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Abstract

A network model is presented to simulate solidification and fluid flow within a semi-solid aluminum alloy. The model consists of a set
of connected channels representing the interdendritic liquid and its possible flow directions at high solid fractions (>0.7). The individual
channels react according to solidification rules upon liquid solute convection and changes of the local temperature. This dynamic net-
work model has been designed in such a way that a qualitative study of the interaction between the channels is possible. The simulations
of the alloys considered show good agreement with the expected macroscopic fluid flow behavior. The simulations indicate a possible
reason for deviations from the Kozeny–Carman relationship in measurements of semi-solid alloys.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Early simulations of the solidification of alloys often
used an averaging approach [1]. This approach describes
all physical properties within a representative volume ele-
ment (REV) in terms of fraction solid or liquid. Even
though the approach has had many refinements and exten-
sions [2–6] its principles are still used today to simulate
solidification on a macroscopic level (e.g. [5]). Since the
early simulations however the uncertainty remains of how
to determine the fluid flow rate within a semi-solid REV
given the pressure on its boundary. With few exceptions
averaged based simulations have assumed that Darcy’s
law is applicable. According to Darcy’s law the fluid flow
rate is proportional to the applied pressure difference [7].

The problem which arises is to find an adequate propor-
tionality constant, i.e. to determine permeability. An obvi-
ous way to do this is to measure it using an alloy or a
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similar substance. This has been done many times with var-
ious experimental settings e.g. [8–12]. Apart from the obvi-
ous difficulty that the underlying micro-structure of the
semi-solid might vary during the experiment, a number of
additional limitations of the experiments have been
described [19]. Furthermore, the measurements show a
rather wide spread, which makes it difficult to fit them to
a general rule relating permeability to the fraction of solid
(or liquid) [20,21]. However, most experiments report how-
ever good agreement with the Kozeny–Carman relation-
ship (1), at least within a certain range of liquid or solid
fractions (about 0.5 < fs < 0.9 in [19]) and with the right
(individual) fitting parameters.

The Kozeny–Carman relationship is given by

K ¼ f 3
l

kcS
2
S

; ð1Þ

where K is the permeability, fl is the volume fraction of
liquid, SS is the solid–liquid interfacial area per unit
volume and kc is the Kozeny constant. This equation can
directly be derived from the assumption that the whole
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Fig. 1. Liquid channel network.
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porous and semi-solid alloy (or other porous media) can be
represented by a set of straight and parallel tubes. This
rather crude approximation shows, for many sorts of por-
ous media, a remarkably good agreement with reality as
long as the Kozeny constant can be estimated [22–24].

The Kozeny constant can be expected to vary generally
most at high and very low liquid fractions [25]. For very
low liquid fractions the known experiments using semi-
solid alloys seem not to be very suitable. Therefore, it is
not surprising that fluid flow has been numerically simu-
lated using micro-photographs of the structure of
quenched alloys [26–31]. This technique ignores completely
the dynamic changes of the micro-structure and there are
some uncertainties on how the quenching process affects
the micro-structure. Until now, there remains some doubts
about the applicability of the Kozeny–Carman relationship
and the correct value of the Kozeny constant [32].

Another approach to describe permeability was adapted
by Wang and Beckermann [33–37]. The main idea behind
the derived equation is that the dendritic micro-structure
of the semi-solid can be represented by a set of spheres.
Through the distinction of intra- and inter-spheric liquid,
detailed description of fluid flow and solidification becomes
possible. New measurements show that the expression
established by these authors and the Kozeny–Carman rela-
tionship do not deviate significantly over a wide range of
liquid fractions [12].

The fluid flow within solidifying alloys has been studied
in various other works. Among them, theoretical consider-
ations including closure problems are used in [13–15]. More
detailed (micro-)structures were simulated applying the
phase-field method [16–18]. None of them however made
any conclusive remarks about the usability of the Koz-
eny–Carman relationship.

