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A NOVEL MULTIGRID BASED PRECONDITIONER FOR
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Abstract. An iterative solution method, in the form of a preconditioner for a Krylov subspace
method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type
differential operator with a complex term. A multigrid iteration is used for approximately inverting
the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix
with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by
numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved
indicating the performance of the preconditioner.
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1. Introduction. In this paper we present a novel preconditioner for high wave-
number Helmholtz problems in heterogeneous media. The preconditioner is based on
the Helmholtz operator, where an imaginary term is added. This preconditioner
can be handled by multigrid. This is somewhat surprising as multigrid, without
enhancements, has convergence troubles for the original Helmholtz operator at high
wavenumbers.

A part of this paper is therefore reserved for the analysis of the multigrid method
for Helmholtz problems with a complex zeroth order term. This is done, for constant
wavenumbers, by means of Fourier analysis. The preconditioned system leads to a
favorably clustered spectrum for a Krylov subspace convergence acceleration. As the
preconditioner is not based on a regular splitting of the original Helmholtz problem,
it must be used in the setting of Krylov subspace methods. The particular exam-
ple presented can be viewed as a generalization of the work by Bayliss, Goldstein,
and Turkel [3] from the 1980s, where the Laplacian was used as a preconditioner for
Helmholtz problems. This work has been generalized by Laird and Giles [17], propos-
ing a Helmholtz preconditioner with a positive sign in front of the Helmholtz term.
In [13] we have proposed a preconditioner with a purely imaginary shift added to the
Laplacian. The method here is an improvement of that method.

In this paper we benefit from Fourier analysis in several ways. First of all, for
idealized (homogeneous boundary conditions, constant coefficients) versions of the
preconditioned system it is possible to visualize its spectrum for different values of
the wavenumber, as Fourier analysis provides all eigenvalues. Second, for analyzing
multigrid algorithms quantitatively, Fourier smoothing, two-, and three-grid analy-
sis [6, 7, 23, 24, 30] are the tools of choice.
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Table 1

Number of grid points employed, related to the wavenumber, so that kh = 0.625.

k 40 50 80 100 150 200 500 600
h 1/64 1/80 1/128 1/160 1/240 1/320 1/800 1/960

The outline of this paper is as follows. In section 2 the Helmholtz problem is
introduced and the convergence difficulties of multigrid for this equation are detailed.
The new preconditioner is introduced in section 3, where multigrid components for
Helmholtz problems with a complex term (smoothing, operator-dependent prolonga-
tion) are presented. Fourier analysis to obtain quantitative performance estimates
of components and methods is performed in section 4. Numerical experiments on
two-dimensional high wavenumber heterogeneous Helmholtz problems are presented
in section 5.

2. Helmholtz equation, standard multigrid. Consider the Helmholtz equa-
tion for a wave problem in a heterogeneous medium

Aφ := −∂xxφ− ∂yyφ− (1 − αi)k2(x, y)φ = g(x, y) in Ω ⊂ R
2.(1)

Here, φ = φ(x, y) represents the solution, usually a pressure field, and g represents
the source term. The medium is barely attenuative if 0 ≤ α << 1, with α indicating
the fraction of damping in the medium (i =

√
−1, the imaginary unit). In geophysical

applications, which are our main interest, this damping can be set up to 5% (α = 0.05).
The wavenumber k = ωf/c is space-dependent because of a spatially dependent speed
of sound c(x, y) in a heterogeneous medium. With ωf := 2πf the angular frequency
(f is the frequency), wavelength � is defined by � = c/f . The number of wavelengths
in a domain of size L equals L/�. nw, the number of points per wavelength, is typically
chosen to be 10–12 points. Wavenumber k can be large.

The dimensionless wavenumber k on a nondimensional [0, 1]2 domain is defined by
k = 2πfL/c. A dimensionless discretization step reads h = �/(nwL), and therefore for
the angular frequency one finds ωf = 2π/(nwh) = 2πL/�. With domain size L = 1,
an accuracy requirement for second order discretizations is that kh ≤ π/5(≈ 0.63) for
nw = 10 points per wavelength, and kh ≤ 0.53 with nw = 12 points per wavelength.
In Table 1, the number of grid points used for several wavenumbers k is displayed.
For each combination we have kh = 0.625. These mesh refinements assume a linear
connection between k and h. However, in order to avoid a reduction of accuracy for
a second order scheme due to the so-called pollution effect [26, 14] k2h3 should be set
constant. As for an iterative solution method, keeping kh constant is more severe; we
stay with kh as in Table 1. In this paper we emphasize the iterative solution rather
than the accuracy of the discretization.

