method can be accelerated with, e.g., the Incomplete Cholesky precondi-
tioner. In this work, we study a further acceleration with deflation and POD techniques.
In this section, we give a brief overview of these methods.

Conjugate Gradient Method

The CG method is a Krylov-subspace method used when the matrix of the linear system
is SPD. The pseudo code for CG is given in Algorithm 2.

Algorithm 2 Conjugate Gradient (CG) method, solving Ax = b.

Give an initial guess x0.
Compute r0 = b−Ax0 and set p0 = r0.

for k = 0, ..., until convergence

αk = (rk,rk)
(Apk,pk)

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = (rk+1,rk+1)
(rk,rk)

pk+1 = rk+1 + βkpk

end

Preconditioning

To accelerate the convergence of a Krylov-subspace method, the linear system is multi-
plied by a matrix M−1 such that the iteration matrix has a better spectrum and M−1b is
cheap to compute, the preconditioned system is:

M−1Ax = M−1b. (24)

Deflation

Sometimes, there are a few extreme eigenvalues hampering the convergence of an iter-
ative method, with deflation [7], the effect of these eigenvalues can be annihilated. Given
an SPD matrix A ∈ Rn×nthe deflation matrix P is defined as follows [20, 22]:

P = I−AQ, P ∈ Rn×n, Q ∈ Rn×n,
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where
Q = ZE−1ZT , Z ∈ Rn×m, E ∈ Rm×m,

with
E = ZTAZ.

E is known as the (invertible) Galerkin or coarse matrix. The full rank matrix Z ∈
Rn×m is called the deflation−subspace matrix, and it’s columns are the deflation vectors
or projection vectors. These vectors have to be selected and, usually, a good selection
depends on the problem. The selection of deflation vectors is mainly based on approximated
eigenvectors, recycling solutions [8, 29], subdomain deflation vectors [19] or multigrid and
multilevel-based deflation matrices [20, 30].

Proper Orthogonal Decomposition (POD)

In this method, a small set of orthonormal basis vectors Ψ = [ψ1 ψ2 .. ψl], Ψ ∈ Rn×l, is
used to project a high-order model onto a space spanned by this basis. The basis vectors
ψi ∈ Rn are computed from a set of ’snapshots’ {xi}i=1,..,m, obtained by simulation or
experiments [4]. These vectors {ψj}lj=1 are l eigenvectors corresponding to the l largest
eigenvalues {σj}lj=1 of the data snapshot correlation matrix R ∈ Rn×n,

R :=
1

m
XXT ≡ 1

m

m∑
i=1

xix
T
i , X := [x1,x2, ...xm]. (25)

If the system is large (n), the matrix R is also large, and to compute the eigenvalues can
be costly. However, it is not necessary to compute the eigenvalues from XXT , but instead,
it is possible to compute the eigenvalues of the much smaller matrix XTX ∈ Rm×m (see
Appendix E).

Once the basis is computed, the high dimensional variable x ∈ Rn is approximated by
a linear combination of l orthonormal basis vectors [3]:

x ≈
l∑

i=1

ciψi. (26)

The l eigenvectors are chosen such that they contain almost all the variability of the
snapshots. Usually, they are chosen as the eigenvectors of the maximal number (l) of
eigenvalues satisfying [4]: ∑l

j=1 σj∑m
j=1 σj

≤ α, 0 < α ≤ 1, (27)

with α close to 1. The eigenvalues σj are ordered from large to small with σ1 beeing the
largest eigenvalue of R.

In this study, we normalize the snapshots, so ||xi||2 = 1.
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5 Numerical experiments

In this section we present a series of experiments were we test the deflation method
with a POD basis as deflation matrix. We study two-phase flow problems in a highly
heterogeneous reservoir. We study 2D and 3D problems. For the 3D case, we include
gravity terms. We study water flooding for immiscible fluids (oil and water) and we study
cases with and without capillary pressure involved.

Model problems

We model water flooding into a reservoir initially filled with oil. Therefore, the initial
saturation is set as one for the oil and zero for the water (see Table 2).

We study two models with different permeability fields; an academic layered reservoir
with a contrast in permeability coefficients up to 106, and the SPE 10 benchmark [31] with
a contrast of 107.

We study the solution of systems of linear equations for the pressure, resulting from
the discretization of the partial differential equations describing this process. We use
the fractional flow formulation to decouple pressure from saturation and we the resulting
system with sequential schemes. The pressure linear system is obtained with MRST. The
transport equation is solved with MRST using implicit schemes.

Pressure solver

As mentioned before, we focus on the solution of the pressure Equation (12). We
implement the Deflated Preconditioned Conjugate Gradient method, preconditioned with
Incomplete Cholesky (DICCG), using a POD basis as deflation vectors. We compare the
results with the non-deflated method (ICCG). Defining N as the number of grid cells, d
the number of deflation vectors, and s is the number of snapshots, the computational cost
of computing a solution with the ICCG method is 31N for a 2D case and 39N for 3D. For
the DICCG method, the cost is (31 + 4d)N for 2D and (39 + 4d)N for 3D. For the DICCG
method, we also need to perform the SVD decomposition that costs Ns2 operations.

Deflation procedures

To construct the deflation vectors, we study different approaches. We study a moving
window and a training run approach to obtain a POD basis that is used as deflation vectors.

Moving window : With this approach, we start by computing a set of s snapshots and
obtaining a POD basis from it. We solve the rest of the time steps using the DICCG method
with the vectors of the POD basis as deflation vectors. The basis and, as a consequence,
the deflation matrix have to be updated ’on-the-fly’ at each time step. The pseudo code is
given in Algorithm 3.

We compare the total number of iterations necessary to run the whole DICCG simu-
lation, where the first s time steps are computed with ICCG, with the total number of
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iterations necessary to solve the same problem using the ICCG method only.

Algorithm 3. Deflation, moving window variant, solving Atxt = bt.

X1:s = {x1, x2, ..., xs}a % Compute the solution of the

first s time steps with ICCG.

for t = s+ 1, ..., steps

R = 1
s
XT

(t−s):(t−1)X(t−s):(t−1) % Construct correlation matrix

with the previous s solutions.

Σ1:s = {σ1, ..., σs} % Compute the eigenvalues and

Φ1:s = {φ1, ..., φs} eigenvectors of Rb.

Z1:l = {φ1, ..., φl} % Construct the deflation matrix

with the POD basis.

xt % Compute the next solution

with DICCG.

end

aWe define Xa:b := {xa, xa+1, ..., xb}.
bThe POD basis is constructed with the l largest eigenvectors.

Training simulation : For this case, we use a training phase, where we run the
simulation for all the time steps with the ICCG method. During this training phase, we
randomly vary the pressure in the production wells. A POD basis is computed from the
solutions of the training phase and it is used to construct a deflation matrix with 10 or
30 POD basis vectors as deflation vectors. We solve a series of problems with the same
conditions as the training phase, but with different pressures in the wells, i.e., different rhs.
The pseudo code is presented in Algorithm 4.

As tolerance or stopping criterion we use the relative residual, defined as the 2-norm
of the residual of the kth iteration divided by the 2-norm of the right-hand side of the
preconditioned system, ||M−1rk||2/||M−1b||2 ≤ ε. The tolerance of the solvers is presented
for each case.
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Algorithm 4. Deflation, training variant, solving Atxt = bt.

