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Abstract

Recent research efforts aimed at iteratively solving the Helmholtz equation have
focused on incorporating deflation techniques for accelerating the convergence of
Krylov subpsace methods. In this work, we extend the two-level deflation method
in [6] to a multilevel deflation method. By using higher-order deflation vectors, we
show that up to the level where the coarse-grid linear systems remain indefinite, the
near-zero eigenvalues of the these coarse-grid operators remain aligned with the fine-
grid operator keeping the spectrum of the preconditioned system fixed away from
the origin. Combining this with the well-known CSLP-preconditioner, we obtain a
scalable solver with theoretical linear complexity for the highly indefinite Helmholtz
equation. This can be attributed to a fixed number of iterations independent of the
wave number and an optimal use of the CSLP-preconditioner. We approximate the
CSLP-preconditioner, while allowing the complex shift to be small. The proposed
configuration additionally shows very promising results for the more challenging
Marmousi problem.

1 Introduction

The Helmholtz equation has puzzled the minds of many mathematicians and numerical
analysts throughout the years. Its wide application, ranging from seismology to medical
tomography, has kept its relevance even till this day. As a result, many efforts have and
are still being been rendered in order to obtain accurate and computationally feasible
solutions.
A large branch within this research has focused on developing preconditioners, such as
the (Complex) Shifted Laplacian [10, 9, 13, 4]. In order to apply the preconditioner, one
multigrid cycle is used to approximate its inverse. The latter serves as an alternative to
using multigrid as a stand-alone solver as the method is generally known to diverge for
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the Helmholtz equation once coarser levels are reached [12]. Some works have focused on
obtaining a stand-alone multigrid solver [7, 20, 22, 11], with success for either practical
wavenumbers and/or one-dimensional model problems.
A recent and promising branch of research has combined its efforts towards precondi-
tioning techniques based on domain decomposition methods applied to the corresponding
(shifted) problem [14]. These methods split the computational domain in subdomains
and solve a local subproblem of smaller dimension using a direct method [5, 19, 17, 1, 18].
The performance of these preconditioners depends on the accuracy of the transmission
conditions, which currently is robust for constant wave number model problems [16, 15].
While the domain decomposition preconditioners have resulted in a reduced number of
iterations and higher computational efficiency by exploiting parallelization strategies, the
number of iterations still grows with the wavenumber k.
As a result, some have studied the use of deflation techniques (combined with the CSLP-
preconditioner) in order to accelerate the convergence of the Krylov subspace method,
which we will denote DEF. [24, 25, 26]. Incorporating the deflation preconditioner has
improved the convergence, but taxed the efficiency in terms of memory and computational
cost. For a two-level deflation preconditioner, the direct solve on the second level takes up
most of the computational power and memory. Consequently, multilevel variants of the
two-level method have been proposed in order to counter this effect [8, 25]. A multilevel
extension replaces the direct solve in the two-level method by applying a similar two-level
extension recursively combined with an outer Flexible GMRES (FGMRES) solver. The
CSLP-preconditioner is then applied on each level through one multigrid cycle.
In both variants, however, the number of iterations still slowly grows with the wave num-
ber k. In this work, we build on our recent work from [6] where we developed and tested a
two-level deflation preconditioner which rendered close to wavenumber independent con-
vergence for large wavenumbers in all spatial dimensions. We will refer to this method as
the Adapted Deflation Preconditioner (ADP), where the adaption is realized through the
use of higher-order interpolation polynomials. A natural question which arises is whether
we can extend the wavenumber independent convergence to a multilevel setting, thereby
combining both the gain in computational efficiency with our previous scalability results.
The structure of this paper is as follows. We start by introducing our model problems in
section 2. We then discuss the deflated Krylov methods and the multilevel algorithm in
section 3. We then proceed by extensively developing theory for the multilevel deflation
operator in section 4. We perform Rigorous Fourier Analysis (RFA) by block-diagonalizing
the resulting operators and inspecting the spectral properties. Finally we present numer-
ical results for benchmark problems in section 5.

2 Problem Description

We start by focusing on a one-dimensional mathematical model using a constant wave
number k ą 0

´
d2u

dx2
´ k2 u “ δpx´ x1q, x P Ω “ r0, Ls Ă R, (1)

up0q “ 0, upLq “ 0,
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We will refer to this model problem as MP 1-A. To allow for more practical examples,
we introduce MP 1-B as the model problem where Sommerfeld radiation conditions have
been implemented. In this case, the boundary conditions become

ˆ

B

Bn
´ ik

˙

upxq “ 0, x P Br0, Ls.

If we define h “ 1
n
, where n is chosen according to kh “ 2π

c
, where c is the number of grid

points per wavelength, then discretization on the unit interval using second order finite
differences leads to

´uj´1 ` 2uj ´ uj`1
h2

´ k2uj “ fj, j “ 1, 2, . . . , n.

Lexicographic ordering leads to the following linear system and eigenvalues for MP 1-A
with indices j “ 1, 2, . . . n

Au “
1

h2
tridiagr´1 2´ k2h2 ´ 1su “ f,

λ̂j “
1

h2
p2´ 2 cospjπhqq ´ k2. (2)

Similarly, we define the 2-D and 3-D versions of model problem MP 1-B as above eq. (1).
The discretization using second order finite differences goes accordingly for higher dimen-
sions with the needed alterations at the boundary when using Sommerfeld conditions.
The final test problem is a representation of an industrial problem and is widely referred
to as the 2D Marmousi Problem, which we denote by MP-4. We consider an adapted ver-
sion of the original Marmousi problem developed in [24]. The original domain has been
truncated to Ω “ r0, 8192s ˆ r0, 2048s in order to allow for efficient geometric coarsening
of the discrete velocity profiles given that the domain remains a power of 2. The original
velocity cpx, yq is also adapted by letting 2587.5 ď c ď 3325. On the adjusted domain Ω,
we define

´∆upx, yq ´ kpx, yq2upx, yq “ δpx´ 4000, yq, px, yq P ΩzBΩ Ă R2, (3)
ˆ

B

Bn
´ ik

˙

upx, yq “ 0, px, yq P BΩ,

where n denotes the outward normal unit vector. Note that we now have a non-constant
wave number kpx, yq “ 2πf

cpx,yq
, where the frequency f is given in Hertz.

3 Deflated Krylov Methods

We start by briefly explaining the two-level deflation preconditioning technique to solve the
resulting linear system. We then proceed by extending the two-level method recursively
to a multilevel Krylov method.
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3.1 Two-level Deflation

For a linear system Au “ f we construct the deflation preconditioner P where the column
space of Z is used as the deflation subspace. Z can be interpreted as interpolating from
the coarse grid to the fine grid.

P “ I ´ AQ where Q “ ZE´1ZT and E “ ZTAZ

In [6], we used higher-order Bezier curves to construct Z. Using these higher-order poly-
nomials, the prolongation and restriction operator act on a grid function as follows

Z ru2hsi “

$

&

%

1
8

´

ru2hspi´2q{2 ` 6 ru2hspiq{2 ` ru2hspi`2q{2

¯

if i is even,

1
2

´

ru2hspi´1q{2 ` ru2hspi`1q{2

¯

if i is odd,

,

.

-

, (4)

for i “ 1, . . . , n ´ 1 and for i “ 1, . . . , n
2
. To obtain even better convergence, the CSLP-

preconditioner was included, which is given by

M “ L´ pβ1 `
?
´1β2qk

2I,

where pβ1, β2q P r0, 1s and L is the discretisized Poisson equation. In compliance with the
literature, we keep β1 “ 1. The system to be solved becomes M´1PAu “M´1Pf .