For this purpose a cellular automata model which seems
to have been restricted to a small 3-D region around a
grain was used by Brown et al. [32]. The major contribu-
tion of their work is that the authors proposed a new value
for the Kozeny constant (i.e. 1 instead of 5) to allow for a
better agreement of the Kozeny–Carman relationship with
their numerical study. It remains however unclear whether
this deviation from the original constant is due to the
restricted size of the simulation.

In this article the well established idea of a network
model [38–43] is extended and newly applied in the field
of alloy solidification. The main idea is to represent fluid
flow conducts within the semi-solid by a set of geometrical
simplified and interconnected channels. Solidification is
then included on an individual channel basis, while fluid
flow through the represented semi-solid is determined by
the flow through the whole channel network.

The advantage of this kind of model is that it allows for
investigations which are experimentally not possible and
which involves interactions between a lot (i.e. hundredths)
of grains at high solid volume fractions. Therefore, the
model is suited to investigate the Kozeny–Carman relation-
ship. Furthermore, it is expected that percolation or self
induced macro-segregation effects will be revealed with this
approach if they exist within solidifying alloys.

2. Model description

The semi-solid state of alloys often consists of solidify-
ing grains within liquid. From a numerical point of view,
there are two main approaches to study such semi-solid
alloys. On the one hand, it is possible to study development
of a few individual grains in detail. Because this involves
accurate simulation on the scale of microns and less, the
resulting models are called microscopic models. On the
other hand, it is possible to average over a large number
of grains and study the macroscopic behavior of the
semi-solid. With averaging, all conservation equations will
be written in terms of liquid or solid volume fractions.
Note that the conservation equations are not directly
related to the actual microscopic structure.

There exists various ways of coupling microscopic and
macroscopic models. But the coupling usually involves
assumptions (e.g. restriction to 2-D, no shrinkage) which
considerably reduce the complexity of the model. There-
fore, all micro–macro models are somehow restricted like
the model described below. It relies heavily on a number
of assumptions as stated below. However, the model
restrictions are chosen in such a way that the interactions
of the macroscopic liquid flow and the individual behavior
of the grains can be retained. For this reason, this model
has the characteristics of a mesoscopic model.

2.1. Basic concept

The basic idea behind the simulation model presented in
this article is that the complex structure of the mush, i.e. of
the dendritic grains surrounded by the liquid phase, can be
represented by a set of interconnected liquid channels. In
this paper 2-D networks have been chosen to represent
the mush. As shown in Fig. 1 the channel network resem-
bles a distorted padding of a regular hexagonal network.

To create the channel networks a random distribution of
grain centers is used. The Voronoi diagram which belongs
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to the grain centers forms the channel network. Due to the
irregular distribution of the grain centers, there exists a
certain variation of the channel lengths. If the distance
between two grain centers is below a certain threshold,
one of the grain centers will be removed and the channel
network is adapted accordingly. This last procedure limits
the minimal length of a channel.

Dynamical adaptations of the channel widths will
account for solidification and melting of grains within the
mush. This in turn has an impact on the conductivity of
the channels. Liquid pockets of a real mush will undergo
many changes before they disappear. It is therefore possi-
ble that a representing channel network of an extended
model ought to change its structure and especially its con-
nectivity during solidification.

For simplicity reasons it is assumed here that all struc-
tural changes will happen only on an individual channel
basis. Other kind of structure changes will be explicitly
excluded from the model. Furthermore, it is taken, for
granted that neither grain centers nor channel junctions
will change their positions.

The exact form of the grains the channels represent
being unknown, all curvature effects on solidification will
be neglected. This also means that no coarsening effects
can be included. As a first attempt, the channels are consid-
ered to be bounded by parallel planes. Fluid flow within the
channels is assumed to be laminar and unidirectional in the
main channel direction. Solidification rules are chosen in
such a way that a channel solidifies or melts equally on
both sides and along its whole length.

The remaining model can be described as follows: if a
pressure difference is applied on those channel junctions
which serve as inlets and outlets, a fluid flow through the
channels will be generated. This flow transports solute
and heat. Depending on the temperature and solute con-
centration of the solid, the convected solute and heat can
cause solidification or melting within an individual chan-
nel. This in turn might change the temperature and concen-
tration of the effluent fluid flow.