Typically, boundary conditions at the boundary Γ = ∂Ω are in the form of first- or
second-order absorbing boundary conditions or of a perfectly matched layer (PML).
We use approximate radiation (or nonreflecting) boundary conditions at an artificial
boundary. The well-known second-order radiation boundary condition [12], to avoid
unphysical reflections at boundaries, reads

AΓφ :=
∂φ

∂ν
− ikφ− i

2k

∂2φ

∂τ2
= 0 on Γ,(2)

with ν the outward normal direction to the boundary and τ pointing in the tangen-
tial direction. At the cornerpoints the suggestions in [2] to avoid corner reflections
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have been adopted. Whereas these conditions are commonly applied for problems in
homogeneous media, they are less obvious for inhomogeneous media with discontin-
uous wavenumbers at the boundaries. The reason is that these discontinuities may
act as unphysical scatterers at the boundaries. This can be avoided by appropriately
increasing damping, modeled by the imaginary part in (2). Another natural approach
with an inhomogeneous medium at the boundaries may be the use of the PML.

If a discretization is applied to (1) and (2), a linear system of the form

Aφ = g, A ∈ C
N×N , φ, g ∈ C

N ,(3)

is obtained, where N is the number of unknowns in the computational domain Ωh.
Matrix A has complex components due to the discrete boundary operator (2) and the
damping term in (1). A is in general symmetric with eigenvalues in the left and right
half-plane, non-Hermitian, and, because of the accuracy requirements, also large for
high wavenumbers. However, A is also sparse; its sparsity pattern depends on the
discretization method used.

We consider here, in stencil notation, the well-known O(h2) 5-point discretization
stencil:

Ah
∧
=

1

h2

⎡
⎣ −1

−1 4 − (kh)2(1 − αi) −1

−1

⎤
⎦ .(4)

We use matrix and stencil notation simultaneously: Matrix A (3) relates to the dis-
cretization of (1), (2), and discrete operator Ah (4) relates to the discretization of (1).
The discrete solution is represented by φ and φh, respectively. The eigenvalues (for
constant k-problems with homogeneous Dirichlet boundary conditions)

λ�,m
h = λ̃�,m

h − k2(1 − αi)

≡ 2

h2
(2 − cos �πh− cosmπh) − k2(1 − αi) (�,m = 1, 2, . . . ,

√
N − 1)(5)

are not equal to zero as long as k2(1 − αi) is not equal to any of the eigenvalues of

the corresponding discrete Laplacian λ̃�,m
h . Otherwise, the matrix is singular, and its

null-space is spanned by the eigenfunctions

v�,mh = sin �πx sinmπy,(6)

with �,m for which λ�,m
h = 0.

2.1. Multigrid convergence for the Helmholtz equation. Textbook multi-
grid methods are typically set up so that a smoothing method reduces high frequency
components of an error between the numerical approximation and the exact discrete
solution, and a coarse grid correction handles the low frequency error components.
Whereas such methods are easily defined for elliptic Poisson-like equations, this is not
the case for the Helmholtz equation without any damping in (1), α = 0. Depending
on the particular value of k2, this equation gives rise to both smoothing and coarse
grid correction difficulties. The matrix has eigenvalues in only the right half-plane as
long as k2 is less than the smallest eigenvalue of the Laplacian, λ̃1,1

h . For k2 > λ̃1,1
h ,

the matrix does not have only positive eigenvalues. Pointwise Jacobi iteration with
underrelaxation does not converge in that case, but since its smoothing properties are
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satisfactory, the multigrid convergence will deteriorate only gradually for increasing
k2. By the time k2 approaches the 6th eigenvalue λ̃�,m

h (k2 ≈ 150), the standard
multigrid method diverges. The Jacobi relaxation now diverges for smooth eigenfre-
quencies v�,mh with λ̃�,m

h < k2. Consequently, the multigrid method will still converge
as long as the coarsest level used is fine enough to represent these smooth eigenfre-
quencies sufficiently. So, the coarsest level chosen limits the convergence. When k2

gets larger more variables need to be represented on the coarsest level for standard
multigrid convergence. Eventually, this does not result in an O(N) iterative method.

In addition to this feature, the Helmholtz equation also brings a multigrid coarse
grid correction difficulty. Eigenvalues close to the origin may undergo a sign change
after discretization on a coarser grid. If a sign change occurs, the coarse grid solution
does not give a convergence acceleration to the finer grid problem but gives a severe
convergence degradation (or even divergence) instead. In [11] this phenomenon is
analyzed and a remedy for the coarse grid correction related to these problematic
eigenvalues is proposed. The efficient treatment in [11] is that the multigrid method is
combined with Krylov subspace iteration methods. GMRES is proposed as a smoother
and as a cure for the problematic coarse grid correction.