By allowing higher-order interpolation schemes, the near-zero eigenspace of the fine- and
coarse-grid coefficient matrix remains perfectly aligned. As a result, the smallest eigen-
value in magnitude of both A and E is located at the same index. This prevents the
eigenvalues of the deflated system from shifting towards the origin. While the method
provides close to wavenumber independent convergence in one- and two-dimensions for
fairly large wavenumbers k “ 106 (1D) and k “ 103 (2D). The method requires the exact
solve of the coarse-grid coefficient matrix E, adding to the computational complexity in
3D, where we obtained wave number independent convergence up to k “ 75 (3D). In order
to circumvent the direct solve, we extend the two-level to a multilevel deflation method.

3.2 Multilevel Deflation

We start by noting that the inexact inversion requires the addition of an extra term Q in
order to prevent synthetic close-to-zero eigenvalues from obstructing the convergence of
the Krylov solver [21, 8, 23]. The multilevel deflation algorithm is given below
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Algorithm 1: Multilevel ADP Implementation

Initialization;

Construct Ap1q,M p1q

for i “ 1, 2, ...m the coarsest level do
Construct Zpi,i`1q and Zpi,i`1qT

Construct Api`1q “ Zpi,i`1qApiqZpi,i`1qT

Construct M pi`1q “ Zpi,i`1qM piqZpi,i`1q
T

end
Start i “ 1
Solve: Ap1qup1q “ bp1q with Krylov preconditioned by
P p1q, where P pmq “ Ipmq ´ ApmqQpmq `Qpmq

up1q vector to be preconditioned
Restrict: ûp2q “ Zp1,2qTup1q

if m “ 1 then
up2q “ pAp2qq´1ûp2q using direct solver

else
i “ 2
Solve: Ap2qup2q “ bp2q with Krylov preconditioned by P p2q

up2q vector to be preconditioned
Restrict: ûp3q “ Zp2,3qTup2q

if m “ 2 then
up3q “ pAp3qq´1ûp3q using direct solver

else
i “ 3
Solve: Ap3qup3q “ bp3q with Krylov preconditioned by P p3q

...

...
Interpolate: qp2q “ Zp2,3qup3q

t̂p2q “ up2q ´ Ap2qqp2q

tp2q “ pM p2qq´1t̂p2q

wp2q “ tp2q ` qp2q

pp2q “ Ap2qwp2q

end

Interpolate: qp1q “ Zp1,2qup2q

t̂p1q “ up1q ´ Ap1qqp1q

tp1q “ pM p1qq´1t̂p1q

wp1q “ tp1q ` qp1q

pp1q “ Ap1qwp1q

end

So far, recent works have used one multigrid cycle to approximate the preconditioning
step on the vector t as this is an Opnq operation. However, the shift β2 in the CSLP-
preconditioner has to be kept large enough for multigrid to converge [12, 11, 4]. Another
option is by allowing a few GMRES-iterations to approximate the preconditioner. For
example, in the context of using multigrid as a preconditioner, the standard smoothing
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step is replaced by a few GMRES-iterations on coarse grids in order to replace the unstable
Jacobi and Gauss-Seidel smoother [7, 2, 3]. Within our configuration, this can be beneficial
as it enables a small shift β2, which has been shown to accelerate convergence [13]. We
will show in section 5 that we can gain tremendous efficiency by using a very low tolerance
p10´1q and a fixed number of iterations.

4 Inscalability

In this section we will extend the theoretical results of the two-level ADP-scheme to a
multilevel setting for MP 1-A. Given that the coefficient matrix remains normal, spectral
analysis can be performed to assess the convergence behavior. We have provided a detailed
summary of the literature as regards the role of the eigenvalues when the matrix is non-
normal in [6].

4.1 Multilevel mapping

We start with the following theorem

Theorem 1. Multilevel Prolongation and Restriction (linear) Let Zm be the nm´1 ˆ nm
prolongation matrix based on linear interpolation for m “ 1, 2, . . .mmax, with nm “

n
2m

.

If we define vjm “ sinp2mhiπjq, and vj
1

m “ sinp2mhiπpnm ` 1 ´ jqq, where on the finest
level we have m “ 0. Then there exist constants Cj

1 and Cj
2 depending on h such that

restriction operator maps the eigenvectors to

1
ź

l“m

ZT
l v

j
0 “ Cj

1v
j
m, j “ 1, 2, . . . , nm,

1
ź

l“m

ZT
l v

j1

0 “ Cj
2v

j
m, j “ 1, 2, . . . , nm.

where Cj
1 “

`

1
2

˘mśm
l“1

`

1` cospjπ2l´1hq
˘

and Cj
2 “

`

1
2

˘mśm
l“1

`

cospjπ2l´1hq ´ 1
˘

. Sim-
ilarly, the prolongation operator maps the eigenvectors to

l
ź

l“1

Zlrvmsi “ Cj
1rv

j
0si, for i is odd.,

l
ź

l“1

Zlrvmsi “ Cj
2rv

j
0si, for i is even..

Finally, if we let Bm “
śm

l“1 Zl
ś1

l“m Z
T
l and B̂m “ ZmZ

T
m for m “ 1, 2, . . . ,mmax, then

Bm has dimension n0 with nm non-zero eigenvalues.

Proof. This proof is structured as follows. First we will define the mapping operators
and the respective vector spaces and their bases to which they are applied. Then we will
continue by showing the action of the restriction operator on the basis for these vectors
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spaces. To keep an overview of what is happening between the vector spaces on an ab-
stract level, we use both the analytical operator and their matrix representations in the
proof. We then do the same for the prolongation operator. Finally, we show that the
kernel and range of the composite mapping consisting of the restriction and prolongation
operator span a subspace containing the eigenvectors. We use this to show that the eigen-
values of Bm are related to the eigenvalues of B̂m.

Basis and ordering
We start by defining nm “

n
2m

and rearranging the space spanned by the eigenvectors at
each level such that we obtain the following subspace

Vjm “ span tvjm, v
nm`1´j
m u,

for j “ 1, 2, . . . , nm`1. Moreover let

V j
m`1 “

nm`1
à

j“1

span tvjm`1u,

denote the space spanned by the eigenvectors at a coarser level m`1. Note that the basis
spans Cnm and Cnm`1 as we can write

Cnm “

nm`1
à

j“1

Vjm and Cnm`1 “

nm`1
à

j“1

V j
m`1,

and at each subsequent level m` 1 we re-order the basis to obtain Vm`1. Thus, on each
level we define the automorphism such that we can bring the basis of Vm in to the order
of Vm

αmπpjq : Vm Ñ Vm : j ÞÑ nm ` 1´ pj ´ 1q for j is even.

For m “ 0, 1, 2 . . .mmax, the linear interpolation and restriction operator maps between
subsequent vector spaces

Im`1m : Vm Ñ Vm`1, such that Vjm ÞÑ Im`1m V j
m

Imm`1 : Vm`1 Ñ Vm, such that vjm`1 ÞÑ Imm`1v
j
m`1.