In accordance with this, within every time interval the
simulation consists of four parts. Firstly, the flow rates
within the whole network are estimated. Secondly, mixing
on the channel junctions and within the individual channels
determines the amount of convected heat and solute.
Thirdly, solidification or melting will determine new chan-
nel properties. And finally conduction of heat and solute
within the solid is accounted for. Within the simulation
all four parts are addressed in turn because they rely on
the outcome of each other. In the next section we describe
these parts in more detail.

2.2. Fluid flow determination

In order to determine the flow rate within the whole net-
work it is assumed that the overall flow rate through one
single channel is proportional to the mean pressure differ-
ence of the channel junctions it is connected to, i.e. that
Q ¼ K
Dp
Lc

; ð2Þ

where Q is the flow rate in the channel, K is the permeabil-
ity of the channel itself, Dp is the junction pressures differ-
ence, and Lc is the channel length.

Since the exact structure of the channels is unknown, the
laminar flow within the individual channels is assumed to
correspond to the flow between two parallel plates i.e.

K ¼ 1

12

DW 3

g
. ð3Þ

The height of all channels D can be chosen arbitrary, while
W is the channel width and the constant g is the viscosity of
the channel liquid. For a 2-D simulation this assumption is
the most obvious choice. Physically it corresponds more or
less to the flow along columnar grains. It is also possible to
assume a flow within cylindrical tubes. However, to get a
situation corresponding more to the flow around globular
grains a network with connections in 3-D is needed. Such
a model is at the moment not feasible due to the high com-
putational power it requires.

On the channel junctions mass is conserved. Assuming
an incompressible fluid, this allows usage of Eq. (2) to write
a system of linear mass balance equations for the whole
network. Once the pressures of the inlet and outlet junc-
tions are specified, the system of linear equations can be
solved for the unknown pressures on the channel junctions.
Finally, the flow rates within the individual channels can be
determined with Eq. (2).

A more detailed description of this procedure can be
found in Seeburger and Nur [39]. In our simulation how-
ever, the system of linear equations often cannot be solved
in a direct manner. When solidification proceeds, some
channels will soon have a reduced width, while other chan-
nels tend to stay open. The effect is a huge difference
between the smallest and largest channel permeability K.
This in turn leads to an ill conditioned system of linear
equations.

To avoid numerical instabilities permeability values
below a certain threshold are set equal to zero and the
resulting equation system is divided into linear independent
parts if possible. For this division a coloring algorithm
showed to be useful. It assigns all channel junctions which
are connected to each other by a nonzero permeability
channel to the same color. Each cluster of colored junc-
tions represents one independent part of the whole system
of equations.

2.3. Solidification and melting

Solidification and melting within a channel can occur if
either the predefined channel liquid temperature and/or the
liquid solute concentration of the channel changes. The
cause for this can be either convection from inlets or from
upstream channels or conduction and diffusion across the
network.



Table 1
Material constants used in the simulation

Melting temperature of Al, Tf 933.6 K
Eutectic composition, Te 33.1 wt%
Partition coefficient, k 0.16
Liquidus slope, m �3.7 K/wt%
Diffusion coefficient (in solid), Ds 1.5 · 10�13 m2/s
Thermal conductivity (in solid), ks 120.7 W/K m
Latent heat of fusion, L 3.9 · 105 J/m3

Specific heat of solid, Cps 958.0 J/kg K
Specific heat of liquid, Cpl 1054.0 J/kg K
Viscosity (of liquid), g 0.0023 Ns/m2

Solid density, qs 2750.0 kg/m3

Liquid density, ql 2460.0 kg/m3

Kinetic coefficient, b 0.1 m/s K
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In order to keep the description of solidification simple
each channel is described by one single element. The chan-
nel elements are characterized by a uniform channel
concentration, temperature and channel width. When the
simulation starts the initial liquid concentration and tem-
perature are chosen to correspond to a point of the liquidus
within the phase diagram. The same holds for the inlet flow
as well.