Standard multigrid will also fail for k2-values very close to eigenvalues. In that
case subspace correction techniques should be employed [9].

An advanced multigrid based solution method for the Helmholtz equation is the
wave-ray multigrid method [8]. The method has been adapted for a first-order system
least-squares version of the Helmholtz equation in [18]. Wave-ray multigrid has been
developed for Helmholtz problems with constant or smoothly varying wavenumbers.
A thorough overview for the numerical solution of the Helmholtz equation is presented
in [25].

3. Shifted Laplacian preconditioner. To solve (3), iterative methods based
on the Krylov subspace are of interest. In particular, we choose preconditioned Bi-
CGSTAB. In [13], Bi-CGSTAB is preferred over other Krylov subspace methods as the
convergence for Helmholtz problems is reported typically faster than that of GMRES.
We have also tested advanced versions such as Bi-CGSTAB(2) [22] and GMRESR [28],
but Bi-CGSTAB remains the method of choice, especially for the Helmholtz equation
without damping (α = 0). A preconditioner M ∈ C

N×N for A is developed such that
the preconditioned system

AM−1ψ = g, ψ = Mφ,(7)

has better spectral properties than the original system. The preconditioner M pro-
posed here is based on the following operator:

M ≡ −∂xx − ∂yy − (β1 − β2i)k
2(x, y), β1, β2 ∈ R,(8)

with (β1, β2) parameters that can be chosen freely and with i the imaginary unit.
Boundary conditions are set identical to those for the original Helmholtz problem (2).

A large imaginary value for the “wavenumber” physically corresponds to adding
some form of damping for preconditioning. In the time domain the heat equation is
sometimes used as the preconditioner for the Laplacian. Also the Jacobi iteration for
the Laplacian can be interpreted as a time stepping procedure for the heat equation.
For the wave equation such an iteration is a less common approach. A large imaginary
Helmholtz term can be seen as a time-dependent term that is transformed to Fourier
space.
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If one is interested in only the interior problem without any damping term and
real-valued boundary conditions, the original problem would be real-valued. Introduc-
ing a complex shift then introduces complex arithmetic into a real problem. Besides
the extra work, it necessitates possibly different iterative solvers. Here, however, we
are interested in geophysics applications with outgoing waves.

The basic choice in this paper is (β1, β2) = (1, 1). Tuning of multigrid components
is especially necessary for β2 < 1, for example, for β2 = 0.5, to be presented below.
In [13] we have proposed a positive purely imaginary shift (β1, β2) = (0, 1) to the
Laplacian for a satisfactory convergence. Preconditioner (8) is an improvement of
this preconditioner with β1 = 1.

We perform Fourier analysis to visualize the effect of the choice of (β1, β2) in
the preconditioner on the clustering of the eigenvalues of the preconditioned system.
For this we consider operator (7) with homogeneous Dirichlet boundary conditions,
wavenumber k constant, and a discrete version of Helmholtz operator (1), Ah, and of
preconditioner (8), Mh. This particular choice of the boundary conditions especially
simplifies the analysis. For radiation boundary conditions the Helmholtz operator
is nonnormal. Hence eigenvalue analysis alone would not be sufficient for analyzing
preconditioned Krylov subspace methods. Here, we perform the analysis as a first
indication of what we can expect from the solver to be developed and concentrate on
the eigenvalues.

For both Ah and Mh we choose the 5-point stencil, as in (4). The components (6)
are eigenfunctions of these discrete operators with constant coefficients. With these
eigenfunctions AhM

−1
h is diagonalizable and the eigenvalues are easily determined. In

the first tests we do not include damping in Ah, α = 0 in (1), (4).
Figure 1 presents spectra of AhM

−1
h for (β1, β2) = (0, 0) (Laplacian precondi-

tioner), (β1, β2) = (−1, 0) (Laird preconditioner [17]), (β1, β2) = (0, 1) (precondi-
tioner from [13]), (β1, β2) = (1, 1) (basic parameter choice), (β1, β2) = (1, 0.5), and
(β1, β2) = (1, 0.3) (more advanced parameters). The results are for k = 40 (k2 = 1600)
and h = 1/64. Similar eigenvalue distributions are observed for finer grids.