Restriction operator
We will now apply the corresponding matrices to the respective eigenvectors on each level,
where we let Im`1m “ Zm`1. We start by taking m “ 0. Using the basis of eigenvectors
for V0 we have for index j

“

ZT
1 v

j
0

‰

i
“

1

4
psinpp2i´ 1qhπjq ` 2 sinp2ihπjq ` sinpp2i` 1qhπjqq ,

“
1

2
p1` cospjπhqq sinp2hiπjq,

“ Cj
1,h

“

vj1
‰

i
.
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Now, for the complementary mode on level m “ 0 corresponding to index j we define
j1 “ n0 ` 1´ j. Note that we can write

rvj
1

0 si “ ´p´1qj sinpihjπq, (5)

i “ 1, 2, . . . nm, and j “ 1, 2, . . . nm`1.

Applying the restriction operator to the complementary eigenvector gives
”

ZT
1 v

j1

0

ı

i
“

1

4

`

cospjπhq sinp2hiπjq ´ p´1q2i sinp2hiπjq
˘

,

“
1

4
pcospjπhq ´ 1q sinp2hiπjq,

“ Cj
2,h

“

vj1
‰

i
.

We thus have that at level m “ 1, the fine-grid eigenvectors from level m “ 0 are mapped
by the restriction operator ZT

1 according to

ZT
1 v

j
0 “ Cj

1,hv
j
1, j “ 1, 2, . . . , n1, (6)

ZT
1 v

n0`1´j
0 “ Cj

2,hv
j
1, j “ 1, 2, . . . , n1. (7)

Note that vj1 P V1 @j. Additionally, note that n1 vectors from V0 are mapped to zero
which implies that the nullspace of ZT

1 has dimN pZT
1 q “ n1. In order to move from

m “ 1 to m “ 2, which maps V1 Ñ V2, we apply ZT
2 . The mapping trajectory is given by

the following diagram

I2
1 ˝ I1

0 : V0
I1
0
Ñ V1

I2
1
Ñ V2, where V0

I1
0//

I2
1˝I1

0
##

V1 ý
α1
πpjq

V1

I2
1

��

V2

We obtain V0 by first applying α0
πpjq such that we get the ordering of the basis in pairs

j, j1. The restriction operator I1
0 maps these basis vectors to V1. Then in order to move

to the second coarse space V2, we again have to reorder the basis on V1 by applying
the automorphism α1

πpjq. After permuting the elements of the basis, we can apply I2
1 .

Consequently, the range of I2
1 is V2. This is equivalent to having a composition of the

linear transformations I2
1 ˝I1

0 . Thus, in terms of the matrix representations, applying ZT
2

gives
“

ZT
2

“

ZT
1 v

j
0

‰‰

i
“ Cj

1,h

`

ZT
2

“

vj1
‰

i

˘

,

“
1

2
p1` cospjπhqq

`

ZT
2 sinp2hiπjq

˘

,

“
1

2
p1` cospjπhqq

ˆ

1

4
sinpp2i´ 1q2hπjq ` 2 sinpp2iq2hπjq ` sinpp2i` 1q2hπjq

˙

,

“

ˆ

1

2
p1` cospjπhqq

˙ˆ

1

2
p1` cospjπ2hqq

˙

sinp4hiπjq,

“ Cj
1,hC

j
1,2h

“

vj2
‰

i
.
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As regards the complementary modes on level m “ 1 note that α1
πpjq : V1 ÞÑ V1 enables us

to redefine j1 “ n1 ` 1´ j, where

rvj
1

1 si “ ´p´1qj sinpi2hjπq, (8)

i “ 1, 2, . . . n1, and j “ 1, 2, . . . n2.

Thus, applying the restriction operator to the complementary modes on m “ 1 gives
”

ZT
2

”

ZT
1 v

j1

0

ıı

i
“ Cj

2,h

`

ZT
2

“

vj1
‰

i

˘

,

“
1

2
pcospjπhq ´ 1q

`

ZT
2

“

vj1
‰

i

˘

,

“
1

2
pcospjπhq ´ 1q

ˆ

1

4

`

cospjπhq sinp2hiπjq ´ p´1q2i sinp2hiπjq
˘

˙

,

“

ˆ

1

2
pcospjπhq ´ 1q

˙ˆ

1

2
pcospjπ2hq ´ 1q

˙

sinp4hiπjq,

“ Cj
2,hC

j
2,2h

“

vj2
‰

i
.

Note that vj2 P V2 @j. Consequently, using ZT
1 to map from level m “ 0 to m “ 1 and ZT

2

to map from level m “ 1 to m “ 2, results in the fine-grid eigenvectors being mapped in
a nested application according to

ZT
2

`

ZT
1 v

j
0

˘

“ Cj
1v

j
2, j “ 1, 2, . . . , n2,

ZT
2

`

ZT
1 v

n`1´j
0

˘

“ Cj
2v

j
2, j “ 1, 2, . . . , n2, where,

Cj
1 “

ˆ

1

2

˙m m
ź

l“1

`

1` cospjπ2l´1hq
˘

and,

Cj
2 “

ˆ

1

2

˙m m
ź

l“1

`

cospjπ2l´1hq ´ 1
˘

.

In this case, n2 vectors from V1 are mapped to zero which implies that the nullspace of
ZT

2 has dimN pZT
2 q “ n2. Consequently, in order to move to m “ 3 which maps V2 Ñ V3,

we can continue applying ZT
3 . From here, it is easy to see that for each subsequent level

m ą 2, consecutive application of the matrices ZT
m is equivalent to the following linear

mapping between the vector spaces Vm

Imm´1 ˝ Im´1m´2 ˝ . . . ˝ I1
0 : V0

I1
0
Ñ V1

I2
1
Ñ V2 . . .Vm´1

Imm´1
Ñ Vm,

which can be represented by the following diagram

V0 V1 ý
α1
π

V1
V2 ý

α2
π

V2
... Vm´1 ý

αm´1
π

Vm´1

Vm
Imm´1˝I

m´1
m´2˝...˝I1

0

I1
0 I2

1
Im´1
m´2

Imm´1
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We thus have vjm P Vm @j, and in terms of the matrices, we therefore obtain
«

1
ź

l“m

ZT
l v

j
0

ff

i

“

„

ZT
mZ

T
m´1 . . .

„

ZT
2

1

2
p1` cospjπhqq v1



i

,

“

„

ZT
mZ

T
m´1 . . .

„

ZT
3

1

4
p1` cospjπhqq p1` cospjπ2hqq v2



i

,

“

ˆ

1

2

˙m m
ź

l“1

`

1` cospjπ2l´1hq
˘

rvmsi “ Cj
1rv

j
msi,

for j “ 1, 2, . . . , nm. Similarly, for the complementary part corresponding to j1 “ nm´1 `
1´ j we obtain

«

1
ź

l“m

ZT
l v

j1

0

ff

i

“

ˆ

1

2

˙m m
ź

l“1

`

cospjπ2l´1hq ´ 1
˘

rvmsi “ Cj
2rv

j
msi.

To conclude, we obtain

1
ź

l“m

ZT
l v

j
0 “ Cj

1v
j
m, j “ 1, 2, . . . , nm, (9)

1
ź

l“m

ZT
l v

j1

0 “ Cj
2v

j
m, j “ 1, 2, . . . , nm. (10)

where Cj
1 “

`

1
2

˘mśm
l“1

`

1` cospjπ2l´1hq
˘

and Cj
2 “

`

1
2

˘mśm
l“1

`

cospjπ2l´1hq ´ 1
˘

.