During solidification all three parameters describing the
channel, i.e. liquid concentration, temperature and width
can change. However, in the noneutectic regime the liquid
at the interface will retain a concentration and temperature
which still belongs to the liquidus. Therefore, solidification
only changes the location on the liquidus while altering the
channel width.

For the determination of solidification a linear phase
diagram is used. This has two advantages. Firstly, determi-
nation of the liquidus temperature given the liquid concen-
tration and vice versa is straight forward. Secondly, when
two liquids with both corresponding points on the liquidus
are completely mixed, the resulting liquid will still corre-
spond to a point on the liquidus.

This strong coupling of the system to the liquidus per-
mits approximation of the solidification rate in three steps.
The first and most difficult step is the prediction of the new
temperature of the liquid at the end of the considered time
interval. This is followed by the determination of the liquid
solute concentration which in turn is used for the estimate
of the new channel width. All three steps are set up to be
applicable on individual channels. We assume that during
a step the behavior of the other channels do not interfere.

At first the liquid temperature within a channel T0 is
likely to be different from the temperature of its surround-
ing region. During equilibration of heat, the temperature
changes and solidification or melting will be induced. If
time permits, a final averaged temperature T1 will be
reached. In the simulation this temperature is approxi-
mated by an area weighted mean temperature of both
neighboring elements of the channel.

How the initial temperature T0 changes to T1 is
strongly related to the development of the micro-structure
within the channel. On the level of a mesoscopic model it is
not attained to spend a lot of computational effort in its
simulation. Therefore it is assumed that the development
of temperature can be reasonably described by an exponen-
tial function of the form

T ¼ T1 þ ðT 0 � T1Þe�
_T ðt¼0Þ

T 0�T1t
. ð4Þ

In this equation, the liquid temperature of the channel is T.
Its derivative _T has to be taken at time t = 0 and is approx-
imated by

_T ðt ¼ 0Þ ¼ �
ks

T 0�T 1

d1
þ T 0�T 2

d2
� 2viL

� �
qlCplW 0

. ð5Þ

In this equation, which is derived from heat conservation,
ks is the solid conductivity, Cpl the specific heat of the
liquid, ql the density of the liquid and L is the latent heat
of fusion. Apart from the material constants, the initial
channel width W0, the interface velocity vi, the tempera-
tures of the neighboring elements T1, T2 and the distances
to its grain centers d1, d2 have to be known.

The solid–liquid interface velocity of both channel walls
is assumed to be the same. Otherwise dislocation of the
channel can occur. While all parameters in Eq. (5) are given
by boundary conditions or follow directly from the simula-
tion, the interface velocity is not. With Eq. (5) a new chan-
nel width can be predicted and in consequence a new
corresponding interface velocity can be determined. If the
time duration of solidification is short enough, this deter-
mined velocity should equal to the velocity used in Eq.
(5) itself. In the model the difference of both velocities is
minimized using a Newton method and very short time
steps.

Once the best velocity is found, Eq. (4) is applied for the
whole duration of one iteration and a new liquid tempera-
ture Tl at the end of it is determined. The corresponding
solute concentration within the channel Cl is then given
by the relation describing the liquidus

Cl ¼
T f � T l

m
; ð6Þ

where Tf is the melting temperature of the pure solvent and
m is the slope of the liquidus (Table 1).

Finally, the prediction of solidification is terminated by
estimating a new channel width Wl using Scheil–Gulliver
equation

W l ¼ W 0

Cl

C0

� �ðk�1Þ

ð7Þ

with partition coefficient k. In principle all similar equa-
tions, such as those incorporating back diffusion, can be
used here.

Within the eutectic regime the growth rate is assumed to
depend linearly on the amount of undercooling from the
eutectic temperature Teut, i.e.

vi ¼ bðT eut � T 0Þ. ð8Þ
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This is only a very crude estimate but it allows choosing an
adequate kinetic coefficient b. In this way a qualitative esti-
mate of experimental observed increase or decrease of the
solidification rate of eutectics can be made.