From the spectra presented with the new preconditioner, the lower pictures of
Figure 1 are favorable as their real parts vary between 0 and 1. The Laplacian
preconditioner in Figure 1(a) exhibits large isolated eigenvalues; for the Laird pre-
conditioner the eigenvalues in Figure 1(b) are distributed between −1 and 1 on the
real axis. The preconditioners with complex Helmholtz terms give rise to a curved
spectrum. Whereas the real part of the spectrum in Figure 1(c) still includes a part of
the negative real axis, this is not the case for the (β1, β2)-preconditioners with β1 = 1.
The difference between Figures 1(d), 1(e), and 1(f) is that, with a smaller value of β2,
fewer outliers close to the origin are observed. This is favorable for the convergence of
the preconditioned Krylov method. The approximate inversion of the preconditioner
itself by multigrid, however, will be shown to be harder for smaller values of β2. In
Figure 2 the spectra for k = 100(k2 = 104) are presented on a grid with h = 1/160
for β1 = 1 and β2 varying between 1 and 0.3. The spectra are very similar to those in
Figure 1. More eigenvalues lie, however, in the vicinity of the origin due to the higher
wavenumber and the correspondingly finer grid. Figure 3 presents the distribution
of eigenvalues for the case that 5% damping (α = 0.05) is set in A. Parameters in
the preconditioner are (β1, β2) = (1, 0.5). Again the 5-point stencil as in (4) is used
for discretization. Figure 3(a) presents the spectrum for k = 40, h = 1/64, and Fig-
ure 3(b) presents the spectrum for k = 100, h = 1/160. An interesting observation is
that now the eigenvalues move away from the origin into the right half-plane. This
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Fig. 1. Spectral pictures of AhM
−1
h

with α = 0 and different values of (β1, β2) in (8).
(a) (β1, β2) = (0, 0), (b) (−1, 0), (c) (0, 1), (d) (1, 1), (e) (1, 0.5), and (f) (1, 0.3).
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Fig. 2. Spectral pictures of AhM
−1
h

for k = 100, h = 1/160, and α = 0; (a) (β1, β2) = (1, 1),
(b) (β1, β2) = (1, 0.5), and (c) (β1, β2) = (1, 0.3).

is beneficial for iterative solution methods. From the spectra in Figure 3 it is ex-
pected that the Bi-CGSTAB (and GMRES) convergence in the case of damping will
be considerably faster than for the undamped case.

4. Multigrid for the preconditioner.

4.1. Multigrid components. Geometric multigrid converges satisfactorily for
the Helmholtz operator (8) for certain choices of β1 and β2 (assumed in [15], see
also [16]). In this section, we detail the multigrid components that can be specified
for approximately inverting a discrete version of M in (8). We consider a 5-point dis-
cretization and denote the equation for the preconditioner by Mhφh = ψh. Standard
multigrid coarsening, i.e., doubling the mesh size h in every direction, is chosen.

For smoothing the pointwise Jacobi relaxation with underrelaxation (ω-JAC) is
chosen. This smoother is well parallelizable, which is an important aspect for our
research (w.r.t. a generalization to three dimensions). In principle, one can choose
the underrelaxation parameter ω ∈ C, but the Fourier analysis indicates that there is
no real benefit for the problems considered. So, we choose ω ∈ R.
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Fig. 3. Spectral pictures of AM−1 with 5 % damping in A and (β1, β2) = (1, 0.5); (a) k =
40, h = 1/64 and (b) k = 100, h = 1/160.
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Fig. 4. Left: Nine point stencil with numbering. Right: Coarse grid cell and four fine cells,
(Coarse grid indices designated by capital letters and fine grid indices designated by lower case
letters).

The coarse grid correction components are also based on established operators.
For the discrete coarse grid operators M2h,M4h, . . . , the Galerkin coarse grid operator
is used:

M2h := R2h
h MhP

h
2h, M4h := R4h

2hM2hP
2h
4h , etc.

In the Fourier analysis to follow, this discretization will be compared to a direct coarse
grid discretization of (1). The Galerkin coarse grid discretization is a natural choice
for heterogeneous problems. Also with boundary conditions containing first and sec-
ond derivatives, it is convenient to choose the Galerkin coarse grid discretization as
it defines the appropriate coarse grid boundary stencils automatically. The transfer
operators used in building the coarse grid operators are the same as those used for
transferring coarse and fine grid quantities to fine and coarse grids, respectively. The
prolongation operator considered is an operator-dependent interpolation based on de
Zeeuw’s transfer operators [31]. Originally, this prolongation was set up for general
(possibly unsymmetric) real-valued matrices with a splitting of matrix M into a sym-
metric and an antisymmetric part, Ms = 1

2 (M + MT ), Mt = M − Ms in [31].
However, since the discretization here leads to a complex symmetric matrix, the pro-
longation is adapted and briefly explained for such matrices with nine diagonals. The
numbering in a stencil for the explanation of the prolongation is as shown in Figure
4 (left side). The right side of Figure 4 shows one coarse and four fine grid cells
with indices for the explanation of the interpolation weights. Capital letters denote
coarse grid points and lower case letters denote fine grid points. Operator element
mw

p , for example, denotes the west element of operator Mh at point p on the fine
grid. The corrections from the coarse to the fine grid are obtained by interpolation
among nearest coarse grid neighbors. The operator-dependent interpolation weights,
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w, to determine the fine grid correction quantities eh are derived with the following
formulas.