Prolongation operator
The restriction operator was defined as the transpose of Imm`1, and thus we have that the
matrix representation of the prolongation operator is given by Zm. For the prolongation
operator, we again start with m “ 1 and take the basis V1 as the prolongation operator
works on a coarse-grid eigenvector on level m and maps it to a fine-grid counterpart on
level m´ 1. We distinguish two cases; i is odd and i is even. We start with the first case

rZ1v
j
1si “

1

4

ˆ

sinp
pi´ 1q2hπj

2
q ` sinp

pi` 1q2hπj

2
q

˙

,

“
1

4
psinppi´ 1qhπjq ` sinppi` 1qhπjqq ,

“
1

2
cospjπhq sinpihπjq, (11)

for j “ 1, 2, . . . , n1. For i is even, we obtain

rZ1v
j
1si “

1

2
sinp

2hiπj

2
q “

1

2
sinphiπjq “

1

2
rvj0si. (12)

Using eq. (8), if we define j1 “ nm´1 ` 1´ j, we can write eq. (12) as

rZ1v
j
1si “ sinphiπjq “ ´p´1qi sinpjπhiq “ rvj

1

0 si, (13)
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for i = odd. Thus, for i is odd, combining eq. (8) and eq. (13), gives

rZ1v
j
1si “

1

2
rvj

1

0 si `
1

2
cospjπhqrvj0si “ Cj

1,hrv
j
0, v

j1

0 si,

for j “ 1, 2, . . . , n1. Similarly, for i is even, we obtain

rZ1v
j
1si “ ´

1

2
rvj

1

0 si `
1

2
cospjπhqrvj0si “ Cj

2,hrv
j
0, v

j1

0 si,

for j “ 1, 2, . . . , n1. Note that rvj0, v
j1

0 si is an element of V0 and the coarse-grid eigenvectors
are mapped by the interpolation operator Z1 according to

I0
1 : V1

I0
1
Ñ V0.

Also note that RpZ1q Ă V0, and we have V0 “ N pZT
1 q

À

RpZ1q. We now take m “ 2,
using the basis V2. From the above, it follows that

rZ2v
j
2si “

1

2
rvj

1

1 si `
1

2
cospjπ2hqrvj1si “ Cj

1,2hrv
j
1, v

j1

1 si, i is odd (14)

rZ2v
j
2si “ ´

1

2
rvj

1

1 si `
1

2
cospjπ2hqrvj1si “ Cj

2,2hrv
j
1, v

j1

1 si, i is even, (15)

for j “ 1, 2, . . . , n2 and j1 “ n1 ` 1 ´ 1. As the vj1’s are the eigenvectors on level m “ 1,
we can rewrite the complementary indices j1 in terms of j again by using

rvj
1

1 si “ ´p´1qi sinpi2hjπq, (16)

i “ 1, 2, . . . n1, and j “ 1, 2, . . . n2.

Substituting eq. (16) into eq. (14) and eq. (15) gives

rZ2v
j
2si “

1

2
rvj1si `

1

2
cospjπ2hqrvj1si “ Cj

1,2hrv
j
1si, i is odd (17)

rZ2v
j
2si “ ´

1

2
rvj1si `

1

2
cospjπ2hqrvj1si “ Cj

2,2hrv
j
1si, i is even, (18)

and RpZ2q Ă V1, and we have V1 “ N pZT
2 q

À

RpZ2q. Moving from m “ 1 to m “ 0
by left-multiplying eq. (17) and eq. (18) with Z1 is now straightforward as we get the
coefficient Cj

1,h and Cj
2,h times rZ1v

j
1si from above. This corresponds to a composition of

the linear transformations where at V1 we reorder the basis to V1 using eq. (16)

I0
1 ˝ I1

2 : V2
I1
2
Ñ V1

I0
1
Ñ V0, where V2

I1
2 //

I0
1˝I1

2 ##

V1 ýV1

I0
1
��

V0

.

13



From here it is easy to see that for m ą 2 successive application gives
«

l
ź

l“1

Zlvm

ff

i

“

„

Z1Z2 . . .
1

2
p1` cospjπ2mhqq

“

Zm´1v
j
m´1

‰



i

,

“

„

Z1Z2 . . .
1

4
p1` cospjπ2mhqq

`

1` cospjπ2m´1hq
˘ “

Zm´2v
j
m´2

‰



i

,

“

ˆ

1

2

˙m 1
ź

l“m

`

1` cospjπ2lhq
˘

rvj0si “ Cj
1rv

j
0si, for i is odd. (19)

Finally, for i is even we get
”

śl
l“1 Zlvm

ı

i
“

`

1
2

˘mś1
l“m

`

cospjπ2lhq ´ 1
˘

rvj0si “ Cj
2rv

j
0si

and RpZm`1q Ă Vm, and we have Vm “ N pZT
m`1q

À

RpZm`1q.

Composite mapping subspaces

Let us now take Bm “
śm´1

l“1 Zl
ś1

l“m´1 Z
T
l , and B̂m “ ZmZ

T
m. We furthermore let

tfm : V0 Ñ Vm : Imm´1 ˝ Im´1m´2 ˝ . . . ˝ I1
0 , and

fm : Vm Ñ V0, and

gm : Vm´1 Ñ Vm´1 : Im´1m ˝ Imm´1

where tfm is the transpose of the linear map fm. Note that gm is a automorphism. We
can define

hm : V0 Ñ V0 : fm ˝ tfm, fm P Vm,

to denote the composite linear mapping along the m-vectors spaces. Here tfm maps
elements of V0 to Vm and we can write hm : fm´1 ˝ pgm ˝ tfm´1q. This gives

ker gm “ tvj
1

0 P V0, :
tfm´1vj0 “ 0u Ă Vm´1, and

Im gm “ tvj0 P V0 : tfm´1vj0 ‰ 0u “ Vm´1{ker gm Ă Vm´1,

where j1 are the complementary indices corresponding to n0`1´j. But then by definition
and the fact that gm is an automorphism, tfm´1vj0 must be an eigenvector of gm. Given
that we can write Vm´1 “ ker gm

À

Im gm, the rank-nullity theorem furthermore tells us
that dimpVm´1q “ dimpker gmq ` dimpIm gmq “ nm ` nm “ nm´1. Thus, gm must have
nm zero eigenvalues and nm non-zero eigenvalues as the kernel of gm is non-trivial. This
leads to

pgm ˝ tfm´1qvj0 “ gmptfm´1vj0q,

“ λpgmqptfm´1vj0q “ λpgmqvjm´1,

where λpgmq denotes the scalar eigenvalue corresponding to gm. Applying fm´1, finally
gives

fm´1 ˝ pgm ˝ tfm´1qvj0 “ fm´1
`

gmptfm´1
˘

vj0q,

“ λpgmqfm´1ptfm´1vj0q “ λpgmqλphm´1qvjm´1.

14



Eigendecomposition of Bm

IfBm´1 and B̂m are the matrix representations of hm´1 and gm respectively, then dimpker gmq “
dimpN pB̂mqq “ nm, and dimpIm gmq “ dimpRpB̂mqq “ nm, and thus B̂m has only nm non-
zero eigenvalues. But then Bm must also have nm non-zero eigenvalues as well.

We similarly extend the multilevel operators for the higher-order deflation vectors.