2.4. Mixing

At the channel junctions total mixing of the influent liq-
uids is assumed. The model will use for every channel junc-
tion the liquid Temperature Tl and solute concentration Cl

of each adjacent channel with an inflowing liquid. The tem-
perature of the mixed fluid at a channel junction is deter-
mined by

T ¼
P

iT iV iP
iV i

. ð9Þ

It is the mean of all temperatures Ti of the influent liquids
mixing within the same junction. The temperatures are
weighted with the corresponding volume of influent liquids
Vi that leaves channel i during the duration of one simula-
tion interval. The solute concentration is averaged in the
same way.

Due to mass conservation, the same amount of liquid
flowing into a channel junction has to flow out of it. This
influent liquid will mix within the remnant liquid of the
channel it flows into. The model assumes that this mixing
is complete. The new liquid temperature and solute concen-
tration due to the mixing is determined just before solidifi-
cation is considered.

2.5. Conduction and diffusion

The spread of heat and solute within the whole mush by
conduction and diffusion is determined using an ordinary
finite volume method. The meshing of the network is
shown in Fig. 2. During the simulation the network will
be adapted. The size of the channel elements are then chan-
ged in accordance to the channel widths. Neighboring ele-
ments of the channel elements are eliminated or introduced
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Fig. 2. Magnified detail of the liquid channel network (gray) as shown in
Fig. 1. In addition the meshing of the grains is shown.
depending on the new grain extend. This all is done mind-
ing mass and heat conservation.

3. Observations and numerical results

The described network model has been used to deter-
mine the behavior of a Al–Cu mush of uniform tempera-
ture upon inflow of a slightly higher temperature. For
this purpose the network structure shown in Fig. 1 which
contains 559 grains and 1465 channels was created. It rep-
resents a mush with extend of about 4 mm by 6 mm. The
mean grain size was chosen to be around 200 lm. The ini-
tial channel widths have been chosen to be normal distrib-
uted with mean width of 12.5 lm and a standard deviation
of 2 lm.

Initially the whole network array has a uniform temper-
ature of 880 K and a solute concentration which corre-
sponds to this temperature in accordance to the phase
diagram. The bottom junctions of the network are consid-
ered to be inlets while a row of junctions at the top of the
network serve as outlets. A fluid flow from the inlets to the
outlets is created by applying a pressure difference of
10,900 Pa. The inflowing fluid had a fixed temperature of
885 K during the whole simulation. Its corresponding sol-
ute concentration was determined by the liquidus and
was around 14.5 wt% Cu.

During the whole simulated duration of 0.132 s compris-
ing 1600 time iterations, a temperature of 880 K was
imposed on the top most grain centers of the network.
On all other boundaries conditions were chosen such that
no heat nor solute is lost by conduction or diffusion. Of
course convection was allowed to transport heat and solute
into the system at the inlets. Furthermore, it was made sure
that no solute conduction occurred at the top of the
network.

The system behaved as expected during the simulation.
First, through convection a lot of heat is transported to
the bottom part of the network. The channel liquid thereby
cools down while heat is conducted into the solid part. This
cooling induces solidification at the channel walls. The
solidification in turn means that the channels become
narrow and convection is greatly reduced. However, the
dimensionless Péclet number is small (i.e. below 0.2) which
means that conduction of heat is much faster than convec-
tion. What follows is that temperature becomes nearly
equalized over the whole width of the network and heat
will be transported mainly by conduction.

It is interesting to see, that during the whole simulation
the system behaves well balanced. That means there seems
to occur neither self induced nor random effects. Specula-
tions predicting that some channels might start to widen
dramatically while its neighbor have to close seems to be
unfounded. The effect of wormhole formation was neither
found anywhere.

The influence of a random channel width distribution is
clearly visible at the beginning of the simulation. However,
when the bottom channels decrease in width convection
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will soon be predominated by heat conduction and the ini-
tial widths distribution will play a minor role.