• For fine grid points p in Figure 4, eh,p = wAeH,A + wBeH,B .
wA = min(1,max(0, ww)); wB = min(1,max(0, we)),

where

dw = max(|msw
p + mw

p + mnw
p |, |msw

p |, |mnw
p |),(9)

de = max(|mse
p + ms

p + mne
p |, |mse

p |, |mne
p |),(10)

ww =
dw

dw + de
, we =

de
dw + de

.(11)

• For fine grid points q in Figure 4, eh,q = wAeH,A + wCeH,C .
wA = min(1,max(0, ws)); wC = min(1,max(0, wn)),

with

dn = max(|mnw
q + mn

q + mne
q |, |mnw

q |, |mne
q |),(12)

ds = max(|msw
q + ms

q + mse
q |, |msw

q |, |mse
q |),(13)

ws =
ds

ds + dn
, wn =

dn
ds + dn

.(14)

On the remaining points the prolongation is defined as follows:

On fine grid points that are also coarse points, eh(A) = e2h(A).(15)

On points r, eh(r) is determined so that MhP
h
2he2h = 0 at r.(16)

The interpolation weights are the same as in [31] but are specially tailored to the sym-
metric complex Helmholtz equation, i.e., the unsymmetric components in [31] have
been removed. |.| denotes the modulus, in this case, leading to real-valued interpola-
tion weights. As for symmetric problems with jumping coefficients, the prolongation
operator by de Zeeuw [31] is very similar to the original operator-dependent pro-
longation in [1]. In [1], for dw, for example, the lumped sum of three elements,
msw

p +mw
p +mnw

p , is chosen. For satisfactory convergence it is, however, important to
consider the modulus of the operator elements, as in (9), (10), (12), and (13), in the
definition of the interpolation weights. This prolongation is also valid at boundaries.

The full weighting operator is employed as the restriction operator. So, we do
not choose the adjoint of the prolongation operator, which is commonly used but is
not absolutely necessary, as already stated in [1] (an example where the restriction is
not the adjoint of the prolongation operator has been given in [10]). We choose the
combination of a full weighting restriction and the operator-dependent interpolation,
as it brings a robust convergence for a variety of Helmholtz problems with constant and
nonconstant coefficients. For constant coefficients and mildly varying wavenumbers,
bilinear interpolation also gives very satisfactory convergence results, but for strongly
varying coefficients, as in the Marmousi problem discussed in section 5.3, a robust
and efficient convergence on different grid sizes and for many frequencies is observed
for the combination of the transfer operators chosen.

4.2. Fourier analysis. Fourier smoothing and two-grid analysis, two classical
multigrid analysis tools, have been used for quantitative estimates of the smoothing
properties and of the other multigrid components in a two-grid method [5, 6, 7, 23, 24].
Consider a discretization of (7), (8), Mhφh = ψh, where φh represents the exact
discrete solution. The error wl

h = φl
h − φh after the lth iteration is transformed by a
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two-grid cycle as

wl+1
h = T 2h

h wl
h, T 2h

h = Sν2

h K2h
h Sν1

h , K2h
h = Ih − Ph

2h(M2h)−1R2h
h Mh.(17)

Mh, M2h correspond to discretizations of (8) on the h-, 2h-grid, Sh is the smoothing
operator on the fine grid, and Ih is the identity operator. νl (l = 1, 2) represents the
number of pre- and postsmoothing steps, and R2h

h and Ph
2h denote the restriction and

prolongation operator, respectively. In the analysis we assume an equidistant grid
with

√
N points in each direction. The O(h2)-discrete complex Helmholtz operator

from (8) with constant wavenumber and Dirichlet boundary conditions belongs to the
class of symmetric stencils. For these stencils it is possible to apply Fourier analysis
on the basis of discrete sine-eigenfunctions v�,mh , �,m = 1, . . . ,

√
N − 1 (6), instead of

the local Fourier analysis with exponential functions. For problems with symmetric
stencils and homogeneous Dirichlet boundary conditions, this analysis can predict
h-dependent convergence factors. From the discussion of multigrid methods for the
original Helmholtz equation, it seems necessary to gain insight into the h-dependency
of the multigrid methods developed also for the complex Helmholtz operator. (The
definition of the operator-dependent prolongation and the Galerkin coarse grid stencils
in section 4.1 also leads to symmetric operators that can be analyzed within this
framework.)