Corollary 1.1 (Multilevel Prolongation and Restriction (quadratic)). Let Zm be the
nm´1 ˆ nm prolongation matrix based on rational Bezier curves for m “ 1, 2, . . .mmax,
with nm “

n
2m

. If we define vjm “ sinp2mhiπjq, and vj
1

m “ sinp2mhiπpnm ` 1 ´ jqq, where

on the finest level we have m “ 0. Then there exist constants Cj
1 and Cj

2 depending on h
such that the restriction operator maps the eigenvectors to

1
ź

l“m

ZT
l v

j
0 “ Cj

1v
j
m, j “ 1, 2, . . . , nm,

1
ź

l“m

ZT
l v

j1

0 “ Cj
2v

j
m, j “ 1, 2, . . . , nm.

where Cj
1 “

`

1
2

˘mśm
l“1C

j
1,lh and Cj

2 “
`

1
2

˘mśm
l“1C

j
2,lh. Similarly, the prolongation oper-

ator maps the eigenvectors to

l
ź

l“1

Zlrvmsi “ Cj
1rv

j
0si, for i is odd.,

l
ź

l“1

Zlrvmsi “ Cj
2rv

j
0si, for i is even..

Finally, if we let Bm “
śm

l“1 Zl
ś1

l“m Z
T
l and B̂m “ ZmZ

T
m for m “ 1, 2, . . . ,mmax, then

Bm has dimension n0 with nm non-zero eigenvalues.

Proof. The proof is exactly the same as the proof of theorem 1, however we now have

Cj
1,mh “

ˆ

cospjπ2mhq ` cospjπ2m`1hq
1

4
`

3

4

˙

,

Cj
2,mh “

ˆ

cospjπ2mhq ´ cospjπ2m`1hq
1

4
´

3

4

˙

.

For a detailed proof of deriving Cj
1,mh and Cj

2,mh see [6]. The statement is obtained by
substituting these coefficients into the proof of theorem 1.

Using this result we can approximate where the near-zero eigenvalues of the coarse-grid
matrix Em will be located. This is expressed in the following corollary.

Corollary 1.2 (Coarse-grid near-zero eigenvalues). Let Zm be the nm´1 ˆ nm prolonga-
tion matrix for m “ 0, 1, 2, . . .mmax, with nm “

n
2m

. We define the symmetric coarse-grid

coefficient matrix Em “
ś1

l“m Z
T
l A

śm
l“1 Zm. If we let rvjmsi “ sinp2mhiπjq be the eigen-

vectors of Em, where for m “ 0 we have the finest level, then Dm̃ : for m ą m̃ Em is
negative definite. For m ď m̃ Em is indefinite.
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Proof. Let ΛpAq denotes the n0 ˆ n0 diagonal matrix containing the eigenvalues of A,
then using theorem 1 for each i, either odd or even, we have

lim
hÑ0

ˇ

ˇEmrv
j
msi

ˇ

ˇ ď lim
hÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

1
ź

l“m

ZT
l ΛpAq

m
ź

l“1

Zlrv
j
msi

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
hÑ0

ˇ

ˇλjApC
j
1q

2
rvjmsi

ˇ

ˇ ď 4m
ˇ

ˇλjArv
j
msi

ˇ

ˇ ,

where we used that by definition of Cj
1 and Cj

2 , for all j we have
ˇ

ˇCj
1C

j
2

ˇ

ˇ ď
ˇ

ˇpCj
1q

2
ˇ

ˇ ď 4m.

Note that for i is even we would have Cj
1C

j
2 instead of Cj

1

2
. Thus, in the limit as h goes to

zero, we can bound the expression for λjEm from above by
ˇ

ˇλjEm
ˇ

ˇ ď 4mλjA for each j. Now
to find a bound for the smallest eigenvalue in magnitude of Em, we need to minimize the
right-hand side of the upper-inequality over all indices j. This is achieved at j “ jmin,
corresponding to the smallest eigenvalue in magnitude of A as this eigenvalue is the closest
eigenvalue to zero. We thus have

ˇ

ˇλjmin

Em

ˇ

ˇ ď 4mλjmin

A . We now need to find the level m at
which the matrix Em becomes negative definite. Recall that

jmin “

[

cos´1 p1´k
2h2

2
q

πh

W

“

[

n cos´1 p1´k
2h2

2
q

π

W

.

Therefore, to find the level m̃ which still contains index jmin, for j “ 1, 2, . . . nm, we have
to find m : nm “

n
2m
ą jmin. Note jmin is unaffected by h as h goes to zero and thus we

can assess how many times jmin fits into n. Additionally, coarsening leads to the problem
size being halved for each m, and thus need to divide by 2 as well.

Z

n

2jmin

^

“

[

cos´1 p1´k
2h2

2
q

2π

_

“ m̃.

Consequently, for m ą m̃, jmin is no longer within the range of nm. Therefore, all
eigenvalues of Emąm̃ for j “ 1, 2, . . . nmąm̃ ď jmin must have the same sign, due to the
fact that λjmin

A is an upperbound and the only eigenvalue of A where a sign-change can
occur.

corollary 1.2 shows that for m ď m̃, the resulting coarse-grid coefficient matrices
Em are indefinite. Thus, on these subsequent levels, it is important that the near-zero
eigenvalues are reduced and aligned in coherence with the fine-grid level. In order to
analytically assert this, we proceed by defining the multilevel deflation operator and block-
diagonalizing it using a similar basis as we used for the two-level ADP scheme. This will
allow us to perform spectral analysis of the multilevel deflation operator as the latter
reduces to applying the two-level ADP scheme recursively.

4.2 Block-diagonal systems

Using the matrices Zm and ZT
m to denote the prolongation and restriction operator on level

m, and using the theory developed so far, we can construct similar analytical expressions
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for the eigenvalues of the preconditioner applied to the coefficient matrix. We will perform
the analysis for MP 1-A. We define the nˆ n projection operator Ph,m to be

Ph,m “ I ´ AQm, where Qm “

m
ź

l“1

ZlE
´1
m

1
ź

l“m

ZT
l and E0 “ A, (20)

Pm “ Im ´ EmQm, where Qm “ ZmE
´1
m ZT

m and Em “ ZT
mEm´1Zm (21)

Note that this is equivalent to constructing P by solving Em directly on the m-th level and
then prolonging the inverse back to the fine grid in order to proxy the effect of having an
approximate inversion of E1 in the two-level method. We will refer to Ph,m as the global
multilevel deflation preconditioner and Pm as the local level deflation preconditioner.

4.2.1 Global system block-diagonalization

In order to extend the spectral analysis of the two-level ADP-scheme to a multilevel
setting, we will use the bases and operators defined in the first part of the proof of
theorem 1. We start with the following lemma.

Lemma 2 (Block-diagonalization I). Let Zm be the nm´1 ˆ nm interpolation matrix with
nm “ n

2m
for m “ 0, 1, 2, . . . ,mmax. Let Bm “

ś1
l“m Zl

śm
l“1 Z

T
l and B̂m “ ZmZ

T
m for

m “ 1, 2, . . . ,mmax. Defining the basis

Vm “
nm`1
à

j“1

span tvjmv
nm`1`1´j
m u,

where vjm “ rsinpjπhi2
ms

nm
i“1, the eigenvalues of Bm are given by

λjBm “

ˆ

1

2

˙m 1
ź

l“m

`

prjl q
2
` ppjl q

2
˘

,

where rjl “
1
2

`

1` cospjπ2l´1hq
˘

, pjl “
1
2

`

cospjπ2l´1hq ´ 1
˘

for j “ 1, 2, . . . nm´1.