Solve Atx∗t = bt % Run a training phase with ICCG

varying the pressure in the wells.

X1:steps = {x∗1, x∗2, ..., x∗steps} % Save the solutions as a matrix.

R = 1
steps

XT
1:stepsX1:steps % Construct correlation matrix

with the solutions.

Σ1:steps = {σ1, ..., σsteps} % Compute the eigenvalues and

Φ1:steps = {φ1, ..., φsteps} eigenvectors of R .

Z1:l = {φ1, ..., φl} % Construct the deflation matrix

with the POD basis.

Solve Atxt = bt % The deflation matrix can be

used to solve similar problems

using the DICCG method.

5.1 Heterogeneous permeability layers

The experiments simulate flow through a porous medium with a constant porosity field
of 0.2. In this set of experiments, we study an academic system, which consists of equal-
sized layers with different permeability values (see Figure 1). The configuration of these
layers consists of a layer with one value of permeability κ1, followed by a layer with a
different permeability value κ2. The permeability of one set of layers is set to κ1 = 1mD,
the permeability of the other set, κ2, is varied. Therefore, the contrast in permeability
between the layers (κ2

κ1
= κ2), depends on the value of κ2. The permeability κ2 varies

from κ2 = 1mD up to κ2 = 106mD. The domain consists of a Cartesian grid of 32 x
32 cells, one meter long in the 2D case, and 24 x 24 x 24 cells for the 3D case. For the
relative permeability of the fluids, the Corey model is used. The properties of the fluids are
presented in Table 1. No gravity terms and no capillary pressure are taken into account in
the first set of experiments.

We repeat the experiments, taking into account capillary pressure. We use a linear
capillary relationship, Pc = C(1 − S); the curve is presented in Figure 3. The last set of
experiments with the layered system consisting of a 3D problem, where gravity terms are
included. We study water flooding, with water injected from the boundary and from wells.
Injection is performed through the left boundary at a rate of 0.4 m3/day. The pressure is
set as zero at the right boundary and 100 bars inside the reservoir (See Table 3). For the
injection through wells, we have two cases. In the first one, we use two wells, one injector
(I) and one producer (P) placed on opposite corners of the reservoir. For the second, we
place four producers (Pi) on the corners and one injector in the center. The wells are
controlled prescribing the bhp (see Table 14). The simulation is run during 4800 days with
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240 time steps of 20 days (See Table 3). The stopping criterium for the ICCG and DICCG
methods is ε = 1 · 10−11.

Property Water Oil Units

µ 1 10 cp

ρ 1000 700 kg/m3

kr (Sw)2 (1− Sw)2

Cp 10 ∗ (1− S) bars

Table 1: Fluids properties.

Figure 1: Rock permeability Figure 2: Fluid relative permeability Figure 3: Capillary pressure

5.1.1 Injection through the left boundary

A: No capillary pressure.

Initial saturations

Water Oil

S0,x 6=0,Lx 0 1

Sx=0 1 0

Sx=Lx 0 1

Table 2: Initial Saturations.

Property Value Units

Ttotal 4800 days

Tsteps 240

dT 20 days

Boundary conditions

Qx=0 0.4 m3/day

P0,x 6=(0,Lx) 100 bars

Px=Lx 0 bars

Table 3: Boundary conditions and tempo-
ral parameters.

As mentioned before, we simulate flow through a porous medium with water injection
through the left boundary in a homogeneous and a layered reservoir. Results are presented
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in Table 4. This first column contains the contrast between permeability layers (κ1
κ2

). The
number of iterations necessary to achieve convergence with the ICCG method is presented
in the second column (Total ICCG Iterations). The third column shows the number of
deflation vectors used (5 or 10 in this case). The number of iterations necessary to compute
the snapshots with the ICCG method is presented in the fourth column (ICCG Iterations).
In the fifth column, we give the total number of iterations, taking into account the snapshots
computed with ICCG and the rest of the iterations computed with DICCG. In the last
column, we compute the total number of iterations of the DICCG methods with respect
to ICCG.

We observe (see Table 4) that using deflation methods reduces the number of iterations
to around 7% of the total ICCG iterations. We also note that the number of iterations
does not change dramatically when we vary the contrast between permeability layers or we
change the number of deflation vectors. The largest increment in iterations occurs when
we have a contrast of 106. Comparing this case with the homogeneous case, we see an
increase of 10% in the number of iterations, which is a small increment.

For a contrast between the permeability layers of 101 or 106 we observe five eigenvalues
significantly larger than the rest (see Figure 6). Therefore, if we use five POD vectors
instead of ten as deflation vectors the results are similar, which is shown in Table 4. For
the case of higher contrast, the spectrum is more spread. This could explain the slight
increase in the number of iterations when we increase the contrast.

Pressure field and the water saturation appear in Figure 4 and Figure 5 for various
times. The pressure value is higher on the boundary where water is injected decreasing
towards the right boundary, and it flows easily through the layers with higher permeability
(see Figure 5).

Figure 4: Pressure field [bars] for various times, for a contrast between permeability values of 101, 32 x 32
grid cells.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 12210 DICCG10 495 295 790 6

100 12210 DICCG5 495 384 879 7

101 14783 DICCG10 605 1270 1875 13

101 14783 DICCG5 605 1573 2178 15

102 14513 DICCG10 624 764 1388 10

102 14513 DICCG5 624 919 1543 11

103 12714 DICCG10 524 700 1224 10

103 12714 DICCG5 524 923 1447 11

104 11151 DICCG10 482 783 1265 11

104 11151 DICCG5 482 960 1442 13

105 10958 DICCG10 469 982 1451 13

105 10958 DICCG5 469 1078 1547 14

106 9735 DICCG10 442 1163 1605 16

106 9735 DICCG5 442 1317 1759 18

Table 4: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 32 x 32 cells.

Figure 5: Water saturation for various times, for a contrast between permeability values of 101, 32 x 32
grid cells.

B: Capillary pressure included

For this set of experiments, we include capillary pressure. The capillary pressure func-
tion used for these experiments is presented in Table 1 and Figure 3. The number of
iterations necessary to achieve convergence for various contrast between permeability lay-
ers is presented in 5. The pressure field and the water saturation are presented in Figure
7 and Figure 8 for various times.

In Table 5 we observe that the behavior of the DICCG method is similar when we use
5 or 10 POD basis vectors as deflation vectors. The performance of the DICCG method is
better without capillary pressure, previous case. However, we observe that for a contrast
between permeability layers less than 104 we need around 20% ICCG iterations. For a
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Figure 6: Eigenvalues of the correlation matrix R = 1
mXXT for a contrast between permeability values of

101 and 106.

Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 12440 DICCG10 500 2050 2550 20

100 12440 DICCG5 500 1951 2451 20

101 14597 DICCG10 600 2843 3443 24

101 14597 DICCG5 600 3072 3672 25

102 14897 DICCG10 618 2517 3135 21

102 14897 DICCG5 618 2588 3206 22

103 11821 DICCG10 502 2439 2941 25

103 11821 DICCG5 502 2362 2864 24

104 10530 DICCG10 465 2491 2956 28

104 10530 DICCG5 465 2464 2929 28

105 10030 DICCG10 451 2952 3403 34

105 10030 DICCG5 451 2770 3221 32

106 9071 DICCG10 428 3156 3584 40

106 9071 DICCG5 428 2644 3072 34

Table 5: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 32 x 32 cells, capillary pressure included.

larger contrast, we need between 30 to 40% ICCG iterations, which is a good reduction.
We note that the eigenvalues of the correlation matrix are more spread when the con-

trast between permeability layers is 106 (see Figure 9). The maximum is similar for both
cases, but the minimum for a contrast of 101 is around 10−14 and for a contrast of 106 is
around 10−16, which is two orders of magnitude difference. The latter can result in a better
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Figure 7: Pressure field [bars] for various times for a contrast between permeability values of 101, 32 x 32
grid cells.

Figure 8: Water saturation for various times for a contrast between permeability values of 101, 32 x 32
grid cells.

performance of the DICCG method for the case with smaller contrast.
To further investigate the performance of the DICCG method, we study two cases. In

the first one, we increase the number of deflation vectors to 20. For the second one, we use
a smaller time step (half of the previous) and we use 10 and 5 deflation vectors.

Case 1
The required number of iterations are presented in Table 6 for the first case. From

this table, we note that the performance of the DICCG method is similar to the case of
10 deflation vectors. Therefore, we cannot conclude that the number of deflation vectors
influences the behavior of the method, when we include capillary pressure. We observe

Figure 9: Eigenvalues of the correlation matrix R = 1
mXXT for a contrast between permeability values of

101 and 106, capillary pressure included.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 12440 DICCGPOD20 1010 1815 2825 23

100 12440 DICCGPOD11 1010 1497 2507 20

101 14597 DICCGPOD20 1210 2347 3557 24

101 14597 DICCGPOD11 1210 2486 3696 25

102 14897 DICCGPOD20 1248 2136 3384 23

102 14897 DICCGPOD11 1248 2233 3481 23

103 11821 DICCGPOD20 1002 2082 3084 26

103 11821 DICCGPOD11 1002 2170 3172 27

104 10530 DICCGPOD20 954 2272 3226 31

104 10530 DICCGPOD11 954 2312 3266 31

105 10030 DICCGPOD20 928 2761 3689 37

105 10030 DICCGPOD11 928 2875 3803 38

106 9071 DICCGPOD20 837 3229 4066 45

106 9071 DICCGPOD11 837 2927 3764 41

Table 6: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 32 x 32 cells, capillary pressure included, 20 deflation vectors.

that the range of the spectrum of the correlation matrix for this case is similar to the case
when we have 10 deflation vectors (see Figure 10), which can be the cause of the similar
behavior.

Case 2
For this case, we use 480 time steps, instead of the 240 of the previous cases, which

implies that the change in the matrix is less than in the previous case. In Table 7 we
present the number of iterations of the ICCG and DICCG methods. We observe that the
DICCG method performs better if we have smaller time step, i.e., less change in the Am

matrix. In Figure 11, we note that the smallest eigenvalue is 10−15 for a contrast of 101

and 10−17 for a contrast of 106. Therefore, the difference between these values is the same
as in the previous cases, but the smallest value is smaller than in the previous cases, which
appear to lead to a better performance.

From these experiments, we observe that the performance of the DICCG method de-
pends on the time step. This can be linked to the information acquired with the snapshots.
For the case without capillary pressure, the time step used is enough to capture the system
behavior. On the contrary, for the case when we have capillary pressure involved, it is
necessary to take into account smaller changes produced in the system, which can be done
by taking smaller time steps.
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Figure 10: Eigenvalues of the correlation matrix C = XTX for a contrast between permeability values of
101 and 106, capillary pressure included, 20 deflation vectors.

Figure 11: Eigenvalues of the correlation matrix C = XTX for a contrast between permeability values of
101 and 106, 480 time steps.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 24882 DICCG10 495 3362 3857 16

100 24882 DICCG5 495 3324 3819 15

101 29187 DICCG10 585 4166 4751 16

101 29187 DICCG5 585 4463 5048 17

102 29795 DICCG10 617 3598 4215 14

102 29795 DICCG5 617 3777 4394 15

103 23617 DICCG10 513 3434 3947 17

103 23617 DICCG5 513 3445 3958 17

105 20047 DICCG10 413 4230 4643 23

105 20047 DICCG5 413 4000 4413 22

106 18400 DICCG10 393 4623 5016 27

106 18400 DICCG5 393 4005 4398 24

Table 7: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 32 x 32 cells, capillary pressure included (480 time steps).

C: No capillary pressure, gravity included (3D problem)

In this section, we repeat the experiments performed in the 2D case for a 3D problem
with 24 x 24 x 24 cells. As in the previous case, each cell is one meter long. We studied two
layered problems. In the first one, the layers are placed vertically (see Figure 12) and in
the second, an horizontal configuration is used (see Figure 13). The time step parameters
are the same as in the previous studies (see Table 3).
In Tables 8 and 9, the number of iterations necessary to achieve convergence are presented
for various contrast between permeability layers for the ICCG and DICCG methods. The
pressure field and the water saturation are presented in Figures 14 and 16 for various times
for the first case, and Figures 18 and 19 for the second.

Figure 12: Rock permeability Figure 13: Rock permeability
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 15438 DICCG10 574 1616 2190 14

100 15438 DICCG5 574 1871 2445 16

101 17496 DICCG10 656 1800 2456 14

101 17496 DICCG5 656 2170 2826 16

102 20587 DICCG10 791 2023 2814 14

102 20587 DICCG5 791 2251 3042 15

103 20044 DICCG10 602 1888 2490 12

103 20044 DICCG5 602 2236 2838 14

104 17563 DICCG10 530 1782 2312 13

104 17563 DICCG5 530 2140 2670 15

105 16944 DICCG10 513 1874 2387 14

105 16944 DICCG5 513 2124 2637 16

106 15720 DICCG10 486 1972 2458 16

106 15720 DICCG5 486 2121 2607 17

Table 8: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 24 x 24 x 24 cells, no capillary pressure, gravity included.

Figure 14: Pressure field for various times for a contrast between permeability values of 101, 24
x 24 x 24 grid cells, horizontal layers.
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Figure 15: Pressure field for various times for a contrast between permeability values of 101, 24
x 24 x 24 grid cells, horizontal layers, lower view.

Figure 16: Water saturation for various times for a contrast between permeability values of 101,
24 x 24 x 24 grid cells, horizontal layers.

Figure 17: Water saturation for various times for a contrast between permeability values of 101,
24 x 24 x 24 grid cells, horizontal layers, lower view.

