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Abstract

Recent research efforts aimed at iteratively solving the Helmholtz equation has fo-
cused on incorporating deflation techniques for accelerating the convergence of Krylov
subpsace methods. The requisite for these efforts lies in the fact that the widely used
and well acknowledged Complex Shifted Laplacian Preconditioner (CSLP) shifts the
eigenvalues of the preconditioned system towards the origin as the wave number in-
creases. The two-level-deflation preconditioner combined with CSLP (DEF) showed
encouraging results in moderating the rate at which the eigenvalues approach the ori-
gin. However, for large wave numbers the initial problem resurfaces and the near-zero
eigenvalues reappear. Our findings reveal that the reappearance of these near-zero
eigenvalues occurs if the near-singular eigenmodes of the fine-grid operator and the
coarse-grid operator are not properly aligned. This misalignment is caused by accu-
mulating approximation errors during the inter-grid transfer operations. We propose
the use of higher-order approximation schemes to construct the deflation vectors.
The results from Rigorous Fourier Analysis (RFA) and numerical experiments con-
firm that our newly proposed scheme outperforms any other deflation-based pre-
conditioner for the Helmholtz problem. In particular, the spectrum of the adjusted
preconditioned operator stays fixed near one. These results can be generalized to
general shifted indefinite systems with random right-hand sides. For the first time,
the convergence properties for very large wavenumbers (k = 106 in one-dimension
and k = 103 in two-dimensions) have been studied, and the convergence is close to
wave number independence. Wave number independence for three-dimensions has
been obtained for wave numbers up to k = 75. The new scheme additionally shows
very promising results for the more challenging Marmousi problem. Despite having a
strongly varying wave number, we managed to obtain a small and constant number
of iterations.

1 Introduction

From investigating the earth’s layers in seismology to assessing the effect of electromag-
netic scattering in the presence of human tissue through MRI, the Helmholtz equation
finds its application through various applications. Many efforts have been rendered in or-
der to obtain accurate and computationally feasible solutions. Two major problem arise
in trying to solve the Helmholtz equation numerically. First of all, for large wave numbers
the numerical solution suffers from the so called ’pollution error’, which intrinsically is a
phase difference between the exact and numerical solution. The second issue relates to the
convergence behaviour of the underlying solver. For medium to large wave numbers, the
linear system becomes indefinite due to the negative eigenvalues. In order to balance the
accuracy for such large wave numbers the linear system becomes very large and thus pre-
conditioned iterative solvers are preferred, especially when considering higher dimensional
problems [5]. As the wave number increases the eigenvalues of the preconditioned matrix
start to shift towards the origin. These near-zero eigenvalues have a detrimental effect on
the convergence speed of Krylov-based iterative solvers. In order to mitigate these effects,
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many preconditioners for the Helmholtz problem have been proposed throughout the years.
A specific class of preconditioners focuses on the operator in question and shows perfor-
mance gains for medium sized wave numbers. In [2] the preconditioner matrix is equal to
the discretisized Laplacian operator, and variations on this include a real and/or complex
shift. A widely known preconditioner is Complex Shifted Laplacian Preconditioner (CSLP)
([7],[8]). Despite achieving a substantial speed-up, the small eigenvalues of the precondi-
tioned system still rush to zero as the wave number increases, which is why ultimately a
deflation strategy was proposed in [6]. Deflation, in essence, projects the unwanted eigen-
values to zero and has been studied widely ([18], [19],[1]). While being able to improve the
convergence and performance significantly, the near-zero eigenvalues still reappear for large
wave numbers. In this work we present an adapted deflation scheme in order to obtain an
efficient and fast solver. By using a higher-order approximation scheme for the deflation
vectors, we are able to reach close to wave-number independent convergence.

2 Problem Description

We start by focusing on a simple one-dimensional mathematical model using a constant
wave number k:

−d
2u

dx2
− k2 u = δ(x− x′),

u(0) = 0, u(L) = 0,

x ∈ Ω = [0, L] ⊂ R,
k ∈ N \ {0}. (1)

We will refer to this model problem as MP 1. For the one-dimensional case, the second
order difference scheme with stepsize h = 1

n
leads to

−ul−1 + 2ul − ul+1

h2
− k2ul = fl , l = 1, 2, . . . , n.

Using a lexicographic ordering, the linear system can be formulated exclusively on the
internal grid points due to the homogeneous Dirichlet boundary conditions. We obtain the
following system and eigenvalues

Au =
1

h2
tridiag[−1 2− k2 − 1]u = f,

λ̂l =
1

h2
(2− 2 cos(lπh))− k2, (2)

l = 1, 2, . . . n.

In order to investigate the scalability of the linear solver in higher dimensions (section 5),
we define MP 2 and MP 3 to be the 2-D and 3-D versions of the original model problem.
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Therefore, on the standard two-dimensional square unit domain Ω = [0, 1] × [0, 1] with
constant wave number k we consider

−∆u(x, y)− k2u(x, y) = δ(x− 1

2
, y − 1

2
), (x, y) ∈ Ω \ ∂Ω ⊂ R2,

u(x, y) = 0, (x, y) ∈ ∂Ω, (3)

This will be refered to as MP 2. Similarly, on the standard three-dimensional cube unit
domain Ω = [0, 1]× [0, 1]× [0, 1] we have

−∆u(x, y, z)− k2u(x, y, z) = δ(x− 1

2
, y − 1

2
, z − 1

2
), (x, y, z) ∈ Ω \ ∂Ω ⊂ R2,

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω, (4)

We will refer to this as MP 3. The discretization using second order finite differences goes
accordingly for higher dimensions, with the resulting matrices being penta- and hepta-
diagonal for 2D and 3D respectively.
The final test problem is a representation of an industrial problem and is widely referred to
as the 2D Marmousi Problem. We will refer to this model problem throughout upcoming
chapters as MP 4. Note that all models, except the Marmousi model, contain Dirichlet
boundary conditions to simulate the worst spectral properties for convergence. The original
Marmousi problem is defined on a rectangular domain Ω = [0, 9200]× [0, 3000]. There are
158 layers with velocities ranging from 1500 m/s to 5500 m/s. In [18] a slightly adapted
version of the original Marmousi problem is considered. The original domain has been
truncated to Ω = [0, 8192]× [0, 2048] in order to allow for efficient geometric coarsening of
the discrete velocity profiles given that the domain remains in powers of 2. The original
velocity c(x, y) is also adapted by considering 2587.5 ≤ c ≤ 3325. We will use the adjusted
domain in order to benchmark against the results from [18]. Consequently, on the adjusted
domain Ω, we define

−∆u(x, y)− k(x, y)2u(x, y) = δ(x− 4000, y), (x, y) ∈ Ω \ ∂Ω ⊂ R2,(
∂

∂n
− ik

)
u(x, y) = 0, (x, y) ∈ ∂Ω, (5)

where n denotes the outward normal unit vector in the x- and y-direction respectively. Note
that we now have a non-constant wave number k(x, y) = 2πfreq

c(x,y)
, where in this particular

case c(x, y) ranges between 2587.5 and 3325. For this adjusted version of the Marmousi
problem, numerical experiments have been conducted using the frequencies 1, 10, 20 and
40 Hz, where the grid has been resolved in such a way that the maximum wave number
k at freq = 1 has a grid resolution of kh ≤ 0.039. For the remaining frequencies, a grid
resolution of kh ≤ 0.39 is utilized.
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2.1 Deflated Krylov Methods

Note that equation eq. (2) reveals that the spectrum for MP 1 contains both positive and
negative eigenvalues for

k >
2 sin(π h

2
)

h
≈ π.