Proof. We can start by using the results from theorem 1. To keep the notation compact
we let rjm “ Cj

1,mh “
1
2
p1` cospjπ2m´1hqq and pjm “ Cj

2,mh “
1
2
pcospjπ2m´1hq ´ 1q. We

start with the case where m “ 1. Using the basis V0, V1, Z1 and ZT
1 have the block form

rZ1s
j
V1
“

„

rj1
pj1



, (22)

rZT
1 s

j
V0
“
“

rj1 pj1
‰

, (23)
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for j “ 1, 2, . . . , n1. In block-diagonal form we can write Z1 as

»

—

—

—

—

—

—

—

—

—

—

—

–

r11
p11

0

r21
p21
. . .

0 rn1
1

pn1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

To block-diagonalize B̂1, we therefore multiply the respective blocks for each j

rZ1rZ
T
1 s

j
V0
s
j
V1
“

„

rj1
pj1



“

rj1 pj1
‰

“

„

prj1q
2 prj1p

j
1q

prj1p
j
1q ppj1q

2



.

Now, B̂1 has n1 non-zero eigenvalues given by the trace of each respective block and
n1 zero eigenvalues, which was also discussed in the proof of theorem 1. The non-zero
eigenvalues are thus given by the 1 ˆ 1 block λj

B̂1
“ prj1q

2 ` ppj1q
2 for j “ 1, 2, . . . , n1 and

B̂1 “ B1 has the block-diagonal form

rB1sV0 “

»

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂1

. . .

λn1

B̂1

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We now take m “ 2 and block-diagonalize B̂2. Using the same steps as above we have

rZ2Z
T
2 s

j
V1
“

„

rj2
pj2



“

rj2 pj2
‰

“

„

prj2q
2 prj2p

j
2q

prj2p
j
2q ppj2q

2



,

for j “ 1, 2, . . . , n2. Computing the trace of each block gives λj
B̂2
“ prj2q

2 ` ppj2q
2 with

block-diagonal form

rΛpB̂2qsV1 “

»

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂2

. . .

λn2

B̂2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (24)
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Note that we have n2 “
n
4

zero and non-zero eigenvalues and the dimension of B̂2 is
n1 ˆ n1. This is equivalent to having n2 blocks of dimension 1 ˆ 1 containing the non-
zero eigenvalues and n2 blocks, also with dimension 1ˆ 1 containing the zero eigenvalues.
We now apply Z1 to the left and ZT

1 to the right of eq. (24), where we use the block-
diagonal form of Z1 and ZT

1 given by eq. (22) and eq. (23) respectively. Z1 has n1 blocks
of dimension 2 ˆ 1 and ZT

1 has n1 blocks of dimension 1 ˆ 2. Thus, Z1 works on each
non-zero 1ˆ 1 block of B̂2, and then ZT

1 is applied to the resulting 2ˆ 1 block. However,
only the first n2 blocks of ΛpB̂2q contain non-zero terms as we can see from eq. (24) and
thus only the indices j “ 1, 2, . . . n2 in Z1 and ZT

1 lead to non-zero terms. Thus, for
j “ 1, 2, . . . , n2 we obtain rΛpB2qsV0 “ rΛpZ1B̂2Z

T
1 qsV0 , which is given by the following

matrix representation

»

—

—

—

—

—

—

—

—

—

—

—

–

r11
p11

0

r21
p21

. . .

0 rn1
1

pn1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂2

. . .

λn2

B̂2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

r11 p11 0
r21 p21

. . .

0 rn1
1 pn1

1

fi

ffi

ffi

ffi

ffi

ffi

fl

Thus, at the level of each respective j-th block we have

rΛpB2qs
j
V0
“

„

rj1
pj1



λj
B̂2

“

rj1 pj1
‰

“ λj
B̂2

„

prj1q
2 prj1p

j
1q

prj1p
j
1q ppj2q

2



,

for j “ 1, 2, . . . , n2. Computing the trace of each respective block gives

λjB2
“
`

prj1q
2
` ppj1q

2
˘

pλj
B̂2
q “

`

prj1q
2
` ppj1q

2
˘ `

prj2q
2
` ppj2q

2
˘

. (25)

Thus, we obtain the following block-diagonal form

rB2sV0 “

»

—

—

—

—

—

—

—

—

—

–

λ1B2

. . .

λn2
B2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where λjB2
is given by eq. (25). From here it is easy to see that successive application of

Zm and ZT
m for m ą 2 gives

rΛpBmqs
j
V0
“

„
ś1

l“m´1 r
j
l

ś1
l“m´1 p

j
l



λj
B̂m

“

ś1
l“m´1 r

j
l

ś1
l“m´1 p

j
l

‰

,

for j “ 1, 2, . . . , nm with λjBm “
ś1

l“m

`

prjl q
2 ` ppjl q

2
˘

.
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Using the results from theorem 2, we can start by block-diagonalizing the Galerkin
coarse-grid operator Em, where m again denotes the level. On the basis V0 defined with
respect to the finest level m “ 0, we can block-diagonalize the coefficient matrix A in
terms of a total of n1 blocks with size 2 ˆ 2. If we define the complementary index
j1 “ nm ` 1´ j “ n0 ` 1´ j, then each j-th respective block has the form

rΛpAqsjV0
“

„

λjA 0

0 λj
1

A



,

for j “ 1, 2, . . . , n1. Moving to m “ 1, we now start using V1 as E1 resides in the
coarse-space. After applying ZT

1 and Z1, we obtain, for j “ 1, 2, . . . n1, the 1ˆ 1 block

rΛpE1qs
j
V1
“
“

ZT
1 A0Z1

‰j

V1
,

“
“

rj1 pj1
‰

„

λjA 0

0 λj
1

A

 „

rj1
pj1



,

“ prj1q
2
λjA ` pp

j
1q

2
λj
1

A.

Thus, if we define λjE1
“ prj1q

2
λjA`pp

j
1q

2
λj
1

A for j “ 1, 2, . . . , n1, then E1 has block-diagonal
form

rΛpE1qsV1 “

»

—

—

—

—

—

–

λ1E1
0

λ2E1

. . .

0 λn1
E1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that E1 has no zero eigenvalues and dimension n1 ˆ n1. Consequently, we have a
total of n1 blocks with size 1ˆ 1 corresponding to each index j at level m “ 1. To apply
ZT

2 and Z2 to E1, we now need the 2 ˆ 2 blocks. We can apply the permutation matrix
corresponding to απ with respect to V1 such that we get the ordered basis V1. On this
basis the block-diagonal form of E1 is form

rΛpE1qsV1 “

»

—

—

—

—

—

—

—

—

—

–

λ1E1
0

0 λ1
1

E1

0

. . .

0
λn2
E1

0

0 λ
n12
E1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

for j “ 1, 2, . . . n2. Now, applying the block-diagonal form of ZT
2 and Z2 to rΛpE1qsV1
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gives

»

—

—

—

—

—

–

r12 p12 0
r22 p22

. . .

0 rn2
2 pn2

2

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

λ1E1
0

0 λ1
1

E1

0

r22 p22
. . .

0
λn2
E1

0

0 λ
n12
E1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

–

r12
p12

0

r22
p22

. . .