In Tables 8 and 9, the number of DICCG iterations is reduced to around 15% ICCG
iterations. We note that the results are similar while using ten or five deflation independent
of the contrast in permeability or positioning of the layers.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 15438 DICCG10 574 1616 2190 14

100 15438 DICCG5 574 1871 2445 16

101 19426 DICCG10 654 1969 2623 14

101 19426 DICCG5 654 2258 2912 15

102 22577 DICCG10 762 2340 3102 14

102 22577 DICCG5 762 2714 3476 15

103 21832 DICCG10 594 2086 2680 12

103 21832 DICCG5 594 2406 3000 14

104 18483 DICCG10 529 1868 2397 13

104 18483 DICCG5 529 2121 2650 14

105 17808 DICCG10 513 1819 2332 13

105 17808 DICCG5 513 2065 2578 14

106 17152 DICCG10 486 1955 2441 14

106 17152 DICCG5 486 2115 2601 15

Table 9: Number of iterations for various contrast between permeability layers. Injection through the left
boundary, domain 24 x 24 x 24 cells, no capillary pressure, gravity included, vertical layers.

Figure 18: Pressure field for various times for a contrast between permeability values of 101, 24
x 24 x 24 grid cells, vertical layers.

D: Capillary pressure and gravity included (3D problem).

As in the previous case, we study a 3D problem with gravity terms included, but in
this case, we also include capillary pressure. The capillary pressure function is the same
as in the 2D problem (see Table 1 and Figure 3). The number of iterations necessary to
achieve convergence is presented for various contrast between permeability layers for the
ICCG and DICCG methods in Table 10 . The pressure field and the water saturation are
presented in Figures 20 and 21 for various times.

In Table 10 and Table 11, we observe that for the DICCG method we need around 20%
of the ICCG iterations. This percentage increases slightly when we increase the contrast
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Figure 19: Water saturation for various times for a contrast between permeability values of 101,
24 x 24 x 24 grid cells, vertical layers.

Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 14136 DICCG10 588 2357 2945 21

100 14136 DICCG5 588 2520 3108 22

101 17224 DICCG10 660 3431 4091 24

101 17224 DICCG5 660 3658 4318 25

102 20562 DICCG10 763 3468 4231 21

102 20562 DICCG5 763 3596 4359 21

103 18514 DICCG10 605 2894 3499 19

103 18514 DICCG5 605 2943 3548 19

104 15397 DICCG10 520 2801 3321 22

104 15397 DICCG5 520 2925 3445 22

105 14955 DICCG10 505 3025 3530 24

105 14955 DICCG5 505 3206 3711 25

106 13228 DICCG10 469 3531 4000 30

106 13228 DICCG5 469 2992 3461 26

Table 10: Number of iterations for various contrast between permeability layers. Injection through the
left boundary, domain 24 x 24 x 24 cells, capillary pressure and gravity included, vertical layers.

Figure 20: Pressure field for various times for a contrast between permeability values of 101, 24 x 24 x 24
grid cells, capillary pressure and gravity included.
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Figure 21: Water saturation for various times for a contrast between permeability values of 101, 24 x 24
x 24 grid cells, capillary pressure and gravity included.

Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 14136 DICCG10 588 2357 2945 21

100 14136 DICCG5 588 2520 3108 22

101 16614 DICCG10 672 2786 3458 21

101 16614 DICCG5 672 3130 3802 23

102 20037 DICCG10 786 3290 4076 20

102 20037 DICCG5 786 3773 4559 23

103 18640 DICCG10 610 2918 3528 19

103 18640 DICCG5 610 3265 3875 21

104 15437 DICCG10 522 2712 3234 21

104 15437 DICCG5 522 3107 3629 24

105 14371 DICCG10 505 2899 3404 24

105 14371 DICCG5 505 3273 3778 26

106 13176 DICCG10 470 3361 3831 29

106 13176 DICCG5 470 2940 3410 26

Table 11: Number of iterations for various contrast between permeability layers. Injection through the
left boundary, domain 24 x 24 x 24 cells, capillary pressure and gravity included, horizontal layers.

between permeability layers. Comparing the cases with and without capillary pressure, we
observe that the performance is better without. As mentioned for the 2D case, this could
be caused by the lack of information obtained with the deflation vectors. The performance
can be improved by decreasing the time step.
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5.1.2 Injection through wells.

We study water flooding with injection through wells. For the first set of experiments,
two wells are placed in the reservoir, one injection (I) and one production well (P). In
the second set, we use five wells in the reservoir, four producers (Pi) and one injector
(I). The wells are controlled changing the bhp. The pressure in the wells is presented for
each experiment. We impose homogeneous Neumann boundary conditions (no flux). We
study a problem with layered permeability values and the SPE 10 benchmark with different
number of layers. The characteristics of the fluids are the same as in the previous case
(see 1). No gravity terms and no capillary pressure are taken into account in the first set
of experiments. In the second part of this section, we study 3D problem with gravity and
we also include capillary pressure.
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A: Heterogeneous permeability layers, two wells, bhp controlled

Figure 22: Rock permeability

In this section, we study water flooding with two wells.
Water is injected in one well placed at one corner (I) and
produced in a well located at the opposite corner (P). The
domain consist layers with different permeability and 35 x 35
cells (see Figure 22). The contrast between permeability lay-
ers varies from 100 to 103. The pressure in the injector is 200
bars and in the producer is -200 bars. As in the previous ex-
periments, we study deflation method with five and ten POD
basis vectors as deflation vectors. The number of iterations
necessary to achieve convergence are presented in Table 17.
The total time of the simulation is the time when a volume of water corresponding to 1.2
of the pore volume of the reservoiris injected. We simulate 480 time steps. The oil flux rate
is presented in figures 23 and 29 for the homogeneous problem and layers with a contrast
of 101 and 103 in the permeability layers. We are injecting water through the injector,
therefore we don’t have oil production in the injection well (I). For the production well
(P), in both cases, we observe a decrease in the oil rate after ∼ 1.5× 105 days for the first
case, and ∼ 1.5 × 107 days for the second case. If we observe the water flux rate for the
same cases (Figures 30 and 32), we note a decrease in the injector well when we have an
increase in the production well. This shows that at this moment, the water has reached
the production well; therefore, we are producing oil and water. Thus, the oil production
decreases. We also note that the rate decreases almost linearly with the contrast between
permeability layers.

The deflated method reduces the number of ICCG iterations to around 17% of the total,
in the homogeneous problem (see Table 17). For the heterogeneous problems, the reduction
ais around 13%. This result is independent on the contrast in permeability layers.

Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 18888 DICCG10 395 2739 3134 17

100 18888 DICCG5 395 3705 4100 22

101 28481 DICCG10 595 3198 3793 13

101 28481 DICCG5 595 4093 4688 16

102 32412 DICCG10 681 3385 4066 13

102 32412 DICCG5 681 4114 4795 15

103 34911 DICCG10 730 4875 5605 16

103 34911 DICCG5 730 4973 5703 16

Table 12: Number of iterations for various contrast between permeability layers.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 18916 DICCG10 395 3524 3919 21

100 18916 DICCG5 395 3933 4328 23

101 28463 DICCG5 595 4258 4853 17

101 28463 DICCG10 595 3913 4508 16

102 32635 DICCG10 683 4662 5345 16

102 32635 DICCG5 683 4956 5639 17

103 34911 DICCG10 730 4875 5605 16

103 34911 DICCG5 730 4973 5703 16

Table 13: Number of iterations for various contrast between permeability layers, capillary pressure in-
cluded.

Figure 23: Oil Rate, homogeneous problem. Figure 24: Water Rate, homogeneous problem.