This indefiniteness narrows the choice of potential Krylov-based solvers due to the Conju-
gate Gradient type methods being ineffective. Adding to this, Krylov subspace methods
are adversely affected by close to zero eigenvalues. While the application of the CSLP pre-
conditioner was successful in confining the eigenvalues between 0 and 1, the Krylov solver
remains defenseless against the hampering convergence behavior caused by the small eigen-
values for large k. Deflation is a technique designed to ”deflate” these unwanted eigenvalue
onto zero. By means of a projection, it is possible to alleviate the adverse effects on the
Krylov solver by either explicitly modifying the operator of the linear system ([15]) or by
adapting the eigenvectors corresponding to the troublesome eigenvalues ([13], [14]). For
large systems, the latter option is computationally burdensome. As a consequence, most
applications in the literature are based on approximations of invariant subspaces obtained
from Jordan decompositions. Deflation for large scale problems relies on multiplying the
linear system by a projection matrix P and applying the Krylov subspace method to the
projected system PA, rendering the projection matrix P to act as a preconditioner at the
same time as follows

PAû = Pf

A ∈ Cn×n, P ∈ Rn×n, û ∈ Rn

m = dim(P ) < n

Consider A ∈ Rn×n. Then its Jordan decomposition is given by

A =
[
U1 U2

] [J1 Ø
Ø J2

] [
U1 U2

]−1
where J1 ∈ Rm×m and J2 ∈ R(n−m)×(n−m) with m ≤ n represent the square Jordan blocks.
Letting P{U1,U2} denote the projection onto U1 ⊆ Rm×m along U2 ⊆ R(n−m)×(n−m), the
projected system can be decomposed as

P{U1,U2}A =A =
[
U1 U2

] [Ø Ø
Ø J2

] [
U1 U2

]−1
The resulting system PA will have a zero eigenvalue with algebraic multiplicity m. The
spectrum contained in the Jordan block J1 appears invisible to the Krylov solver, im-
proving the conditions for convergence. Analytically, the invariant subspaces are based on
(generalized) eigenvectors, creating the necessity for approximations to these subspaces in
order to meet practical purposes. As a result, the remaining part of the spectrum will
typically differ from σ(J2).
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2.2 Deflation Based Preconditioning for GMRES

Consider a general real valued linear system. The projection matrix P̂ and its complemen-
tary projection P can be defined as

P̂ = AQ where Q = ZE−1ZT and E = ZTAZ (6)

A ∈ Rn×n, Z ∈ Rm×n

P = I − AQ,

where Z functions as the deflation matrix whose m < n columns are considered the de-
flation vectors and I is the n× n identity matrix. Additionally, the coarse-grid coefficient
matrix E is assumed to be invertible. Matrix P is also known as the projection precondi-
tioner. In Algorithm 1 we present the Preconditioned Deflated GMRES algorithm.

Algorithm 1: Preconditioned Deflated GMRES for system Au = b

Choose u0 and compute r0 = b0 and v1 = r0/||r0||
for for j = 1, 2, ...k or until convergence do
ṽj := Pvj
w = M−1Aṽj
for i := 1, 2, ..., j do
hi,j := wTvi
w := w − hi,jvi

end for
hj+1,j := ||w||
vj+1 := w/hj+1,j

end for
Store Vk =

[
ṽ1, ..., ṽk

]
; Hk = {hi,j}, 1 ≤ i ≤ j + 1, 1 ≤ j ≤ m

Compute yk = argminy||b0 −Hky|| and uk = u0 + Vkyk
The entries of upper k + 1, k Hessenberg Matrix Hk are the scalars hi,j
Update approximated solution uk = Qb + PTuk

2.3 The Deflation Preconditioner (DEF)

Based on theory above, the DEF-preconditioner has been defined by taking the coarse
correction operator I2hh from a multigrid setting as the deflation subspace Z in equation
eq. (6). Ih2h can be interpreted as interpolating from grid Ω2h to grid Ωh. As a result, the
DEF-preconditioner is commonly referred to as a two-level method and we obtain

P̂ = AhQ where Q = ZA2h
−1ZT and A2h = ZTAhZ (7)

P = Ih − AhQ where Z = Ih2h
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For spectral improvement, the DEF-preconditioner is applied to the CSLP preconditioned
system. The spectra of both systems are equivalent, which leads to solving the following
linear systems [18]

M−1Ahu = M−1f

M−1PAhu = M−1Pf

P TM−1Ahu = P TM−1f (8)

In the literature a distinction is made with respect to the two-level deflation operator. On
the one hand we have the DEF-preconditioner as defined above. On the other hand we
have the ADEF-preconditioner, which is defined by taking PADEF = P+γQ. The inclusion
of the shift γ ensures that the coarse-grid solve with respect to A2h can be approximated
[18]. In this work we solely focus on the DEF-preconditioner, and thus we can take γ = 0.

2.3.1 Inscalability and Spectral Analysis

We now shift our focus to the study of the eigenvalues of the DEF-operator without in-
clusion of the CSLP-preconditioner. In [11] and [18] detailed analytical derivations and
expressions for the spectrum of the DEF-operator are given which we will use here. The
eigenvalues of the system PA are given by

λl(PA) = λl(A)

(
1−

λl(A) cos(lπ h
2
)4

λl(A2h)

)
+ λn+1−l(A)

(
1−

λn+1−l(A) sin(lπ h
2
)4

λl(A2h)

)
, (9)

l = 1, 2, . . . ,
n

2
.

Inspection of eq. (9) leads to the observation that the eigenvalues of the deflation operator
P are given by

λl(P ) =

(
1−

λl(A) cos(lπ h
2
)4

λl(A2h)

)
+

(
1−

λn+1−l(A) sin(lπ h
2
)4

λl(A2h)

)
. (10)

By introducing the following coefficients, we can rewrite eq. (9) as

αl =

(
1−

λl(A) cos(lπ h
2
)4

λl(A2h)

)
=
λn+1−l(A) sin(lπ h

2
)4

λl(A2h)
,

β l =

(
1−

λn+1−l(A) sin(lπ h
2
)4

λl(A2h)

)
=
λl(A) cos(lπ h

2
)4

λl(A2h)
,

λl(PA) = λl(A)αl + λn+1−l(A)β l , l = 1, 2, . . . ,
n

2
(11)

Since the sine and cosine terms are always strictly less than 1, the eigenvalues of the
system PA are essentially the product of eigenvalues of A multiplied by the scaled ratio of
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the eigenvalues of A and A2h. In order to simplify the analysis, we therefore proceed by
analyzing

β̂ l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ , l = 1, 2, . . . ,
n

2
, (12)

which provides an upperbound to the previously defined coefficients. It is easy to see that
the eigenvalues of PA will approach the origin if the factor β̂ l becomes small for some l .
If we define the constant c to be the magnitude of the largest eigenvalue of A, then we can
scale the eigenvalues of PA by c and compare them to the eigenvalues P TM−1A and β̂
In fig. 1 we have plotted a selected range of eigenvalues of PA scaled by c and compared

Figure 1: kh = 0.625, k = 500. Left: eigenvalues of PA scaled by magnitude of
the largest eigenvalue (c). Center: Ratio between eigenvalues of the fine-grid and
coarse-grid operator (β̂ from equation eq. (12)). Right: real part of eigenvalues
P TM−1A.

these to the eigenvalues of P TM−1A (right) and β̂ l (center). On the x-axis we have the
relevant indices l corresponding to the respective close to zero eigenvalues. The figure
provides affirmative support for our remark that the behaviour of the eigenvalues of both
PA and P TM−1A are, apart from a scaling factor, determined by the behaviour of β̂ l as
all three figures exhibit the same shape and pattern. β̂ l approaches the origin whenever∣∣λl(A)

∣∣ becomes small, which is at l = lhmin (red marker). If lhmin 6= l2hmin and l2hmin < lhmin,

then we are dividing a relatively small number
∣∣∣λlhmin(A)

∣∣∣ by a larger number
∣∣∣λlhmin(A2h)

∣∣∣,
which brings the resulting fraction closer to zero. The further apart lhmin and l2hmin are, the
closer to zero the resulting term will be. The outlier appointed by the blue marker, is the
result of exactly the opposite effect. At l = l2hmin,

∣∣λl(A2h)
∣∣ will be at its smallest, while

the magnitude of
∣∣λl(A)

∣∣ will still be large. In like manner, we get a large term, which
explains the typical outliers we often encounter when the spectra of the operators PA and
P TM−1A are plotted. Note that the intermediate values , i.e. those between lhmin and l2hmin

will be forced to become another outliers as well.
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3 Eigenvector Perturbations

The next question which needs to be answered is what is causing the kernel of the coarse
grid operator to shift. It has been reported that interpolating coarse-grid functions always
introduces high-frequency modes, which can be interpreted as an aliasing phenomenon
([10], [9]). These high-frequency modes are the main cause for interpolation errors [10].
The effect becomes more severe as index l increases. If the high frequency eigenmodes are
activated by interpolating from a coarse to a fine grid, then an interpolation error will start
to dominate the approximation and the eigenvectors will not be approximated accurately.
This affects the eigenvalues of A2h as A2h is obtained by first restricting the fine-grid
elements onto the coarse-grid and then transferring the result back onto the fine-grid. To
measure the extent of this effect, we make use of lemma 3.1 and corollary 3.1.1.

Lemma 3.1 (Intergrid Transfer I). Let B be the n
2
× n

2
matrix given by B = ZTZ, where

Z = Ih2h is the prolongation matrix and let lmin be the index of smallest eigenvalue of A in
terms of magnitude. Then

Bφlmin,2h = Chφlmin,2h, (13)

lim
h→0

Ch = λlmin
(B) = 2. (14)

where φl ,h is the l−th eigenvector on the fine-grid of A and λl(B) is the l−th eigenvalue
of B.