0 rn2
2

pn2
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that rΛpE1qsV1 has size pn1ˆn1q and ZT
2 has size pn2ˆn1q. Thus, for j “ 1, 2, . . . , n2

and j1 “ n1 ` 1´ j, each respective j-th block leads to the p1ˆ 1q block containing

rΛpE2qs
j
V1
“
“

rj2 pj2
‰

„

λjE1
0

0 λj
1

E1

 „

rj2
pj2



“ prj2q
2λjE1

` ppj2q
2λj

1

E1
.

From here it is easy to see that for m ą 2, application of ZT
m and Zm recursively gives

a j´th p1 ˆ 1q block with λjEm “ prjmq
2
λjEm´1

` ppjmq
2
λjEm´1

for j “ 1, 2, . . . , nm and
j1 “ nm´1 ` 1´ j, where each j-th block has the form

rΛpEmqs
j
Vm “

„

λjEm 0

0 λj
1

Em



.

We can now combine theorem 2 and the previous expression for the eigenvalues of Em to
block-diagonalize Qm. We can now use the result from theorem 2. This gives

rΛpQmqs
j
V0
“ rΛp

m
ź

l“1

ZlE
´1
m

1
ź

l“m

ZT
l qs

j
V0
“ λ´1

Emj
rΛpBmqs

j
V0
“ λ´1

Emj

1
ź

l“m

`

prjl q
2
` ppjl q

2
˘

,

for j “ 1, 2, . . . , nm. We can now easily block-diagonalize Pm as follows

rΛpPmqs
j
V0
“ rI ´ AQms

j
V0
,

“

„

1 0
0 1

j

V0

´
λjBm
λjEm

„

λjA 0

0 λj
1

A

j

V0

,

“

»

—

–

1´
λjAλ

j
Bm

λjEm

λjAλ
j
Bm

λjEm
λj
1

Aλ
j
Bm

λjEm
1´

λj
1

Aλ
j
Bm

λjEm

fi

ffi

fl

j

V0

Including the CSLP-preconditioner M´1 and applying the multilevel-deflation precondi-
tioner Pm to the coefficient matrix A finally gives the block-diagonal expressions of the
preconditioned system

rΛpPmM
´1AqsjV0

“
λjA
λjM

»

—

–

1´
λjAλ

j
Bm

λjEm

λjAλ
j
Bm

λjEm
λj
1

Aλ
j
Bm

λjEm
1´

λj
1

Aλ
j
Bm

λjEm

fi

ffi

fl

j

V0

.

21



At last, we obtain the eigenvalues of PmM
´1A for j “ 1, 2, . . . , n1 and j1 “ n0` 1´ j, by

computing the trace of each respective block

λjpPmM
´1Aq “

λjA
λjM

˜

1´
λjAλ

j
Bm

λjEm

¸

`
λj
1

A

λjM

˜

1´
λj
1

Aλ
j
Bm

λjEm

¸

, (26)

with λjBm “
ś1

l“m

`

prjl q
2 ` ppjl q

2
˘

.

4.3 Spectral analysis

Using these expressions, we proceed by analyzing the various operators involved in the
multi-level deflation operator.

4.3.1 Global near-zero eigenvalues

We start with Ph,m and the spectrum of the operators up to the level where the coefficient
matrix becomes negative definite, which according to corollary 1.2 is at m̃ “ 3. For
k “ 100 and MP 1-A, we define Ph,1, Ph,2 and Ph,3 according to eq. (20). We keep the shift
β2 “ 1 for this part of the analysis. fig. 1 contains the results using linear interpolation,
whereas fig. 2 illustrates the spectrum when the deflation space is constructed using
higer-order deflation vectors. We observe that using linear interpolation, already on the
first level (thus moving from n to n

2
), near-zero eigenvalues start to appear. This is in

fact the DEF-TL operator. As we move to the second level (from n
2

to n
4
), the number

of near-zero eigenvalues increases. Note that the at the third level (from n
4

to n
8
), the

spectrum completely resembles the spectrum obtained from solely applying the CSLP-
preconditioner. We have proved that starting from the third level, the resulting coarse-grid
coefficient matrix E3 is completely negative definite. Consequently, the problem of the
near-zero eigenvalues of Emą3 resolves itself at these levels given that the location of the
smallest eigenvalue in terms of magnitude is now fixed away from zero due to the matrix
being negative-definite. Moreover, the further down the levels we move, the smaller the
number of eigenvalues become which get projected away.

We repeat the analysis for k “ 1000, where fig. 3 is based on linear interpolation
and fig. 4 on higher-order deflation vectors. We observe the same effect; when the coef-
ficient matrix remains indefinite, the eigenvalues of the first and second level deflation-
preconditioner approach the origin as the wavenumber k increases for the linear interpo-
lation scheme. While we notice some near-zero eigenvalues appear for the second level
Ph,2 preconditioner, the spectrum of the first level preconditioner Ph,1 remains away from
the origin when using the higher-order deflation scheme. This is in line with the spectral
analysis of the two-level ADP-scheme.
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Spectrum of the global deflation + CSLP preconditioned system.

Figure 1: Linear Interpolation Figure 2: Quadratic Rational Bezier

Spectrum of the global deflation + CSLP preconditioned system.

Figure 3: Linear Interpolation Figure 4: Quadratic Rational Bezier

4.3.2 Local deflated near-zero eigenvalues

Here we start by plotting the local near-zero eigenvalues for k “ 100 of P2 and P3 and
compare them to Ph,2 and Ph,3 respectively. We start with the linear interpolation scheme
in fig. 5 and fig. 6. We observe that the eigenvalues of the local and global operator
are similar. If we use a higher-order scheme the largest gain in terms of removing the
near-zero eigenvalues is realized at level m ď 2. At these levels, comparing fig. 7 to fig. 5,
we observe that we have no near-zero eigenvalues both globally and locally. As soon as
the matrix becomes negative definite, the spectrum is fully determined by the spectrum
of CSLP applied to the global and/or local coefficient matrix.
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Spectrum of global and local deflation + CSLP preconditioned sys-
tem using linear interpolation.

Figure 5: Level m “ 2 Figure 6: Level m “ 3

Spectrum of global and local deflation + CSLP preconditioned sys-
tem using quadratic rational Bezier interpolation.

Figure 7: Level m “ 2 Figure 8: Level m “ 3
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4.3.3 Local near-zero eigenvalues

Here we proceed by plotting the eigenvalues of the coarse-grid systems for levels m ď 3.
The results are comparable to the ones obtained for the two-level ADP preconditioner.
The near-zero eigenvalues for all levels where the coefficient matrices are indefinite remain
aligned, see fig. 10. Comparing this to fig. 9 for the linear interpolation case, the near-
zero eigenvalues start shifting as we move from m “ 0 to m “ 2. Note that at m “ 3 all
eigenvalues are negative, which follows from corollary 1.2.

Spectrum of the coarse linear systems for k “ 100 and m ď 3.