B: Heterogeneous permeability layers, five wells, bhp controlled

Figure 33: Rock permeability

For the first set of experiments, we study a layered
system (see Figure 1). We use five layers of the same
size, 3 layers with one value of permeability κ1, followed
by a layer with a different permeability value κ2. The
permeability of one set of layers is κ1 = 1mD, the per-
meability of the other set (κ2) is varied. Therefore, the
contrast in permeability between the layers (κ2

κ1
= κ2),

depends on the value of κ2. The permeability κ2 varies
from κ2 = 1mD to κ2 = 10−3mD. The domain consists
of a Cartesian grid of 35 x 35 cells with a length of ten meters per cell.

One injector is placed in the center and four producers on the corners of the reservoir
(see Figure 33). The wells are controlled via the bottom hole pressure (bhp). Water is
injected into a reservoir initially filled with oil. The values of the wells are presented in
Table 14. The first simulation has constant permeability through all the reservoir. The
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Figure 25: Water saturation, homogeneous
problem.

Figure 26: Water saturation, heterogeneous
problem, contrast between permeability layers
103.

Figure 27: Pressure field, homogeneous prob-
lem.

Figure 28: Pressure field, heterogeneous prob-
lem, contrast between permeability layers 103

simulation is run until we inject 1.2 times the pore volume of the reservoir. We use 480
time steps (see Table 15).

The number of iterations necessary to achieve convergence for the ICCG and DICCG
methods are presented in Table 16 for a problem without capillary pressure and Table 17
for a problem including capillary pressure.

In Table 17, we observe that the percentage of DICCG iterations necessary to achieve
convergence is reduced to 9% ICCG iterations when using ten and five POD basis vectors
as deflation vectors.

We observe, in both cases, that five eigenvalues are larger than the rest, which implies
that most of the system’s information is contained in these eigenvalues. We observe a
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Figure 29: Oil Rate, contrast between perme-
ability layers of 101.

Figure 30: Water Rate, contrast between per-
meability layers of 101.

Figure 31: Oil Rate, contrast between perme-
ability layers of 103.

Figure 32: Water Rate, contrast between per-
meability layers of 103.

Well Water Oil Pressure

Sat Sat [bars]

P1 0 1 −50

P2 0 1 −50

P3 0 1 −50

P4 0 1 −50

I 1 0 200

Table 14: Wells properties.

Property Value

Ttotal 1.2 PV

Steps 480

Table 15: Time.

similar behavior for the DICCG method with five and ten deflation vectors (see Table 16
and Table 17). The correlation matrix shows that the main information is contained in
the five largest eigenvalues, which corresponds to the observed behavior of the method (see
Figure 34).

Results homogeneous permeability
As mentioned before, we vary the contrast between the permeability layers. The

first case that we study the case with homogeneous permeability, i.e. the layers have the
same value.
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Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 17506 DICCG10 351 1824 2175 12

100 17506 DICCG5 351 2312 2663 15

101 24394 DICCG10 502 1869 2371 10

101 24394 DICCG5 502 2477 2979 12

102 27364 DICCG10 551 1906 2457 9

102 27364 DICCG5 551 2583 3134 11

103 27092 DICCG10 529 2033 2562 9

103 27092 DICCG5 529 2430 2959 11

Table 16: Number of iterations for various contrast between permeability layers, five wells.

Total DICCG ICCG DICCG Total % of total
κ2
κ1

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

100 17383 DICCG10 351 2655 3006 17

100 17383 DICCG5 351 2642 2993 17

101 23810 DICCG10 502 2641 3143 13

101 23810 DICCG5 502 2683 3185 13

102 27629 DICCG10 551 2719 3270 12

102 27629 DICCG5 551 2793 3344 12

103 23962 DICCG10 517 2872 3389 14

103 23962 DICCG5 517 2744 3261 14

Table 17: Number of iterations for various contrast between permeability layers, capillary pressure in-
cluded, five wells.

In Figure 35 we present the flux rate of water in each well for the homogeneous problem.
We observe that the injector (I) starts with a high rate, this is maintained for some time
until the water reaches the producers (P), then it decreases. In Figure 36 we observe
the saturation of water inside the reservoir. In this case, as the reservoir has constant
permeability, we observe a symmetric expansion of water in the reservoir. In Figure 37 we
have the oil’s flux rate in the wells. This rate is constant until water break through (wbt),
when it starts to decrease. We also note, in Figure 38, that the pressure increases from the
injector, the center of the domain to the corners with time.

Results heterogeneous permeability
In this section the contrast between permeability layers is of 101 and 103. We present

the rate of water and oil injected or extracted from each well in Figures 39, 41, 43 and
45. As in the previous case, we observe that the injector starts with a high rate, this is
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Figure 34: Eigenvalues of the correlation matrix C = XTX for a homogeneous problem and a contrast
between permeability values of 103, 480 time steps.

Figure 35: Water Rate, homogeneous perme-
ability.

Figure 36: Water Saturation, homogeneous per-
meability.

Figure 37: Oil rate, homogeneous permeability. Figure 38: Pressure, homogeneous permeability.

maintained for some time until the water reaches the producers, then it decreases. For the
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production of oil we observe a similar behavior, it begins with a constant rate and it drops
after wbt. Water saturation in the reservoir is presented in Figures 40 and 44. We note
that the high permeability layers hinder the movement of the water. For the pressure field
(see Figures 42 and 46), we observe an increment in the pressure from the center outwards.

Figure 39: Water Rate, heterogeneous perme-
ability (contrast 101).

Figure 40: Water Saturation, heterogeneous
permeability (contrast 101).

Figure 41: Oil rate, heterogeneous permeability
(contrast 101).

Figure 42: Pressure, heterogeneous permeabil-
ity (contrast 101).
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Figure 43: Water Rate, heterogeneous perme-
ability (contrast 103).

Figure 44: Water Saturation, heterogeneous
permeability (contrast 103).

Figure 45: Oil rate, heterogeneous permeability
(contrast 103).

Figure 46: Pressure, heterogeneous permeabil-
ity (contrast 103).
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5.2 SPE 10

Figure 47: Rock per-
meability, SPE 10.

The SPE 10 model consists on 60 x 220 x 85 cells. In this work we
study 3 cases. The first one containing one layer, the second with 35
layers and the last one containing 85 layers. We consider injection
through the boundary for the 2D problem and injection through wells
for the 3D cases. The wells setup consist on one injector and four
producers and (see Figure 47). For the collection of snapshots, we use
two criteria: moving window for the 2D case, and a training phase for
the 3D cases. A detailed description of the number of deflation vectors,
times, and pressures is presented for each case.

Injection through left boundary

Water is injected through the left boundary at a constant rate of 4 m3/day to a reservoir
initially filled with oil. The initial pressure of the reservoir is 100 bars, and the pressure in
the right boundary is set to zero bars. We run the simulation for 100 time steps, with a step
of 20 days (see Tables 18 and 19). We study the DICCG method with 30 and 10 deflation
vectors. The stopping criterium for the ICCG and DICCG methods is ε = 5 · 10−8. The
eigenvalues of the correlation matrix are shown in Figure 48. The results are presented in
Table 20 and the pressure and water saturation at diverse time steps are shown in Figures
49 and 50.