Proof. We use the method from [9]. For i = 1, 2, . . . n we have

ZTφlmin,h =
1

2
(sin((2i− 1)hπlmin,h) + 2 sin(2ihπlmin,h) + sin((2i+ 1)hπlmin,h)) ,

=
1

2
(2 sin(2ihπlmin,h) + 2 cos(2ihπlmin,h)) sin(2ihπlmin,h),

= (1 + cos(lmin,hπh)) sin(2ihπlmin,h),

= C1(h)φlmin,2h
.

Now taking the limit as h goes to zero of the coefficient Ch gives limh→0C1(h) = 2. For
i = 1, 2, . . . , n we distinguish two cases; i is odd and i is even. We start with the first case

Zφlmin,2h =
1

2

(
sin(

(i− 1)hπlmin,h

2
) + sin(

(i+ 1)hπlmin,h

2
)

)
,

=
1

2
(sin((i− 1)hπlmin,h) + sin((i+ 1)hπlmin,h)) ,

= cos(lmin,hφh) sin(ihπlmin,h),

= C2(h)φlmin,h.

Again, taking the limit as h goes to zero of the coefficient C2(h) gives limh→0C2(h) = 1.

For i is even, we obtain Zφlmin,2h = sin(
ihφlmin,h

2
) = sin(ihπlmin,h) = φlmin,h. We can combine
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both results to obtain Bφlmin,2h = ZTZφlmin,2h = ZT (C2(h)φlmin,h) = C1(h)C2(h)φlmin,2h
=

λ̂lmin
(B)φlmin,2h

. where λ̂lmin
(B) represents the perturbed eigenvalue of B at index l due to

the approximation error. Taking the limit as h goes to zero provides

lim
h→0

λ̂lmin
(B) = lim

h→0
C1(h)C2(h),

= 2,

= λlmin,h
(B).

where we now have λlmin,h(B) = 2.

Corollary 3.1.1 (Coarse-grid kernel). Let A2h be the n
2
× n

2
matrix given by A2h = ZTAZ,

where Z = Ih2h is the prolongation matrix and let lmin be the index of smallest eigenvalue of
A in terms of magnitude. Then

A2hφlmin,2h
= Chλlmin,h

(A)φlmin,2h
, , (15)

lim
h→0

Ch = λlmin,h(B). (16)

where φj,2h is the l−th eigenvector on the coarse-grid of A2h and λj(A2h) is the l−th
eigenvalue of A2h.

Proof. Using lemma 3.1 and its proof, we have

A2hφlmin,2h =
(
ZTAZ

)
φlmin,2h

,

= ZTA
(
Zφlmin,2h

)
,

= ZTA(C2(h)φlmin,h),

= C1(h)ZTAφlmin,h,

= C1(h)ZTλlmin,h
(A)φlmin,h,

= λlmin,h
(A)C1(h)

(
ZTφlmin,h

)
,

= λlmin,h
(A)C1(h)C2(h)φlmin,2h

.

Using lemma 3.1 it is easy to see that after taking the limit the eigenvalues of A2h can be
written as a product of the eigenvalues of A and the eigenvalues of B.

From lemma 3.1 and corollary 3.1.1 it is clear that for lmin, which is within the smooth-
frequency range, the near-kernel coarse-grid eigenvalues λlmin,h(A2h) are equal the product
of λlmin,h(A) and λlmin,h

(B) when h goes to zero. Consequently, in the limiting case the
coarse-grid kernel and the fine-grid kernel will be aligned proportionally and both A and
A2h will reach its smallest absolute eigenvalues at the same index lmin.
Recall the behavior of the eigenvalues of PA can be represented by

β̂ l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ for l = 1, 2, . . . ,
n

2
,
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where we found that this ratio becomes very small by a mismatch of the smallest ab-
solute eigenvalue of A and A2h respectively. The index where this phenomena occurs is
at l = lmin,h, the index of the smallest absolute eigenvalue of A. We now proceed by
showing that errors accumulated during interpolating and restricting the eigenvectors of
A will lead to perturbations in the scaling factor λlmin,h(B). As in the limit, we can write
λlmin,h(A2h) = λlmin,h(B)λlmin,h(Ah), perturbations up to λlmin,h(B) will propagate through-
out the low-frequency part of the spectrum for l ∈ {1, 2, . . . , lmin,h}, eventually resulting in
the errors related to λl(A2h) for l = lmin,h.
To measure to what extent these perturbations to λ(B) lead to projection errors in con-
structing the projection operator P , we make use of the following proposition which was
mentioned in [3].

Theorem 3.2 (Projection Error I). Let X be the deflation space spanned by column vectors
of Z and let the eigenvector corresponding to the smallest eigenvalue of A be denoted by
φlmin,h

6∈ X. Let P = ZB−1ZT with B = ZTZ be the orthogonal projector onto X. Then
the projection error E is given by

E = ‖(I − P )φlmin,h‖
2 = φlmin,h

Tφlmin,h − φlmin,h
TZB−1ZTφlmin,h.

Proof. By idempotency of the orthogonal projector, we have

‖(I − P )φlmin,h‖
2 = φlmin,h

T (I − P )(I − P )φlmin,h,

= φlmin,h
T (I − P )φlmin,h,

= φlmin,h
Tφlmin,h − φlmin,h

TZB−1ZTφlmin,h.

From this representation of the projection error it is difficult to see how this influences
the behavior of the eigenvalues of A2h. We therefore proceed by rewriting the projection
error in terms of a perturbation to the eigenvalues of the operator B.

Corollary 3.2.1 (Projection Error II). Let X be the deflation space spanned by the column
vectors of Z and let the eigenvector corresponding to the smallest eigenvalue of A be denoted
by φlmin,h

6∈ X. Let P = ZB−1ZT with B = ZTZ be the orthogonal projector onto X. Then
the projection error E is given by

E = ‖(I − P )φlmin,h‖
2 =

(
1− λlmin,h(B)− δ1

λlmin,h(B)− δ2

)
φlmin,h

Tφlmin,h,

where δ1 = λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
Tφlmin,h

and δ2 = λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
TZ(B−1ZTφlmin,h)

.

Proof. We first start by showing that in the limit, the error goes to zero and there are no
perturbations to the eigenvalues of B. Using lemma 3.1 and its proof we know that in the
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limit ZTφlmin,h is an eigenvector of B. We would thus have

‖(I − P )φlmin,h‖
2 = φlmin,h

Tφlmin,h − φlmin,h
TZ
(
B−1ZTφlmin,h

)
,

= φlmin,h
Tφlmin,h − φlmin,h

TZ

(
ZTφlmin,h

λlmin,h(B)

)
,

= φlmin,h
Tφlmin,h −

φlmin,h
TZZTφlmin,h

λlmin,h(B)
,

= φlmin,h
Tφlmin,h −

φlmin,h
T
(
B̂φlmin,h

)
λlmin,h(B)

.

Note that B̂ has dimension n× n and has n
2

eigenvalues equal to the eigenvalues of B and
n
2

zero eigenvalues. By lemma 3.1 and its proof, we also have that φlmin,h is an eigenvector

of B̂, which leads to

‖(I − P )φlmin,h‖
2 = φlmin,h

Tφlmin,h −
φlmin,h

T
(
B̂φlmin,h

)
λlmin,h(B)

, (17)

= φlmin,h
Tφlmin,h −

φlmin,h
T
(
λlmin,h(B̂)φlmin,h

)
λlmin,h(B)

,

= 0.

Now, in the non-limiting case, we have two sources of errors; the factor containing λlmin,h(B)
both in the numerator and denominator will be subjected to perturbations. Starting with
the denominator, if we let λ̃lmin,h(B) denote the perturbed eigenvalue of B, we can have

φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

TZ

(
ZTφlmin,h

λ̃lmin,h(B)

)
6= φlmin,h

TZ

(
ZTφlmin,h

λlmin,h(B)

)
.

Reordering leads to

λ̃lmin,h(B) =
φlmin,h

TZZTφlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

,

=
φlmin,h

T B̂φlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

.