For the pointwise Jacobi smoother, the v�,mh (6) are also eigenfunctions of the
smoothing operator. This is not true for the two-grid iteration operator T 2h

h . However,
4-dimensional linearly independent spaces, the harmonics,

E�,m
h =

[
v�,mh , v

√
N−�,

√
N−m

h , −v
√
N−�,m

h , −v�,
√
N−m

h

]
for �,m = 1, . . . ,

√
N
2

(18)

are invariant under these operators. One can show [23, 24] that

Mh : span [v�,mh ] → span [v�,mh ], (M2h)−1 : span [v�,m2h ] → span [v�,m2h ],

Sh : span [v�,mh ] → span [v�,mh ],

R2h
h : E�,m

h → span [v�,m2h ], Ph
2h : span [v�,m2h ] → E�,m

h ,

and T 2h
h : E�,m

h → E�,m
h (�,m = 1, . . . ,

√
N
2 ). Therefore, the representation of T 2h

h

with respect to E�,m
h leads to a block-diagonal matrix, T̃ 2h

h ,

T 2h
h

∧
=

[
T̂ 2h
h (�,m)

]
�,m=1,... ,

√
N
2

=: T̃ 2h
h .(19)

Here the blocks T̂ 2h
h (�,m) are 4×4 matrices if �,m <

√
N
2 , and are 2×2 (1×1) matrices

if either � =
√
N
2 or m =

√
N
2 (� =

√
N
2 and m =

√
N
2 ). The two-grid convergence

factor is defined as

ρ2g := max
1≤�,m≤

√
N
2

ρ
(
T̂ 2h
h (�,m)

)
.(20)

Thus, the spectral radii of at most 4 × 4 matrices T̂ 2h
h (�,m) have to be determined,

and their maximum with respect to � and m has to be found.
The definition of the smoothing factor μ is closely related. The smoothing factor

measures the reduction of high frequency error components by an iterative method.
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It is based on a coarse grid correction operator that annihilates the low frequency
error components completely and keeps the high frequency components unchanged.
K2h

h is replaced by a projection operator Q2h
h mapping onto the space of high frequen-

cies, i.e., a block-diagonal matrix with Q̂2h
h at most 4 × 4-diagonal blocks defined by

diag(0, 1, 1, 1). So, μ is computed as ρ2g (20) with K̂2h
h in T̂ 2h

h replaced by Q̂2h
h .

Recently, three-grid Fourier analysis was proposed in [30]. An issue that can be
analyzed in some more detail with a third grid is the coarse grid correction. If a
large difference occurs between the two-grid and the three-grid convergence factors,
ρ2g and ρ3g, this is an indication for a problematic coarse grid correction. For the
complex Helmholtz preconditioner it is important to analyze the coarse grid correction
carefully. The error transformation by a three-grid cycle is given by

wl+1
h = T 4h

h wl
h with

(21)
T 4h
h = Sν2

h K4h
h Sν1

h and K4h
h = Ih − Ph

2h(I2h − (T 4h
2h )γ)(M2h)−1R2h

h Mh.

Here T 4h
2h , defined by (17), reads T 4h

2h = Sν2

2h(I2h − P 2h
4h (M4h)−1R2h

4h)Sν1

2h. M4h cor-
responds to 4h-grid discretization of (8); S2h is the smoothing operator, and I2h is
the identity on the 2h-grid; and R4h

2h and P 2h
4h are transfer operators between the dif-

ferent grids. The 2h-equation is solved approximately in a three-grid cycle (21) by
performing γ two-grid iterations T 4h

2h with zero initial approximation; see also [23, 30].
The three-grid analysis is a recursive application of the two-grid analysis. Four

frequencies are coupled not only in the transition from the h- to the 2h-grid but also
in the transition from the 2h- to the 4h-grid. Thus the three-grid error transformation
operator couples 16 Fourier frequencies. As a consequence, T 4h

h is unitarily equivalent

to a block-diagonal matrix T̃ 4h
h with at most 16 × 16 blocks, T̂ 4h

h (�,m). The block
matrices are composed of the Fourier symbols from the two-grid analysis, which is due
to the recursive application of the two-grid analysis. One may compute the three-grid
factor ρ3g as the supremum of the spectral radii from the 16 × 16 block matrices,

T̂ 4h
h (�,m).