4. Discussion

As can be seen from Fig. 3 permeability is within the
range of the measured values. Permeability decreases at
first slowly due to the fact that it takes some time till
enough liquid of augmented temperature is convected into
the lower channels of the network. Once heat can be
extracted from the channel liquid solidification becomes
increased and permeability declines rapidly. In the end per-
meability tends to decrease slowly because of the reduced
amount of temperature augmented liquid inflow. The chan-
nels near the inlets have then become too narrow.

Using expression (1) it is possible to determine the devel-
opment of the Kozeny factor kc (see Fig. 4). At the begin-
ning kc is nearly constant and its value is about the
expected Kozeny constant of 5. Later on the kc rises due
to the rapid decrease of permeability while the liquid frac-
tion fl decreases and the specific surface SS increases slowly
as can see in Figs. 5 and 6, respectively. The specific surface
SS, i.e. the length of the solid–liquid interface per array of
solid, first decreases even though the whole interface length
increases. This is caused by the assumed channel geometry.

The variation of the Kozeny factor indicates a deviation
from Kozeny–Carman relationship. This can be clearly
seen in Fig. 7. In this figure the experimental measured
dimensionless permeability values and the expected devel-
opment as predicted by the Kozeny–Carman relationship
are compared with the values derived from simulation.
The dimensionless permeability in the simulation decreases
while the liquid volume fraction within the network seems
to remain nearly constant. Further investigation revealed
that only the lowest channels near the inlets experience
enough solidification to narrow considerably. The narrow-
ing of these channels however does not influence the liquid
fraction remarkably.

If only the lower part of the network gets influenced by
the inflow of the temperature augmented liquid, it is inter-
esting to consider a more localized permeability. Fig. 8
shows that within the considered model it is statistical pos-
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sible to consider Darcy’s law on localized regions with a
minimal length of about 1 mm. Using regions of this min-
imal length the permeability within the network has a typ-
ical profile as shown in Fig. 9. Permeability remains nearly
constant during the whole simulation in nearly the whole
network but for the bottom part. Within the bottom part
of about 200 lm length flow gets remarkably hampered.
Only within this bottom part application of the Kozeny–
Carman relationship makes sense.

Though the considered situation in this article is special,
the clear importance of small regions within the mush indi-
cates that only slight in-homogenization of measured sam-
ples or of the temperature distribution within, can have
dramatic effects. All measurements included in Fig. 7 use
relatively large sized samples. It therefore might be that this
is a reason among others for the wide spread of the mea-
sured values.

As it is possible that the already mentioned relative sta-
bility of the network depends on the applied pressure and
on the initial channel width distribution, some additional
simulations with higher pressure drops and wider width
distributions were carried out. The results show no anom-
aly. In Fig. 10 the influence of the variation of the width
distribution on permeability is shown. As expected a wider
variation of the initial liquid channel widths has only a
marginal effect on permeability, while the mean width influ-
ences permeability directly.

Some results of simulations with higher pressure differ-
ences are shown in Fig. 11. A higher difference of the
applied pressure leads to a faster decrease of the permeabil-
ity. The reason is that a higher pressure difference increases
the amount inflowing warm fluid which will solidify upon
cooling.

5. Conclusions

Above description shows that it is possible to extend a
network model for the flow simulation of liquid within
semi-solid Al-alloys. The network model can be coupled
to an ordinary finite volume method which simulates the
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conduction of heat and diffusion of solute within the solid.
Though many introduced restrictions, the resulting
dynamic mesoscopic 2-D model has been shown to be able
to simulate the fluid flow within a solidifying mush ade-
quately. Especially the values for permeability and for the
Kozeny constant are comparable with measured values.

The extended model was applied to simulate the inflow
of liquid with a slightly increased temperature into a mushy
zone of uniform temperature. It was shown that no self
induced effects like wormhole formation occur upon this
inflow. The whole system remains rather stable. As
expected the inflow just induces an increase of solidification
at the inlet side of the mush. A random distribution of the
initial channel widths is visible to a certain extend before its
effect disappears completely.

Finally, it is indicated that the behavior of small regions
within relative large samples might lead to a spread of
measured permeability values. This indication is guided
by the observation that the overall permeability can heavily
depend on the alteration of the morphology within a
comparable small region.
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