Using λ̃lmin,h(B), we can now write

λ̃lmin,h(B)φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

T B̂φlmin,h,

and the perturbation to λlmin,h(B) is

δ2 = λlmin,h(B)− λ̃lmin,h(B),

= λlmin,h(B)− φlmin,h
T B̂φlmin,h

φlmin,h
TZ (B−1ZTφlmin,h)

.
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The second source of error is due to B̂φlmin,h 6= λlmin,h(B)φlmin,h. If we let η denote the

error vector, i.e. η = B̂φlmin,h − λlmin,h(B)φlmin,h, then B̂φlmin,h = λlmin,h(B)φlmin,h + η and
substitution gives

λ̃lmin,h(B)φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

T B̂φlmin,h,

= φlmin,h
T (λlmin,h(B)φlmin,h + η) .

Letting δ1 = − φlmin,h
T η

φlmin,h
Tφlmin,h

, we obtain

λ̃lmin,h(B)φlmin,h
TZ
(
B−1ZTφlmin,h

)
= φlmin,h

T (λlmin,h(B)φlmin,h + η) ,

= (λlmin,h(B)− δ1)φlmin,h

Tφlmin,h
.

Finally, we can now rewrite the projection error E in terms of perturbations to the eigen-
values of B;

‖(I − P )φlmin,h‖
2 = φlmin,h

Tφlmin,h − φlmin,h
TZ
(
B−1ZTφlmin,h

)
,

=

(
1− λlmin,h(B)− δ1

λlmin,h(B)− δ2

)
φlmin,h

Tφlmin,h,

which gives the statement.

corollary 3.2.1 reveals that the projection error due to the inaccurate approximations
of the eigenvectors can be represented by deviations from λlmin,h(B). In table 1 we present
the projection error for various k. The results illustrate that the projection error increases
linearly with k. Along with the projection error, the misalignment between lmin,h and
lmin,2h increases. As a result, the kernel of A and A2h are separated causing the eigenvalues
of the preconditioned system to move towards the origin. If we let kh = 0.3125, the
projection error is reduced. However, already for k = 1000, the error regains magnitude,
which explains why, despite resorting to a finer grid, the near-zero eigenvalues eventually
reappear for higher wave numbers when the DEF-preconditioner is used.

Table 1: Projection Error for φlmin,h
for various values of k.

jmin,h and lmin,2h denote the index for the smallest absolute
eigenvalue of A and A2h respectively.

k E lmin,h lmin,2h E lmin,h lmin,2h

kh = 0.625 kh = 0.3125
10 0.0672 3 3 0.0077 3 3
50 0.4409 16 15 0.0503 16 16
100 0.8818 32 31 0.0503 32 32
500 4.670 162 155 0.5031 162 158
1000 9.2941 324 310 1.0062 324 316
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In Section section 2.3.1 we have shown that the spectrum of PA and PM−1A is (apart
from a scaling factor) equivalent to

β̂ l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ ,
l = 1, 2, . . . ,

n

2
.

From lemma 3.1 and corollary 3.1.1 we additionally found that in the limit near l = lmin,h

we can express the eigenvalues of the coarse-grid operator A2h in terms of λlmin,h(B)

λlmin,h(A2h) = λlmin,h(A)λlmin,h(B). (18)

Thus in the vicinity of the kernel, we can write

β̂ l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ =
1

λl(B)
. (19)

corollary 3.2.1 reflects that errors in projecting the eigenvectors onto the coarse-grid lead
to errors in the eigenvalues of the operator B. These errors accumulate and increase as
index l increases, due to the eigenvectors becoming more oscillatory. If we account for
these errors, then (eq. (19)) becomes

β̂ l =

∣∣∣∣ λl(A)

λl(A2h)

∣∣∣∣ =
1

λ̂l(B)
.

for some perturbed λ̂l(B). These perturbations to the eigenvalues of B cause inaccurate
scaling of the eigenvalues of A, eventually leading to the kernel of A2h being located at a
different index lmin,2h 6= lmin,h.
In fig. 3(a) and fig. 3(b) we have plotted the eigenvalues of B and the ratio between the
eigenvalues of A2h and A according to equation eq. (19). Note that the latter essentially
represents the perturbed λl(B) due to errors accumulated during prolongating and re-
stricting the eigenvectors of A. It can be noted that as h becomes smaller, the ratio slowly
converges to λl(B). This observation is also in line with the projection error decreasing.
In many literature surveys and works, it has been stated that the deflation vectors should
be close approximations of the eigenvectors. However, a more accurate statement would
be that the prolongated coarse-grid eigenvectors should be sufficiently accurate approxi-
mations of the eigenvectors. This can either be achieved by setting the grid resolution kh
very small or incorporating an approximation scheme, other than the current interpolation
scheme to obtain more accurate approximations of the eigenvectors. In order to combat
this effect without resorting to solving large linear systems, we propose the use of higher-
order deflation vectors. In the next section, we will show that the use of these higher-order
deflation vectors significantly decreases the projection error, leading to the kernels of A
and A2h remaining proportional to each other.
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Figure 2: k = 50. Plot of the ratio between the fine-grid and coarse-grid
eigenvalues (equation (eq. (19))) and the eigenvalues of B. lmin,h = 16 and
lmin,2h = 15 for kh = 0.825. For kh = 0.01, lmin,h = lmin,2h = 16.

(a) kh = 0.825, (b) kh = 0.01

4 Higher-order Deflation

4.1 Quadratic Approximation

We have seen that the current geometric multigrid vectors are not sufficiently warrant-
ing against the near zero eigenvalues reappearing. So far, the main objective for using
geometric multigrid vectors is that they are easily implemented in a multi-level setting.
Moreover, the vectors are sparse and easy to compute. The problem, however, seems to
be mapping of the fine-grid near kernel to the coarse-grid near kernel. If the latter two
are misaligned, the eigenvalues of the deflation preconditioned operator will approach the
origin. Consequently, while the deflation preconditioner has been designed to alleviate the
near zero eigenvalues of the CSLP preconditioned system, the coarse-grid operator itself
seems to be another source for near zero eigenvalues.

So far, we have used the bilinear interpolation and prolongation operator to construct
the matrices I2hh and Ih2h. An effective alternative should keep the simplicity of the geometric
multigrid vectors, while attaining higher accuracy at mapping the kernel onto the coarse
grid. Recall that the grid transfer functions u2h = [u2h1 , . . . , u2hn ] from Ω2h to the fine grid
Ωh using standard linear interpolation are given by

Ih2h : Ω2h → Ωh, u2h → Ih2h u2h (20)

such that {
[u2h]i/2 if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i−1)/2

)
if i is odd,

i = 1, . . . , n− 1 (21)

A closer look reveals that the current transfer functions are only reinforced at the
odd components, leaving the even components unchanged. In fact, these components are
mapped to linear combination of their fine-grid counterparts φhl and a complimentary
mode φhn+1−l

with first order accuracy [10]. A more general representation of the linear
interpolation operator for the even components can be given by using rational Bézier
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curves. The use of these curves within the context of multigrid methods has been studied
in [4] and [12]. Using these vectors as vectors for the input of the prolongation and
restriction matrices in a multigrid setting is referred to as a monotone multigrid method.
The monotonicity comes from the construction of the coarse-grid approximations, which
ensures that the coarse-grid functions approximate the fine-grid functions monotonically
[12], [16]. We will use the theory from [12] and [16] below to introduce these concepts.

Definition 4.1 (Bézier curve). A Bézier curve of degree n is a parametric curve defined
by

B(t) =
n∑
j=0

bj,n(t)Pj, 0 ≤ t ≤ 1, where the polynomials

bj,n(t) = (n, j) tj(1− t)n−j, j = 0, 1, . . . , n,

are known as the Bernstein basis polynomials of order n. The points Pj are called control
points for the Bézier curve.

Definition 4.2 (Rational Bézier curve). A rational Bézier curve of degree n with control
points P0, P1, . . . , Pn and scalar weights w0, w1, . . . , wn is defined as

C(t) =

n∑
j=0

wjbj,n(t)Pj

n∑
j=0

wjbj,n(t)
.

Definition 4.3 (Linear Interpolation). Let [u2h](j−1)/2 and [u2h](j+1)/2, be the end points
within a component span defined on the coarse grid. Then the prolongation scheme for the
even nodes can be characterized by a Rational Bézier curve of degree 1 with polynomials

b0,1(t) = 1− t,
b1,1(t) = t,

whenever j is odd by taking the weights w0 = w1 = 1 and t = 1
2
. Note that in case w0 = w1

and non-rational we obtain the original Bézier curve.

C(
1

2
) =

1
2
[u2h](j−1)/2 + (1− 1

2
)[u2h](j+1)/2

1
2

+ (1− 1
2
)

, (22)

=
1

2

(
[u2h](j−1)/2 + [u2h](j+1)/2

)
. (23)

When j is even, we take the middle component [u2h]j/2, which itself gets mapped onto the
fine grid.
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For large k, the prolongation operator working on the even components is not sufficiently
accurate to map the near kernels to adjacent modes on Ω2h and Ωh. Consequently, we
wish to find a higher order approximation scheme, which takes the even components into
account. We thus consider a quadratic rational Bézier curve in order to find appropriate
coefficients to yield a higher order approximation of the fine-grid functions by the coarse
grid functions.