For more details about the three-grid analysis, we refer to [30]. Three-grid
Fourier analysis software, based on the exponential functions, is freely available; see
http://www.mgnet.org/mgnet-codes-wienands.html.

4.3. Fourier analysis and multigrid results. We first compare the numerical
multigrid convergence with asymptotic convergence factors μ, ρ2g, ρ3g from Fourier
analysis. For this, we consider here solely the preconditioner M (8). (The behavior of
the complete solution method will be considered in the next section.) Wavenumber k
is taken as a constant here and a square domain with an equidistant grid is used. The
second-order boundary conditions (2) are set in the numerical experiments to mimic
reality.

An interesting aspect is that almost identical convergence factors are obtained,
both from the analysis and from the actual experiments, for constant values of kh.
They are set as in Table 1. The results are validated from k = 40 up to k = 600, the
highest wavenumber tested is (k2 = 3.6× 105). During testing the following abbrevi-
ations are used: “ω-JAC” is the Jacobi smoother with underrelaxation, “Galerkin” is
the Galerkin coarse grid discretization, and “direct” is a direct coarse grid discretiza-
tion of the PDE. “Direct” has not been implemented in the numerical code, but it
can be used in the analysis framework.

Multigrid coarsening is continued until fewer than 10 × 10 points are processed
on the coarsest grid. The number of levels is h- and therefore also k-dependent, as
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finest

coarsest

Fig. 5. An F-cycle for five grids.

Table 2

Comparison of asymptotic convergence from Fourier analysis with numerical multigrid conver-
gence, (β1, β2) = (0, 1). μ is the smoothing factor; ρ2g, ρ3g are the two- and three-grid convergence
factors from Fourier analysis; and ρh is the numerical multigrid convergence factor. The smoother
is ω-JAC with ω = 0.8.

(ν1, ν2) μ ρ2g ρ3g , γ = 2 ρh, F-cycle
(1,0) 0.60 0.60 0.60 0.58
(1,1) 0.36 0.36 0.36 0.34

kh is kept constant on the finest grid, and varies between 5 and 9 grids.
The F-cycle (see Figure 5) is always used in the numerical tests; the V-cycle’s

performance was generally too poor; and the W-cycle is considered too expensive
on the very fine grids processed at high wavenumbers. The F-cycle often shows the
robustness of the W-cycle at the efficiency of the V-cycle. In the three-grid analysis,
γ = 2, the W-cycle analysis is used.

Remark. The Fourier analysis applied directly to the Helmholtz equation (1) with
α = 0 and the specified mesh sizes gives a satisfactory smoothing factor, but the two-
and three-grid analysis convergence factors and also the actual multigrid results show
a strong divergence, as expected.

The case (β1, β2) = (0, 1). We start with (β1, β2) = (0, 1), as in [13]. This case
is not of the highest interest as a preconditioner, as the Bi-CGSTAB convergence for
the corresponding preconditioned system is worse than with β1 = 1 (shown in the
next section). This case (β1, β2) = (0, 1) serves as a reference for the comparison
between Fourier analysis and numerical convergence. The underrelaxation parameter
ω is set to ω = 0.8, as this is the optimal choice for the Laplacian [24]. The agreement
between the smoothing two- and three-grid Fourier analysis results with one and two
smoothing iterations and the numerical convergence is excellent, presented in Table 2.
The results obtained are very similar to the convergence factors for the Laplacian with
ω-JAC.

Remark. For the case (β1, β2) = (0, 1), one can adopt the well-known multigrid
components: direct PDE coarse grid discretization and red-black Gauss–Seidel relax-
ation. This gives ρ3g = 0.16 for γ = 1 and ρ3g = 0.08 for γ = 2 with two smoothing
iterations, very similar to the Laplacian situation. Red-black Gauss–Seidel relaxation
is, however, not as robust as the ω-JAC relaxation for the β1 = 1 cases. Furthermore,
the cost in CPU time on a Linux PC of one red-black Gauss–Seidel iteration is about
twice that of a Jacobi iteration.

The case (β1, β2) = (1, 1). The second test is for (β1, β2) = (1, 1). In this test we
employ ω-JAC smoothing with ω = 0.7 in an F(1,1)-cycle (ν1 = ν2 = 1). It is neces-
sary to adapt the relaxation parameter ω for satisfactory numerical convergence. The
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Table 3

Comparison of convergence (β1, β2) = (1, 1) with Fourier analysis convergence (γ = 1), ω-JAC,
ω = 0.7, and F (1, 1)-cycle. Coarse grid discretizations are compared. (The direct discretization has
not been implemented).