Figure 9: Linear Interpolation Figure 10: Quadratic Rational Bezier

5 Numerical Experiments

In this section we will provide numerical experiments to study the convergence behavior
of our multilevel preconditioner. One advantage we have, is that we are able to use a small
shift within the CSLP-preconditioner given that we have substituted the full multigrid
cycle on each level with a few GMRES-iterations. Thus, we will use β2 “

1
k

as it has been
shown to provide optimal convergence [13]. This is especially beneficial as the spectral
analysis from section 4.3 has shown that at subsequent levels in the chain, the spectrum
is predominantly determined by the spectrum of the local CSLP-preconditioned linear
system. The tolerance level for the relative residual of the outer method has been set
to 10´7 and the grid resolution kh is kept at kh “ 0.625 unless stated otherwise. Note
that in general, kh is set to k3h2 ă 1 in order to minimize the pollution error. We have
shown in [6] that this is equivalent to letting h go to zero, which for our method lowers
the number of iterations. Thus, if the method performs well for a larger h, then it will
perform even better for a smaller h. However, the coefficient matrices become very large,
especially for MP-3, which is why we keep kh “ 0.625. For the inner GMRES-iterations
we have a tolerance level of 10´1, but we do not require convergence as we are interested
in a low accuracy approximation of the CSLP-preconditioner. In all cases unless stated
otherwise, we additionally set the maximum number of iterations n

1
8 . All experiments are
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implemented sequentially on a Dell laptop using 8GB RAM and a i7-8665U processor. For
the one- and two-dimensional model problem respectively, an exact solve is performed at
the coarsest level with problem size n “ 10. For the three-dimensional model problem we
perform an exact solve when n “ 100. Moreover, we only allow one FGMRES-iteration
on each level.

5.1 One-dimensional Constant Wave Number Model

For MP 1-A and MP 1-B the results are presented in table 1, which contains the number
of FGMRES-iterations. The results from table 1 show that the multilevel deflation ap-
proach exhibits similar behavior compared to the two-level ADP-scheme as regards wave
number independent convergence. In the classical multilevel-Krylov setting, the CSLP-
preconditioner is applied by allowing one multigrid cycle. One drawback of this approach
is the requisite to choose the shift β2 large [4]. Thus, we have replaced the approxima-
tion of the preconditioner with a few restarted GMRES iterations preconditioned by the
diagonal of the CSLP-preconditioner using a tolerance of 10´1. We observe that the use
of the higher-order deflation vectors, enables us to obtain scalable convergence given that
the number of iterations remains fairly constant, despite allowing for a low-accuracy ap-
proximation of the preconditioner. These results furthermore illustrate the theory from
section 4 and are coherent with the spectral analysis from section 4.3. For the levels
where the coefficient matrices remain indefinite, the deflation preconditioner maps the
near-zero eigenvalues to the origin and keeps the subsequent near-zero eigenvalues aligned
(see fig. 1 to fig. 4). Once the coefficient matrices become negative definite, the remaining
smallest eigenvalues for subsequent levels will be located at the same index, which makes
the resulting system similar to the CSLP-preconditioned system. As a result, keeping
the shift β2 small according to [13] allows us to tackle these eigenvalues by using a few
GMRES-iterations to approximate the CSLP preconditioner.

Table 1: Number of outer FGMRES-iterations for MP 1-A and MP 1-B using kh “ 0.625.
d indicates that the number of iterations has exceeded 125.

n MP 1-A MP 1-B

k ADP-ML DEF-ML ADP-ML DEF-ML
100 160 16 19 16 19
250 400 16 27 16 23
500 800 16 36 16 31
1000 1.600 16 67 16 56
5000 8.000 17 d 16 d

10000 16.000 19 d 16 d

5.2 Two-dimensional Constant Wave Number Model

table 2 contains the results for MP-2. These results are again similar to the two-level
variant in the sense that the number of iterations remains constant, even for large k.
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We note that DEF-ML already exceeds the maximum number of iterations (125) after
k ą 250. Similar results were reported and observed in [26].

Table 2: Number of outer FGMRES-iterations for MP 2 using kh “ 0.625. d indicates
that the number of iterations has exceeded 125. m indicates memory has been exceeded.

kh “ 0.625 kh “ 0.3125

k n ADP-ML DEF-ML n ADP-ML DEF-ML
50 6.241 18 34 25.281 14 37
100 25.281 18 41 368.449 14 39
250 159.201 18 53 638401 14 48
500 638.401 18 d 2.556.801 14 d

750 1.437.601 18 d 5.755.201 m d

1000 2.556.801 18 d 10.233.601 m d

5.3 Two-dimensional Non-constant Marmousi Model

For the industrial Marmousi problem (MP-4), results are reported in table 3. These results

Table 3: Number of outer FGMRES-iterations for the Marmousi prob-
lem MP-4, where f denotes the frequency in Hertz.

f ADP-ML DEF-ML
Iterations

1 12 10
10 12 15
20 12 20
40 12 33

again resemble the results from the two-level method; we obtain a constant number of
iterations irrespective of the frequency. Thus, even for a varying wavenumber through a
heterogeneous media we are able to obtain wavenumber independent convergence using
ADP-ML.

5.4 Three-dimensional Constant Wave Number Model

Here we only report the ADP-ML results as we have seen from the two-dimensional
numerical experiments that the number of iterations for the DEF-ML preconditioner
already increases for medium-high wavenumbers. Due to our sequential implementation,
we are only able to test up to k “ 100. For the inner GMRES-iterations we use a
tolerance of 10´1 and a maximum of 7 iterations for all k. Note that we do not require
convergence, as the inner GMRES-iterations serve as a proxy for the inverse of the CSLP.
The convergence results for MP-3 are presented in table 4. While we observe a slight
increase in the number of iterations for MP-3, the convergence appears more or less wave
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number independent.The time complexity can be analyzed from fig. 11, where timings are
recorded using the tic toc command from Matlab.

Table 4: Number of outer FGMRES-iterations for
MP-3 using kh “ 0.625.

k n ADP-ML
Iterations

10 4096 10
20 32.768 11
40 262.144 11
60 884.736 11
80 2.097.152 12
100 4.096.000 12

Figure 11: CPU time in seconds (s) versus problem size n for MP-3. The wave number
corresponding to the problem size has been reported next to the marker. For comparison
up to quadratic complexity reference lines are also given.

Unlike the two-level ADP-preconditioner, the current multilevel preconditioner no
longer requires the direct solve on the second level. Consequently, the method becomes
significantly more efficient both in terms of memory and computational resource usage.
In fact, the combination of having a fixed and bounded number of (F)GMRES-iterations
and a cheap inner direct solve of size n “ 100 provides the theoretical potential for an
Opnq solver. Our Matlab implementation is not yet optimized so the slope in the timings
plot does not reflect the linear time complexity.
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6 Conclusion

In this work we extend the two-level deflation preconditioner using higher-order deflation
vectors to a multilevel deflation preconditioner [6]. We provide theoretical and numerical
evidence to show that up to a certain level, the coefficient matrices are indefinite. These
levels are of paramount importance as the near-zero eigenvalues at these level can effec-
tively be removed by the multilevel deflation preconditioner. If the near-zero eigenvalues
are aligned, then the eigenvalues cluster near the point p1, 0q in the complex plane, accel-
erating the convergence of the underlying Krylov solver.
After this level, the subsequent coarse coefficient matrices become negative definite and
its spectrum resembles the spectrum of the CSLP-preconditioned system. Thus, we im-
plement a small number of inner GMRES-iterations to approximate the CSLP using the
inverse of the wave number k as the shift pβ2 “ k´1q. This circumvents the difficulty of
multigrid approximations, where the shift β2 has to be kept large. The proposed configu-
ration leads to scalable results as we obtain close to wave number independent convergence
in terms of a fixed number of iterations. It furthermore, extends the results for both a
constant and non-constant wave number model problem, such as the industrial Marmousi
model problem. Additionally, sequential implementation of the method leads to scalable
timing results for the three-dimensional model problem.
Depending on the implementation, we expect the practical time complexity to be some-
where between Opnq and Opn1.5q.
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