Definition 4.4 (Quadratic Approximation). Let [u2h](j−2)/2 and [u2h](j+2)/2, be the end
points within a component span defined on the coarse grid. Then the prolongation operator
can be characterized by a Rational Bézier curve of degree 2 with polynomials

b0,2(t) = (1− t)2,
b1,2(t) = 2t(1− t),
b2,2(t) = t2,

and control point [u2h]j/2, whenever j is even. Because we wish to add more weight to the
center value, we take weights w0 = w2 = 1

2
, w1 = 3

2
and t = 1

2
to obtain

C(t) =
1
2
(1− t)2[u2h]j−1 + 3

2
2t(1− t)[u2h]j + 1

2
(t)2[u2h]j+1

1
2
(1− t)2 + 3

2
2t(1− t) + 1

2
(t)2

=
1
2
(1− 1

2
)2[u2h]j−1 + 3

2
(2)(1

2
)(1− 1

2
)[u2h]j + 1

2
(1
2
)2[u2h]j+1

1
2
(1− 1

2
)2 + 1

2
(2)(1

2
)(1− 1

2
) + 1

2
(1
2
)2

=
1
8
[u2h]j−1 + 3

4
[u2h]j + 1

8
[u2h]j+1

1

=
1

8
([u2h]j−1 + 6[u2h]j + [u2h]j+1) . (24)

When j is odd, [u2h](j−1)/2 and [u2h](j+1)/2 have an even component and we are in the same
scenario as is the case with linear interpolation.

As mentioned earlier, we use the Galerkin approach to construct the restriction opera-
tor. We finally obtain the following two higher order grid transfer operators

Ih2h = I2hh
T
.

Using the new matrices Ih2h and I2hh , we can now construct similar analytical expressions
for the eigenvalues of A2h, PA and P TM−1A, where we following the same approach as
[10], [9] and [11]. We therefore first consider the mapping of the eigenvectors on the same
basis by these new operators.

Based on the upper scheme, we can now redefine the prolongation and restriction
operator as follows

Ih2h : Ω2h → Ωh, u2h → Ih2h u2h (25)

18



such that

Ih2h [u2h]i =


1
8

(
[u2h](i−2)/2 + 6 [u2h](i)/2 + [u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd,

 , (26)

for i = 1, . . . , n− 1 and
I2hh : Ωh → Ω2h, uh → I2hh uh (27)

such that

I2hh [uh]i =
1

8

(
[uh](2i−2) + 4 [uh](2i+1) + 6 [uh](2i) + 4 [uh](2i+1) + [uh](2i+2)

)
,

for i = 1, . . . , n
2
.

We now analyze the mapping properties of these operators with respect to the eigen-
vectors. We will use the same method from [9] and start with the prolongation operator
over the first part of the index set j = 1, 2, . . . n

2
. The prolongation operator maps the

coarse-grid eigenvectors for indices j, l = 1, 2, . . . n
2

to

[I2hh φ2h]
l
j =

1

8
[sin((j − 2)/2)lπ2h) + 6 sin((j)/2)lπ2h) + sin((j + 2)/2)lπ2h)] ,

=
1

8
[sin((j − 2)lπh) + 6 sin((j)lπh) + sin((j + 2)lπh)] ,

=
1

8
[2 cos(2lπh) + 6] sin(ljπh),

=

[
1

4
cos(2lπh) +

3

4

]
sin(ljπh),

for j is even and

[I2hh φ2h]
l
j =

1

8
[4 sin((j − 1)/2)lπ2h) + 4 sin((j + 1)/2)lπ2h)] ,

=
1

2
[sin((j − 1)lπh) + sin((j + 1)lπh)] ,

=
1

2
[2 cos(lπh)] sin(ljπh)] ,

= [cos(lπh)] sin(ljπh),

for j is odd. With respect to the remaining part of the index set containing j, we use that

φ
n+1−lj
h = −(−1)j sin(ljπh), (28)

j = 1, 2, . . . n− 1,

l = 1, 2, . . .
n

2
.
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Note that eq. (28) is only positive when j is odd. Consequently for even j such that
j ∈

{
n
2
, . . . , n− 1

}
is even, we obtain

[I2hh φ2h]
l
j =

1

8
[− sin((j − 2)/2)lπ2h)− 6 sin((j)/2)lπ2h)− sin((j + 2)/2)lπ2h)] ,

=
1

8
[− sin((j − 2)lπh)− 6 sin((j)lπh)− sin((j + 2)lπh)] ,

=
1

8
[−2 cos(2lπh)− 6] sin(ljπh),

=

[
−1

4
cos(2lπh)− 3

4

]
sin(ljπh),

whereas for j is odd, we now have

[I2hh φ2h]
l
j =

1

8
[4 sin((j − 1)/2)lπ2h) + 4 sin((j + 1)/2)lπ2h)] ,

=
1

2
[sin((j − 1)lπh) + sin((j + 1)lπh)] ,

=
1

2
[2 cos(lπh)] sin(ljπh)] ,

= [cos(lπh)] sin(ljπh).

With respect to our basis, we therefore obtain the following 2× 1 block for the prolon-
gation operator

[Ih2h]
l =

[
cos(lπh) + 1

4
cos(2lπh) + 3

4

cos(lπh)− 1
4

cos(2lπh)− 3
4

]
.

Similarly, the restriction operator works on the first part of the the basis by mapping
the fine-grid eigenvectors according to[

Ih2hφh
]l
j

= [Ih2h]
l sin(ljπh)

=
1

8
[sin((2j − 2)lπh) + 4 sin((2j − 1)lπh) + 6 sin(2jlπh)

+ 4 sin((2j + 1)lπh) + sin((2j + 2)lπh)],

=
1

8
[2 cos(2lπh) + 8 cos(lπh) + 6] sin(2ljπh),

=

[
cos(lπh) +

1

4
cos(2lπh) +

3

4

]
sin(2ljπh),

for j, l = 1, 2, . . . n
2
. For the second part of the basis corresponding to the eigenvectors

φ
n+1−lj
h , we again use that
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φ
n+1−lj
h = −(−1)j sin(ljπh),

j = 1, 2, . . . n− 1,

l = 1, 2, . . .
n

2
.

Thus, the restriction operator maps the eigenvectors φ
n+1−lj
h for j = n

2
, . . . , n to[

Ih2hφh
]n+1−l
j

= [Ih2h]
n+1−l
j sin((n+ 1− l)jπh)

=
1

8
[− sin((2j − 2)lπh) + 4 sin((2j − 1)lπh)− 6 sin(2jlπh)

+ 4 sin((2j + 1)lπh)− sin((2j + 2)lπh)],

=
1

8
[−2 cos(2lπh) + 8 cos(lπh)− 6] sin(2ljπh),

=

[
cos(lπh)− 1

4
cos(2lπh)− 3

4

]
sin(2ljπh).

We therefore obtain the following 1× 2 block for the restriction operator

[Ih2h]
l =

[
cos(lπh) + 1

4
cos(2lπh) + 3

4

cos(lπh)− 1
4

cos(2lπh)− 3
4

]T
.

For ease of notation, we now define

vl = cos(lπh) +
1

4
cos(2lπh) +

3

4
,

vn+1−l = cos(lπh)− 1

4
cos(2lπh)− 3

4
.

Using these expressions, we can now compute the eigenvalue of the Galerkin coarse grid
operator, which is given by the 1× 1 diagonal block

λl(A2h) = [Ih2h]
lAl [I2hh ]l ,

=
(
vl
)2
λl(A) +

(
vn+1−l)2 λn+1−l(A). (29)

In order to obtain the eigenvalues of PA, we have to compute the 2×2 diagonal blocks
of the projection operator P first. Recall that P is defined by

P l = I − (Ih2h)
l(Al

2h)
−1(I2hh )lAl .
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We thus obtain the following block system

P l =

[
1 0
0 1

]
− 1

λl(A2h)

[
(vl)2 vlvn+1−l

vn+1−lvl (vn+1−l)2

]
,

=

[
1− (vl )2

λl (A2h)
vlvn+1−l

λl (A2h)
vn+1−lvl

λl (A2h)
1− (vn+1−l )2

λl (A2h)

][
λl(A) 0

0 λn+1−l(A)

]
,

=

λl(A)
(

1− (vl )2

λl (A2h)

)
λn+1−l(A)

(
vlvn+1−l

λl (A2h)

)
λl(A)

(
vn+1−lvl

λl (A2h)

)
λn+1−l(A)

(
1− (vn+1−l )2

λl (A2h)

) . (30)

From here, we retrieve the eigenvalues of PA by multiplying eq. (30) again with the
2× 2 block containing the eigenvalues of A with respect to index l on our defined basis.