Water Oil

S0,x 6=0,Lx 0 1

Sx=0 1 0

Sx=Lx 0 1

Table 18: Initial Saturations.

Temporal Parameters

dT 20 days

Steps 100

Ttotal 2000 days

Boundary conditions

Qx=0 400 m3/day

P0,x 6=(0,Lx) 100 bars

Px=Lx 0 bars

Table 19: Boundary conditions and tem-
poral parameters.

Total DICCG ICCG DICCG Total % of total

ICCG Method Iterations Iterations ICCG ICCG

Iterations (Snapshots) +DICCG Iterations

88502 DICCG10 2018 25129 27147 31

88502 DICCGPOD30 6120 16274 22394 25

Table 20: Number of iterations.

37



Figure 48: Eigenvalues of the correlation matrix C = XTX for 30 snapshots, left, and 10 snapshots, right.

The number of iterations is reduced to around 30% ICCG iterations when we use ten
deflation vectors and around 25% when we use 30 (see Table 20). In Figure 48 we observe
ten eigenvalues larger than the rest. This indicates that the main information is contained
in the eigenvectors corresponding to these eigenvalues. Therefore, the performance of the
deflated method does not change dramatically when using 30 or ten snapshots.

Figure 49: Pressure, SPE 10, 60 x 220 x 1 grid
cells.

Figure 50: Water Saturation, SPE 10, 60 x 220
x 1 grid cells.

Wells

In this section, we perform a series of experiments injecting water through wells. For
these examples, the POD basis and deflation matrix are obtained off-line in a training run
with the ICCG method. Once the POD basis and the deflation matrix are obtained, a
series of simulations are performed with the DICCG method for diverse values of bhp in
the producers.

The pressure of the production wells is varied randomly every two time steps during the
training run phase between 137.5 and 275 bars (see Table 21 and Figure 52). The pressure
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in the injection well maintained constant at 1100 bars, and 275 bars for the producers.
The pre-simulation is run during 100 time steps with a step of 50 days for the 35 layers
case and 150 steps of 5 days for the 85 layers case.

After the training simulation, we compute the correlation matrix R = XXT ,, where
the columns of the matrix X are the solutions of the training phase. The eigenvectors of
the correlation matrix are presented in Figure 53. We observe that some eigenvalues are
larger than the rest. We use the eigenvectors of these large eigenvalues as deflation vectors.
For the first set of experiments we use 30 vectors and for the second we use ten. We solve
three cases with the deflation vectors previously selected. For the first two cases, we select
bhp of the producers in the range of pressures computed during the training phase (200
and 275 [bars]). For the third case, we solve for a bhp in the wells outside the training
phase pressures. The water saturation and the pressure field are presented in Figures 55
and 54. The resulting number of iterations are presented in Table 23 with 35 layers and
Table 24 with 85.

Well Water Oil Pressure

Sat Sat [bars]

P1, P2 0 1 rand(137.5− 275)

P3 0 1 275− P1

P4 0 1 275− P2

I1, I2 1 0 1100

Reservoir

Water Oil Pressure

Sat Sat [bars]

0 1 500

Table 21: Initial Pressure and Saturations in the
reservoir and wells, training run.

Temporal Parameters

35 layers

dT 50 days

Steps 100

Ttotal 5000 days

85 layers

dT 50 days

Steps 100

Ttotal 5000 days

Table 22: Temporal parameters.

Figure 51: Rock permeability and
wells, SPE 10, 220 x 60 x 35 grid cells.

From Table 23 and 24, we observe that the DICCG
with 30 deflation vectors requires around 20% of the num-
ber of the ICCG iterations. This value is similar for the
three cases, even if the problem is outside of the training
range. When we decrease the number of deflation vec-
tors to ten, the percentage of ICCG iterations increases
to around 35%, which is still an important reduction in
the number of iterations.
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Figure 52: Producers bhp training simulation. Figure 53: Eigenvalues training simulation.

Total DICCG Total % ICCG

ICCG Method DICCG Iter

Iter Iter

Pbhp = 275 [bars]

44107 DICCG30 9636 22

44107 DICCG10 15799 36

Pbhp = 200 [bars]

44107 DICCG30 8371 19

44107 DICCG10 15327 35

Pbhp = 400 [bars]

44107 DICCG30 8371 19

44107 DICCG10 15327 35

Table 23: Number of iterations for diverse bhp
in the production wells, 35 layers.

Total DICCG Total % ICCG

ICCG Method DICCG Iter

Iter Iter

Pbhp = 275 [bars]

96594 DICCG30 21526 22

96594 DICCG10 37255 39

Pbhp = 200 [bars]

96594 DICCG30 21103 22

96594 DICCG10 36225 38

Pbhp = 400 [bars]

96594 DICCG30 20855 22

96594 DICCG10 35009 36

Table 24: Number of iterations for diverse bhp
in the production wells, 85 layers.

Figure 54: Water Saturation, SPE 10, 60 x 220 x 35 grid cells.

Figure 55: Pressure field, SPE 10, 60 x 220 x 35 grid cells.
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Conclusions

Approximating a solution to large or ill-conditioned systems of linear equations with
iterative methods leads to a computationally expensive process. This is usually the case
of the linear pressure system when simulating two-phase flow through highly heteroge-
neous porous media. We propose the reuse of system information by combining POD and
deflation techniques to accelerate this process.

In our proposal, the POD method is used to collect system information for later use
in a deflation procedure (Deflated Conjugate Gradient preconditioned with Incomplete
Cholesky, DICCG). The POD basis is obtained in two different ways: in the first one
(moving window approach), the basis is constructed from previously computed solutions
and updated at each time step; for the second one (training phase approach), the solutions
of a pre-simulation are used to construct the basis. We studied injection of water through
boundaries and through wells for an academic layered problem and the SPE 10 benchmark.

For the layered problems, we studied the moving window approach. The DICCG
method reduced the number of ICCG iterations to around 14%. The performance of the
method was independent of the contrast between permeability layers or the inclusion of
gravity terms. However, the capillary terms increased the number of iterations by a factor
of two. Reducing the time step for this problem resulted in a decrease of the number of
iterations; whereas, increasing the number of deflation vectors did not show a remarkable
change.

For the SPE 10 benchmark, we studied the moving window and training phase ap-
proaches. For both cases, the DICCG method reduced the ICCG iterations to around 20%
of the total using 30 deflation vectors, and to around 35% with ten. These results where
similar for all cases, including the full benchmark containing ∼ 12× 106 cells and gravity
terms included.

For a 3D case using five deflation vectors, the DICCG method costs 1.5 times more
operations per iteration than the ICCG method (see Appendix F), where an acceleration up
to a factor 5 is observed. As we increase the number of deflation vectors the cost increases.
Therefore, the implementation of the DICCG method with fewer deflation vectors leads to
an optimal performance.