[PA]l =

λl(A)
(

1− (vl )2

λl (A2h)

)
λn+1−l(A)

(
vlvn+1−l

λl (A2h)

)
λl(A)

(
vn+1−lvl

λl (A2h)

)
λn+1−l(A)

(
1− (vn+1−l )2

λl (A2h)

)[λl(A) 0
0 λn+1−l(A)

]
,

=

(λl(A))2
(

1− (vl )2

λl (A2h)

)
(λn+1−l(A))2

(
vlvn+1−l

λl (A2h)

)
(λl(A))2

(
vn+1−lvl

λl (A2h)

)
(λn+1−l(A))2

(
1− (vn+1−l )2

λl (A2h)

) . (31)

Note that each 2× 2 block has a non-zero and zero eigenvalue. As a result, we obtain
the non-zero eigenvalues of the system PA by computing the trace of each respective block
of eq. (31) as in [11]

λl(PA) = (λl(A))2
(

1− (vl)2

λl(A2h)

)
+ (λn+1−l(A))2

(
1− (vn+1−l)2

λl(A2h)

)
, (32)

l = 1, 2, . . . ,
n

2
.

Similarly, the eigenvalues of P TM−1A are obtained by simply multiplying eq. (30) with
the 2× 2 block containing the eigenvalues of M−1A instead of A and computing the trace.
This operation leads to the following analytical expressions for the eigenvalues of P TM−1A

λl(P TM−1A) =
(λl(A))2

λl(M)

(
1− (vl)2

λl(A2h)

)
+

(λn+1−l(A))2

λl(M)

(
1− (vn+1−l)2

λl(A2h)

)
, (33)

l = 1, 2, . . . ,
n

2
.

Using these expressions, we proceed with the spectral analysis of the DEF-preconditioner.

22



4.2 Spectral Analysis

In order to keep track of both deflation based preconditioned systems, we will use the
following notation

I = Original prolongation/restriction,

Ĩ = Adapted prolongation/restriction,

A2h = Original coarse-grid operator,

Ã2h = Adapted coarse-grid operator,

PA = DEF,

P̃A = Adapted Deflation,

P TM−1A = DEF + CSLP,

P̃ TM−1A = Adapted Deflation + CSLP.

We will now compare the spectrum of the DEF + CSLP preconditioned system (P TM−1A),
with the adapted Deflation + CSLP precondtioned system (P̃ TM−1A) for MP 1. In fig. 3
we have plotted the spectrum of both P TM−1A (red) and P̃ TM−1A (blue) for MP 1 using
large to very large wave numbers. In the top row we have plotted the eigenvalues for
kh = 0.625, whereas the bottom row contains the eigenvalues for kh = 0.3125. Starting
with the results for kh = 0.625, we note that incorporating the new deflation scheme leads
to a significant reduction in the near-zero eigenvalues. For example for k = 104, there are
almost no near-zero eigenvalues. However, as k increases to 106, we see the near-zero eigen-
values reappearing. Compared to the original DEF-scheme, the spectrum of the adapted
scheme is more densely spread near the point (1, 0). As a result, the spectrum of the
adapted scheme has shorter tails. If we switch to a finer grid using kh = 0.3125, fig. 3 (b)
illustrates that the new scheme almost completely dissolves the clustering spectrum near
the origin. For k = 106 we do see a few eigenvalues moving slightly towards the origin,
however these results are negligible compared to the magnitude of the wave number. Based
on the spectral analysis and comparison between P TM−1A (red) and P̃ TM−1A (blue), we
expect the Krylov-based solver to converge much faster. This will be examined in the next
section. One reason for the improvement in the spectrum of P̃ TM−1A is due to the better
accuracy of the approximation of the eigenvectors when moving from a coarse-grid to a
fine-grid and vice versa. In order to confirm this, table 2 contains the projection error
according to corollary 3.2.1 for both schemes for large values of k. The projection error
is reduced by a factor of 100 compared to the case where we use the old approximation
scheme. However, for large k we again note that the projection error increases. These
results are in line with the spectral analysis and explain why, even for the new scheme, we
see some small eigenvalues reappearing near zero for k = 106 in fig. 3 (a).

4.2.1 Parameter Sensitivity

We have seen that for very large k such as k = 106, the adapted scheme using P̃ still
has a small number of near-zero eigenvalues. This result is supported by the increasing
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Figure 3: Eigenvalues of P TM−1A and P̃ TM−1A. The top row contains
the spectrum of P TM−1A and P̃ TM−1A for kh = 0.625. The bottom row
contains the eigenvalues for kh = 0.3125.

(a) kh = 0.625

(b) kh = 0.3125
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Table 2: Projection error for the old scheme
E and the adapted scheme Ẽ.

k E Ẽ E Ẽ
kh = 0.625 kh = 0.3125

101 0.0672 0.0049 0.0077 0.0006
102 0.8818 0.0154 0.1006 0.0008
103 9.2941 0.1163 1.0062 0.0014
104 92.5772 1.1021 10.0113 0.007
105 926.135 10.9784 100.1382 0.0635
106 9261.7129 109.7413 1001.3818 0.6282

projection error for kh = 0.625 (see table 2), One explanation is that for these large wave
numbers, the low-frequency eigenmode corresponding to lhmin for A and l2hmin for Ã2h are
still very oscillatory vectors. Furthermore, apart from these eigenmodes themselves being
relatively oscillatory, the high frequency modes which get activated are again a source for
approximation errors when prolonging the coarse-grid eigenvectors. Necessarily, at some
point, the scheme based on the adapted deflation vectors will again suffer from accumula-
tion errors as their approximation power reduces as k increases. This on its term affects
the location of the near-kernel modes of Ã2h, i.e. resulting in lhmin 6= l2hmin and inevitably a
large gap between the smallest eigenvalues of A and A2h respectively. As we have shown in
section 2.3.1, β̂ l gives an accurate reflection of the behavior of the near-zero eigenvalues.
As soon as these errors start accumulating, this will lead to β̂ l being small for l = lhmin and
large for l = l2hmin, causing the outliers and small eigenvalues near zero to reappear.
A very obvious yet in the long run expensive remedy would be to increase the number of
grid points per wave length. For example, we observe in table 2 that using kh = 0.3125
leads to a severe reduction in the projection error for very large k. However, we are inter-
ested in a solution which does not require increasing the problem size.
In order to find such a solution, we note that the piecewise character of Bézier curves
imply that at systematic intervals some discontinuities appear as sharp corners at certain
points [17]. We have seen that as long as the grid is well-resolved, then even at high wave
numbers the eigenvectors will be approximated accurately, and these discontinuities do not
get amplified. If the eigenvectors become oscillatory due to the wave number being very
large, then keeping the grid resolution constant, these discontinuities become a source of
approximation error. This is exactly the phenomena we notice with respect to the linear
interpolation scheme, however, the latter already suffers from inaccurate curvature approx-
imation at relatively smaller wave numbers due to the use of linear piecewise segments.

Instead of diverting to higher-order approximation schemes, the use of rational Bézier
curves allow simple modifications which can alter the shape and movement of the utilized
curve segments. In fact, the weights of the rational Bézier curve are shape parameters,
which allow control over the curve segments. For example, increasing the weight corre-
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sponding to a control point forces the curvature to move more closely and sharply to that
control point. Decreasing the weight of a control point, on the other hand, results in the
curve flattening and expanding more towards its endpoints. An illustration of this effect
is provided by fig. 4 1. In our case, the quadratic approximation using the rational Bézier

Figure 4: Effect of changing the weight W with respect to a control point.

curve has one control point per segment. This would lead to the following redefinition

Ih2h : Ω2h → Ωh, u2h → Ih2h u2h

such that

Ih2h [u2h]i =


(

1
8

[u2h](i−2)/2 + (3
4
− ε) [u2h](i)/2 + 1

8
[u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd,

 (34)

for i = 1, . . . , n − 1, and ε > 0 The new scheme eq. (34) alters the expressions for the
eigenvalues of P̃ TM−1A according to

vl = cos(lπh) +
1

4
cos(2lπh) + (

3

4
− ε),

vn+1−l = cos(lπh)− 1

4
cos(2lπh)− (

3

4
− ε),

where now the expressions for P̃ TM−1A are again given by

λl(P̃ TM−1A) =
(λl(A))2

λl(M)

(
1− (vl)2

λl(A2h)

)
+

(λn+1−l(A))2

λl(M)

(
1− (vn+1−l)2

λl(A2h)

)
, (35)

l = 1, 2, . . . ,
n

2
.