We present the POD-based deflation method for reservoir simulation examples together
with the CG method. Nevertheless, it can be applied to various transient problems, and
multiple iterative linear solvers, e.g., Krylov subspace and Multigrid methods.
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A List of notation

Symbol Quantity Unit

α Fluid phase

φ Rock porosity

K Rock permeability Darcy (D)

Kα Effective permeability Darcy (D)

krα Relative permeability

cr Rock compressibility Pa−1

vα Darcy’s velocity m/d

ρα Fluid density kg/m3

µα Fluid viscosity Pa · s
λα Fluid mobilities D/(Pa · s)
p Pressure Pa

pc Capillary pressure Pa

Sα Saturation

g Gravity m/s2

cf Fluid compressibility Pa−1

qα Sources

d Reservoir depth

Table 25: Notation
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B Krylov iterative methods: CG

In this appendix, we explain how to obtain the solution of the linear system:

Ax = b, (28)

using diverse Krylov-subspace techniques.
Conjugate Gradient (CG) method is a Krylov-subspace iterative method based in the

minimization of the residual in the A-norm. Given a starting solution x0 and the residual
defined by rk = b−Axk, we define the Krylov subspace as:

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}.

For this space, the approximate solution

xk ∈ x0 +Kk(A, r0)

has a minimal error measured in the A-norm for all approximations contained in x0 +
Kk(A, r0).
The error of this approximation is bounded by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ2(A)− 1√
κ2(A) + 1

)k+1

2. (29)

Hence, the convergence of the method depends on the condition number (κ2) of the matrix.

B.1 Preconditioning

The linear system (28) can be further accelerated by transforming the system into a
one with better spectrum, this is done by multiplying the system by a matrix, cheap to
compute M−1,

M−1Ax = M−1b. (30)

The new system has the same solution but can provide a substantial reduction of the
condition number. For this preconditioned system, the error is bounded by:

||x− xk||A ≤ 2||x− x0||A

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

. (31)

2The condition number κ2(A) is defined as κ2(A) =

√
λmax(ATA)√
λmin(ATA)

. If A is SPD, κ2(A) = λmax(A)
λmin(A) .
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B.2 Deflated PCG Method

Another way to accelerate the solution of a linear system is the deflation method. Where,
instead of solving the original system, we solve the deflated system (see Appendix C):

PAx̂ = Pb, (32)

for the deflated solution x̂. This deflated the solution is related to the solution x of the
original system as (see Appendix C):

x = Qb + PT x̂. (33)

The deflated linear system can also be preconditioned by an SPD matrix M. After pre-
conditioning, the deflated preconditioned system to solve with CG is [20]:

P̃Ãˆ̃x = P̃b̃,

where:
Ã = M− 1

2 AM− 1
2 , ˆ̃x = M

1
2 x̂, b̃ = M− 1

2 b.

This method is called the Deflated Preconditioned Conjugate Gradient DPCG method.
In practice M−1PAx = M−1Pb is computed and the error is bounded by:

||x− xi+1||A ≤ 2||x− x0||A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)i+1

,

were κeff = λmax(M−1PA)
λmin(M−1PA)

is the effective condition number and λmin(M−1PA) is the smallest

non-zero eigenvalue of M−1PA.
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C Deflation method properties

Some properties of the matrices used for deflation that will help us to find the solution of
system (28) are [22]:

a) P2 = P.

b) APT = PA.

c) (I−PT )x = Qb.

d) PAQ = 0n×n.

e) PAZ = 0n×l.

To obtain the solution of the linear system (28), we start with the splitting:

x = x−PTx + PTx = (I−PT )x + PTx. (34)

Multiplying expression (34) by A, using the properties of the deflation matrices, we have:

Ax = A(I−PT )x + APTx, P roperty :

Ax = AQb + APTx, c)

b = AQb + PAx, b),

multiplying by P and using the properties PAQ = 0n×n and P2 = P, properties d) and
a), we have:

PAQb + P2Ax = Pb,

PAx = Pb,

where PAx = Pb is the deflated system. Since PA is singular, the solution of Equation
(35) can contain components of the null space of PA, (N (PA)). A solution of this system,
called the deflated solution, is denoted by x̂. Then, the linear system to solve is:

PAx̂ = Pb. (35)

As the solution of Equation (35) can contain components of N (PA), x̂ can be decomposed
as:

x̂ = x + y, (36)

with y ∈ R(Z) ⊂ N (PA), and x the solution of Equation (28).
Note: If y ∈ R(Z), then

y =
m∑
i=1

αizi,
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PAy = PA(z1α1 + ...+ zmαm) = PAZα,

from property e) we have:
PAy = 0.

Therefore R(Z) ⊂ N (PA), and using property b) we have:

PAy = APTy = 0.

As A is invertible, we have:
PTy = 0. (37)

Multiplying Equation (36) by PT we obtain:

PT x̂ = PTx + PTy.

substituting Equation (37) we arrive to:

PT x̂ = PTx. (38)

Substitution of Equation (38) and property c) in Equation (34) leads to:

x = Qb + PT x̂, (39)

which gives us the relation between x̂ and x.
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D Stopping criteria

When we use an iterative method, we always want that our approximation is close
enough to the exact solution. In other words, we want that the error [1, pag. 42]:

||ek||2 = ||x− xk||2,

or the relative error:
||x− xk||2
||x||2

,

is small.
When we want to chose a stopping criteria, we could think that the relative error is a

good candidate, but is has the disadvantage that we need to know the exact solution to
compute it. What we have instead is the residual

rk = b−Axk,

that is actually computed in each iteration of the CG method. There is a relationship
between the error and the residual that can help us with the choice of the stopping criteria.

||x− xk||2
||x||2

≤ κ2(A)
||rk||2
||b||2

.

With this relationship in mind, we can choose the stopping criteria as an ε for which

||rk||2
||b||2

≤ ε.

But we should keep to have in mind the condition number of the matrix A, because the
relative error will be bounded by:

||x− xk||2
||x||2

≤ κ2(A)ε.
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E Singular Value Decomposition for POD

If we perform SVD in a set of vectors X = [x1,x2, ....,xm], we obtain [32]:
X = UΣVT ∈ Rn×m, U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m.
We can decompose the data correlation matrix R and the transpose of this matrix as:

R = XXT

= UΣVT (UΣVT )T

= UΣVTVΣTUT , VTV = I

= UΛUT , Λ = ΣΣT ∈ Rn×n

RT = XTX

= (UΣVT )TUΣVT

= VΣTUTUΣVT , UTU = I

= VΛTVT , ΛT = ΣTΣ ∈ Rm×m.

The eigenvectors of X can be obtained as follows:

X = UΣVT

U = XVΣ−1

U = XVΛ−
1
2

Where we need the eigenvalues of R, if we compute the eigenvectors of RT instead, ΛT ,
we can compute U as follows:

U = XV(ΛT )−
T
2 = XV(ΛT )

1
2
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F Operation counts

The number of operations necessary to perform the deflation procedure is computed in
this section for full matrices and sparse matrices.

First, we compute the number of operations between vectors and matrices necessary
for ICCG method (see Table 26) and DICCG method (see Table 27).

With the numbers previously computed, we compute the number of operations neces-
sary to perform the ICCG (see Table 28) and DICCG methods (see Table 29). In Table
31, we compute the number of operations necessary to perform the ICCG and DICCG
methods for different sparsity of the matrix (m) and a diverse number of deflation vectors
(p).