The next question which needs to be answered is, given a fixed kh, how do we find ε? ε
should be chosen such that the projection error E is minimized. In order to find this value,
we can use two approaches. The first approach is straightforward; our ultimate aim is to
have the eigenvalue of λl(P̃ TM−1A) at index lmin,h to be equal to 1. Recall from the proof

1Image source: https://docs.derivative.ca/index.php?title=Spline.
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of corollary 3.1.1 that in the absence of errors the eigenvalues of A2h can be written as a
product of the eigenvalues of A and the eigenvalues of B. Thus, using equation eq. (29),
we can write

λl(A2h) = [Ih2h]
lAl [I2hh ]l ,

=
(
vl
)2
λl(A) +

(
vn+1−l)2 λn+1−l(A),

= λl(A)λl(B). (36)

Note that the sum of
(
vl
)2

and
(
vn+1−l)2 in expression eq. (36) are exactly equal to λl(B).

If we want eq. (36) to hold at index lmin,h in the presence of errors, we need to pick ε such

that
(
vn+1−l)2 = 0, which is equivalent to

ε =
3

4
− (cos(lπh)− 1

4
cos(2lπh)). (37)

This way the near-zero eigenvalue of A2h will always be proportional to the near-zero
eigenvalue of A. Fortunately, the eigenvalues of B containing the term ε are independent
of the eigenvalues of A. Therefore, finding ε primarily depends on the approximation
scheme which determines the eigenvalues of B. An interesting observation is that ε is
completely determined by the step-size h and therefore by the grid resolution kh. Thus,
once we find the right ε for a given kh for a very large k, we can expect the solver to be
scalable up to that k. Another method to find ε is to use the heuristic in Algorithm 2.
The algorithm finds the minimizing ε with respect to projection error. The latter method
provides a practical alternative to computing analytical expressions for the eigenvalues of
B. However, if time permits we will extend the spectral analysis for MP 2 and MP 3
in order to determine the exact ε. We then expect to obtain a scalable solver in higher
dimensions irrespective of k and kh. For now we proceed by using Algorithm 2 for the
higher dimensional model problems.

Algorithm 2: Projection Error Minimizer

Initialize k = 1 : k̃ and an initial ε0 > 0
for k = 1, 2, ..k̃ do

Compute Eε0 using corollary 3.2.1
Compute mean Eε0 = Ēε0
while Ēεj > Ēεj−1

do
Pick an εj+1 and repeat until Ēεj+1

< Ēεj
end while

end for

As mentioned earlier, once we find ε, this will hold for any k as the accuracy of deflation
based projection methods only depend on the grid resolution and step-size [5].
We proceed by re-examining the spectrum after introducing the weight-parameter. We
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have plotted the eigenvalues for kh = 0.625 for ε = 0.05 (left), ε = 0.01906 (center) and
ε = 0 (right) in fig. 5. It immediately becomes apparent that using the right parameter
to minimize the projection error completely shifts the spectrum. Particularly, the left
column contains the results where the optimal ε has been used and it can be noted that
the spectrum stays clustered near (1, 0) independent of the wave number k. In all cases,
the altered spectrum has a more favorable distribution relative to the original spectrum of
the DEF-operator (red).

5 Numerical Experiments

5.1 One-dimensional Constant Wave Number Model

We start by examining the convergence behavior of the adapted solver using various kh.
Note that unless kh is fine enough, the numerical solution suffers from pollution error. For
now, we solely test for theoretical purposes using both coarse and fine grid resolutions in
order to assess the scalability of the solver. In table 3 we have reported the number of
preconditioned GMRES-iterations using a zero initial guess. In all scenarios we have used
the CSLP-preconditioner with (β1, β2) = (1, 0.5) and the tolerance level for the relative
residual has been set to 10−7. ε has been determined by using eq. (37). We start with the
case where ε = 0 (bold) and no weight-parameter is incorporated. In case of k = 106, it
takes 509 iterations to reach convergence. These results are in line with with the spectral
analysis from fig. 3 and the reported increasing projection error from table 2. In particular,
we observed small near-zero eigenvalues reappearing for k = 106. Also, the projection error
for the new scheme was 109.7. As soon as we allow for corrections by means of introducing
the weight-parameter, we observe that for each of the reported grid resolutions, we obtain a
scalable solver. An interesting observation is that even at coarse-grids we obtain a constant
number of iterations. However, on these coarser levels, the number of iterations is higher.
For example, compare the 11 iterations for kh = 1.25 with the 5 iterations for kh = 0.825.
In order to put these results into perspective, we report the projection error for each
scheme in table 4. The results from table 4 confirm that the projection error has been
reduced significantly. If we compare this to the previous results from table 1 and table 2,
the projection error in all cases is now strictly smaller than 1 and constant for increasing
k. These results are consistent with the spectral analysis for k = 106 and various kh in
fig. 6. For all kh, the real part of the eigenvalues of the ADP-scheme stay clustered near
1. We now have a way of assessing the convergence properties of the Krylov-based solver
by examining the behavior of the projection error. What is also interesting is that we may
now use a higher-order finite difference scheme, combined with a coarser grid resolution in
order to solve large scale problems. Another interesting property is that the significance
of using a weight-parameter ε decreases with the grid resolution, i.e ε goes to zero as h
becomes smaller.
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Figure 5: Eigenvalues of P TM−1A and P̃ TM−1A using kh = 0.625 for various weight-
parameters ε.

(a) k = 1000

(b) k = 10000

(c) k = 100000
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Table 3: Number of GMRES-iterations for the one-dimensional constant wave number
problem for various kh using the Adapted Preconditioned Deflation scheme APD(ε). ε has
been determined using eq. (37). The shift in CSLP has been set to (1, 0.5).

k APD(0.3050) APD(0.1250) APD(0.0575) APD(0.01906) APD(0) APD(0.00125)
kh = 1.25 kh = 1 kh = 0.825 kh = 0.625 kh = 0.625 kh = 0.3125

101 2 2 3 4 4 3
102 9 6 5 4 4 3
103 11 6 5 4 6 3
104 11 6 5 4 12 3
105 11 6 5 4 59 3
106 11 6 5 4 509 3

Table 4: Projection error E(ε) for various kh. ε has been de-
termined using eq. (37).

k E(0.3050) E(0.1250) E(0.0575) E(0.01906) E(0.00125)
kh = 1.25 kh = 1 kh = 0.825 kh = 0.625 kh = 0.3125

101 0.0699 0.0127 0.0075 0.0031 0.0006
102 0.1884 0.0233 0.0095 0.0036 0.0007
103 0.2215 0.0245 0.0095 0.0038 0.0007
104 0.2197 0.0246 0.0095 0.0038 0.0007
105 0.2200 0.0246 0.0095 0.0038 0.0007
106 0.2200 0.0246 0.0095 0.0368 0.0007

5.2 Two-dimensional Constant Wave Number Model

In this section perform numerical experiments for the two-dimensional model problem
using a constant wave number k. This model problem is referred to as MP 2, see section 2.
The results are presented in table 5 for kh = 0.625. The weight-parameter ε has been
determined using Algorithm 2. Similar to the results for MP 1, we note that the number
of iterations are again more or less independent of the wave number k. As k gets very
large, we do see that the number of iterations increases. We expect that computing the
analytical ε similar to eq. (37) for the one-dimensional case, will provide a wave number
independent iteration count. However, compared to the DEF-scheme, the reported number
of iterations is more favorable. A noteworthy result is that for the two-dimensional case,
the use of the adapted scheme seems less sensitive to changes in the complex shift of the
CSLP preconditioner.

We now repeat the same analysis for kh = 0.3125. Note that in this case we do not
include an adjusted weight coefficient parameter, i.e. we set ε = 0. The reason for this is
that increasing the problem size already results in more accuracy and faster convergence
[18], [19]. We also compare the performance of the adapted scheme with and without
the inclusion of the CSLP-preconditioner as the analysis from the previous part showed
that the scheme is less sensitive to changes in shifts of the CSLP-preconditioner. For the
inclusion of the CSLP-preconditioner, we use the shift (1, 1).
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Figure 6: Eigenvalues for k = 106 of P TM−1A and P̃ TM−1A
using various kh. The weight-parameter ε has been determined
using equation eq. (37).