A, B ∈ Rn×n, x,y ∈ Rn, α ∈ R
Operation Number of Operations

Full matrix Sparse matrix (m non zero entries)

xTy n(∗) + (n− 1)(+) = 2n− 1 2n− 1

x(+/−)y n n

αx n n

Ax (n(∗) + (n− 1)(+))n (r) = 2n2 − n (m(∗) +m− 1(+))n (r) = 2mn− n
AB [(n(∗) + (n− 1)(+))n (r)]n (c) = [(m(∗) +m− 1(+))n (r) ]m (c) =

= 2n3 − n2 = 2m2n− nm
A ∈ Rp×n, B ∈ Rn×p, z ∈ Rp

AB ([n(∗) + n− 1(+)]p+ (p− 1)(+))p ([m(∗) +m− 1(+)]p+ (p− 1)(+))p

= (2np− 1)p = (2mp− 1)p

Ax (n(∗) + (n− 1)(+))p = (2n− 1)p (m(∗) + (m− 1)(+))p = (2m− 1)p

Bz (p(∗) + (p− 1)(+))n = (2p− 1)n (m(∗) + (m− 1)(+))n = (2m− 1)n

A = LLT 1/3n3

Lx = y n2 nm

LTx = y n2 nm

X = UΣVT ∈ Rn×m nm2 nm2

Table 26: Number of operations between matrices and vectors.
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Z ∈ Rn×p and A ∈ Rn×n

Operation Number of Operations

Full matrix Sparse matrix (m non zero entries)

V = AZ ∈ Rn×p np(2n− 1) np(2m− 1)

ZTV ∈ Rn×p p2(2n− 1) p2(2m− 1)

E = ZTAZ ∈ Rp×p p[n(2n+ 2p− 1)− p] p(2m− 1)(p+ n)

E−1 p3 p3

B = AZE−1 = VE−1 ∈ Rn×p np(2p− 1) np(2p− 1)

y = ZTx 2np− p 2np− p
z = By ∈ Rn n(2p− 1) n(2p− 1)

w = E−1y 2p2 − p 2p2 − p
Q = Zw 2pn− n 2pn− n
Qx = ZE−1ZTx (4p− 1)n+ p2 − 2p (4p− 1)n+ p2 − 2p

QEx = ZE−1ZTx (4np+ 2p− 1)n− 2p+ p3 (4mp+ 2p− 1)n− 2p+ p3

(computing E and E−1)

Vw (2p− 1)n (2p− 1)n

AQx = AZE−1ZTx =

= [AZE−1][ZTx] = [B][ZTx] [2np− p] + [n(2p− 1)] [2np− p] + [n(2p− 1)]

(without computing B) = n(4p− 1)− p = n(4p− 1)− p
Px = (I−AQ)x = x−B[ZTx] 4np− p 4np− p
(without computing B)

PEx = (I−AQ)x (2n+ 4np+ 2p− 1)n− (2m+ 4mp+ 2p− 1)n−
−2p+ p3 −2p+ p3

Table 27: Number of operations required to compute matrices and vectors for the deflation method.
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Algorithm 1 ICCG method, solving Ax = b. Operations

Split preconditioner Full matrix Sparse matrix

Give an initial guess x0.

Compute r0 = b−Ax0. 2n2 2mn

Compute r̂0 = L−1r0. n2 nm

Compute p̂0 = L−T r̂0. n2 nm

for k = 0, ..., until convergence

wk = Apk 2n2 − n 2nm− n
ryk = (r̂k,yk) 2n− 1 2n− 1

αk = ryk

(pk,ŵk)
2n 2n

xk+1 = xk + αkpk 2n 2n

r̂k+1 = r̂k − αkL−1ŵk n2 + 2n nm+ 2n

βk = (r̂k+1,ŷk+1)
ryk 2n 2n

pk+1 = L−T rk+1 + βkpk n2 + 2n nm+ 2n

end

Total each k 4n2 + 11n− 1 4nm+ 11n− 1 ∼
∼ (4m+ 11)n

Table 28: Number of operations required to perform the ICCG method.
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Algorithm 3 DICCG method, Operations

solving Ax = b.

Split preconditioner Full matrix Sparse matrix

Give an initial guess x0.

Compute:

r0 = b−Ax0 2n2 2mn

V = AZ np(2n− 1) np(2m− 1)

r̂0 = Pr0 4np− p 4np− p
y0 = L−1r̂0 n2 nm

p0 = L−Ty0 n2 nm

for k = 0, ..., until convergence

wk = Apk 2n2 − n 2nm− n
ŵk = Pwk 4np− p 4np− p
ryk = (r̂k,yk) 2n− 1 2n− 1

αk = ryk

(pk,ŵk)
2n 2n

xk+1 = xk + αkpk 2n 2n

r̂k+1 = r̂k − αkL−1ŵk n2 + 2n nm+ 2n

βk = (r̂k+1,ŷk+1)
ryk 2n 2n

pk+1 = L−T rk+1 + βkpk n2 + 2n nm+ 2n

end

Total each k 4n2 + 4pn+ 11n− p− 1 4nm+ 4pn+ 11n− p− 1

∼ (4m+ 4p+ 11)n

Table 29: Number of operations required to perform the DICCG method.
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F.1 Operation counts for the POD-based deflation method.

For the POD-based deflation method, first, we need to compute the snapshots with the
ICCG method. Setting s as the number of snapshots, the work necessary to compute the
snapshots is 31Ns for a 2D problem with N grid cells (see Table 30). The number of
operations required to compute the ICCG method and the DICCG method with different
deflation vectors is presented in Table 30. In this table, we also present a comparison
between the two methods. We note that as we increase the number of deflation vectors,
the DICCG method becomes more expensive. However, if the matrix becomes less sparse,
the becomes less expensive, compared with the ICCG method.

Description Sparsity Operations Count

s = 5 s = 10 s = 30

Compute m = 3 (1D) 23Ns 115N 230N 690N

Snapshots m = 5 (2D) 31Ns 155N 310N 930N

for various dimensions m = 7 (3D) 39Ns 195N 390N 1080N

Compute SVD of

X = UΣVT ∈ RN×s Ns2 25N 100N 900N

Total m = 3 23Ns+Ns2 140N 330N 1590N

number of m = 5 31Ns+Ns2 180N 410N 1830N

operations m = 7 39Ns+Ns2 220N 490N 1980N

Table 30: Number of operations required to compute the POD basis. If the snapshots are computed using
the ICCG method, for which we need s× ICCG = s× (4m+ 11)N operations.
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m p=5 p=10 p=30

ICCG (4m+11)N 23N 23N 23N 23N

m=3 DICCG (4m+11+4p)N (23+4p)N 43N 63N 143N

DICCG/ICCG 43/23=1.8 63/23=2.7 143/23=6.2

ICCG (4m+11)N 31N 31N 31N 31N

m=5 DICCG (4m+11+4p)N (31+4p)N 51N 71N 151N

DICCG/ICCG 51/31=1.6 71/31=2.3 151/31=4.8

ICCG (4m+11)N 39N 39N 39N 39N

m=7 DICCG (4m+11+4p)N (39+4p)N 59N 79N 159N

DICCG/ICCG 59/39=1.5 79/39=2 5159/39=4.1

Table 31: Number of operations required per iteration to solve a linear system with the ICCG and DICCG
methods for different sparsity of the matrices and different number deflation vectors.
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