Results are reported in table 6. If we compare these results to the ones obtained from
table 5, we note that increasing the problem size leads to faster convergence. However,
compared to the results for the DEF-solver, the effect is much more subtle. This can
be explained by the fact that already on a coarse grid, the transfer of the underlying
eigenvectors are approximated with higher accuracy compared to the DEF-scheme which
relies on an approximation using the standard interpolation and restriction scheme. We
also note that the influence of the parameter ε becomes diminishable compared to the case
where we used kh = 0.625. Thus, it seems that the inclusion of ε may in particular be
more useful when using coarser grids. Also, the number of iterations with and without the
CSLP-preconditioner is almost the same for all reported values of k and it may be argued
that for fine grid resolutions, the inclusion of the CSLP-preconditioner becomes redundant.
As the inclusion of the CSLP-preconditioner comes at a heavy computational cost, it can
be efficient to exclude it from the solver. While utilizing a finer grid leads to less number of

31



Table 5: Number of iterations for the two-
dimensional constant wave number problem for kh =
0.625. ε refers to the weight-parameter. The shift in
CSLP has been set to (1, 0.5) (column 4) and (1, 1)
(column 5) resp.

k n2 APD(0) APD(0.0187) APD(0.0187)
50 6400 4 4 5
100 25600 5 4 5
250 160000 10 5 5
500 640000 15 5 6
750 1440000 37 7 8
1000 2560000 53 8 9

iterations and more accurate numerical solutions, it inevitably leads to very large problem
sizes.

Table 6: Number of iterations for the two-
dimensional constant wave number problem for kh =
0.3125. AD contains no CSLP-preconditioner.

k n2 AD(0) APD(0.00125)
Iterations Iterations

25 6400 4 4
50 25600 4 4
100 102400 3 4
250 640000 4 4
500 2560000 5 5
750 5760000 5 5
1000 10240000 7 8

5.3 Two-dimensional Non-constant Marmousi Model

In this section we present the numerical results for the industrial two-dimensional Mar-
mousi problem (MP 4) eq. (5), section 2. Results are reported in table 7. We present
results using the two-level method implemented in Matlab R2015b on a machine with pro-
cessor i7-4790K at 4.00Ghz for both the DEF- and APD-schemes. Inversion is obtained
by using the backslash solver in Matlab. With respect to the APD-scheme we implement
no correction using ε given that the grid for this model problem has been resolved such
that kh ≤ 0.39 on average and the maximum wave number is approximately 400. 2 The

2If we use the dimensionless model we obtain a wave number of

√
2π40
2587.5

2 × 2048× 8192 ≈ 398.
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first four rows of table 7 contain the results for frequencies f = 1, 10, 20 and 40 using 10
grids points per wave length for the largest wave number k. The last four rows use 20
grid points per wave length. The results show that even for this challenging problem, the
APD-scheme leads to very satisfactory results. First of all, the number of iterations again
seems fairly consistent irrespective of the grid points per wave length used. In both cases
the number of iterations for these test problems are independent of frequencies. If we start
comparing the results between DEF-TL and APD-TL, we note an improved performance
in terms of both metrics; solve time and iterations. For f = 1, the number of iterations
for APD-TL are larger than DEF-TL. The latter method takes 6 iterations, while the
former takes 3 iterations, which is obviously reflected in the lower solve time. Once we
start increasing the frequency, we note that the APD-TL scheme quickly catches up in
terms of both iterations and solve time. For example for f = 40, we obtain 5 iterations
and a total solve time of 111.78 seconds compared to the 1175.99 seconds DEF-TL method.

The last four rows present the results using 20 grid points per wave length. In terms
of iterations, the results for ADP-TL are not much different. In both cases we note that
the number of iterations do not grow with the frequency. However, given that utilizing a
finer grid leads to a larger problem size, the solve time in general increases. Compared to
DEF-TL, in terms of solve time, both methods at first do not seem to differ significantly.
At f = 40, ADP-TL is approximately 300 seconds faster than DEF-TL.

Table 7: Results for the Marmousi problem using 10
gpw (upper) and 20 gpw respectively (lower). All
solvers are combined with the CSLP-preconditioner us-
ing shifts (1,1). TL denotes two-level.

f DEF-TL APD-TL DEF-TL APD-TL
Iterations (s) Solve Time

1 3 6 1.72 4.08
10 16 5 7.30 3.94
20 31 5 77.34 19.85
40 77 5 1175.99 111.78
1 3 4 9.56 15.45
10 7 6 19.64 3.83
20 10 6 155.70 122.85
40 15 6 1500.09 1201.45

5.4 Three-dimensional Constant Wave Number Model

In this section we present some three-dimensional numerical results for MP 3 (equation
eq. (4)). The algorithm is still to be terminated when the relative residual has been
reduced by order 107. Furthermore, we have used the same weight-parameter ε from the
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two-dimensional test problem MP 2. From table 8 we can see that even without the weight-
parameter ε, the 3D-results show promising features for scalability. These results are also
in line with the previous results obtained for the two-dimensional constant wave number
model from table 6. We expect the importance of ε to decrease along with kh.

Table 8: Number of iterations for the three-
dimensional constant wave number problem for kh =
0.625. AD contains no CSLP-preconditioner. APD
contains the CSLP with shift (1, 0.5).

k n3 APD(0) APD(0.00125)
Iterations Iterations

5 512 4 4
10 4096 4 4
25 64000 5 4
50 512000 5 4
75 1728000 6 4

6 Conclusion

We have shown that the near-zero eigenvalues for deflation based preconditioners are re-
lated to the near-kernel eigenmodes of the fine-grid operator A and coarse-grid operator
A2h being misaligned. A very simple yet concise red flag is whether the indices of the
smallest absolute eigenvalue of A and A2h are different. This effect can be attributed to
accumulating interpolation errors, due to the interpolation scheme not being able to suffi-
ciently approximate the transferring of the grid functions at very large wave numbers. The
root cause of this phenomena lies in the high frequency modes being activated.

We have presented the first scheme to analytically measure the effect of these errors
on the construction of the projection operator. The latter operator defines the deflation
preconditioner. The error can be measured by computing the projection error. Our results
indicate that the quality of the deflation vectors determine whether the projection error
dominates. To minimize the projection error, we propose the implementation of a higher
order approximation scheme to construct the deflation vectors. For the first time, the spec-
tral properties of the Helmholtz problem at such large wave numbers (the largest being 106)
have been studied. In terms of spectral properties, the eigenvalues based on the adapted
deflation scheme, even at large wave numbers for the one-dimensional case, are close to
1. However, at very large wave numbers, the near zero-eigenvalues reappear. Adjusting
the weight-parameter within the approximation scheme seems to provide counterbalance
to mitigate these near-zero eigenvalues. This only remedies computations at coarse grid
resolutions as reducing kh diminishes the importance and necessity for incorporating a
weight-parameter. Two options are available for determining the weight-parameter. The
first option is to use the analytical eigenvalues of B at the smallest index lmin,h and solve for
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ε. This approach is fairly straightforward to use as it primarily depends on the eigenvalues
of B, which can be computed independently of the eigenvalues of A. The second approach
is to use the projection error minimizing algorithm, which computes the projection error
for various k and finds the ε which minimizes the norm on average.

Even without adjusting the weight-parameter, the spectrum of our proposed operator
is still the most favourable compared to other preconditioning operators based on deflation
for the Helmholtz equation. We have performed numerical testing and simulation of our
model problems ranging from the simple one-dimensional constant wave number problem
to the challenging industrial Marmousi problem. The numerical results are in line with the
theoretical results as the number of iterations for both the one-, two- and three-dimensional
constant wave number model problem are more or less wave number independent. For the
one-dimensional case in particular, we determined the exact value for ε, which results
in a wave number independent solver and a constant but small projection error. With
respect to the higher-dimensions, ε can be approximated very closely by finding the value
which minimizes the projection error. In the future, we will study the exact value of ε in
higher-dimensions and test whether numerical results corroborate these presumptions.

The numerical tests were performed for very large wave numbers (106 for one-dimension
and 103 for two-dimensions). In the two-dimensional case (MP 2), the inclusion of the
CSLP-preconditioner becomes superfluous. For the three-dimensional model problem, the
maximum wave number has been set to k = 75 due to memory constraints. Especially
the results for the Marmousi problem are very encouraging as the number of iterations has
been reduced significantly. A challenging yet exciting topic for future research would be to
study the parallel implementation of the adapted deation based solver and/or the multi-
level krylov implementation and apply it to the three-dimensional test problem. While
these results on scalability of the solver are promising, they do not solve the problem of
the pollution error. A simultaneous and better understanding of both topics is currently
another subject of our research.
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