Coarse discr. μ ρ2g ρ3g , γ = 2 ρh, F(1,1)
Galerkin 0.47 0.47 0.47 0.45
Direct 0.47 0.47 0.47 -

Table 4

Fourier analysis convergence factors compared to multigrid convergence (β1, β2) = (1, 0.5). The
smoother is ω-JAC with ω = 0.5. (The direct discretization has not been implemented).

Coarse discr. μ ρ2g ρ3g , γ = 2 ρh, F(1,1)
Galerkin 0.60 0.60 0.60 0.61
Direct 0.60 0.60 0.60 -

performance of the ω-JAC smoother is not sensitive with respect to choosing some-
what smaller values of ω. We compare the Galerkin discretization with the direct
coarse grid PDE discretization. Analysis results with two smoothing iterations are
shown in Table 3, and they are compared to the numerical F(1,1) multigrid conver-
gence.

Convergence factors well below 0.5 are obtained with the F(1,1)-cycle and ω-
JAC relaxation with ω = 0.7. The Fourier analysis results with the Galerkin coarse
grid discretization are very similar to those obtained with a direct coarse grid PDE
discretization.

The case (β1, β2) = (1, 0.5). The preconditioner of choice in this paper is based
on the parameters (β1, β2) = (1, 0.5). For this parameter set it is possible to de-
fine a converging multigrid iteration by means of an F(1,1)-cycle, ω-JAC relaxation
with ω = 0.5, and a Galerkin coarse grid discretization. The underrelaxation pa-
rameter needs to be adapted for a robust convergence for a variety of heterogeneous
Helmholtz problems. For values β2 < 0.5 it is very difficult to define a satisfactory
converging multigrid F(1,1)-cycle with the components at hand. They are therefore
not considered.

Table 4 compares the Galerkin with the direct PDE coarse grid discretization.
Also here, the operator-dependent interpolation and full weighting restriction are
chosen, and two smoothing iterations are applied. The smoothing factors and two-
and three-grid factors are very similar, which is an indication for the proper choice of
coarse grid correction components for the problems under investigation. The numer-
ical convergence with the F(1,1)-cycle is again very similar to the Fourier results.

In the following three remarks, we explain the satisfactory convergence of a stan-
dard multigrid method for the complex Helmholtz equation and β1 = 1 with some
heuristic arguments. The remarks show that, when β2 is chosen small but such that
the multigrid method still converges, the coarse grid stencils do not represent the
fine grid problem well. In particular, the main diagonal operator elements in (22)
on different coarse grids are smaller than the off-diagonal elements. This will be the
reason why the V-cycle does not perform as well as the F-cycle and why damped
Jacobi relaxation is a more robust smoother than red-black Gauss–Seidel relaxation
for the case β2 = 0.5.

Remark: Smoothing. The Fourier symbol of ω-JAC for the complex Helmholtz
equation reads
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Table 5

Smoothing factors μh for ω-JAC on different coarse grids and various (β1, β2)-values.

(β1, β2) ω in ω-JAC h
1/64 1/32 1/16 1/8

(1, 0) 0.7 0.47 0.75 2.31 0.18
(0, 1) 0.8 0.36 0.32 0.13 0.05
(1, 1) 0.7 0.47 0.56 0.35 0.13
(1, 0.5) 0.5 0.60 0.77 0.81 0.32

Sh = 1 − ω

4 − (β1 − β2i)(hk)2
(
4 − (β1 − β2i)(hk)2 − 2 cos �πh− 2 cosmπh

)
,

�,m = 1, . . . ,
√
N − 1.

We consider the case k = 40, h = 1/64 and take ω as in the previous experiments.
Table 5 presents smoothing factors on four consecutive grids for (β1, β2) = (1, 0)
(the original Helmholtz equation) and for (β1, β2) = (0, 1), (1, 1), and (1, 0.5). For
simplicity, a direct PDE discretization on the coarse grids has been used. From
Table 5, one confirms that for h = 1/16, ω-JAC diverges for the original Helmholtz
operator (also found with other relaxation parameters). This is in accordance with the
remarks in [9, 11] that smoothing problems do not occur on the very fine or the very
coarse grids but do occur on the intermediate grids. Furthermore, it can be observed
that the (β1, β2) = (0, 1)-preconditioner resembles a Laplacian-type situation, with
excellent smoothing factors on all grids. The preconditioners with β1 = 1, β2 	= 0
give smoothing factors less than one on every grid. The (1,1)-preconditioner exhibits
better smoothing factors than the set (β1, β2) = (1, 0.5), which represents a limit case
for which smoothing factors are still below one.

Remark: Simplified coarse grid analysis. Some insight into the coarse grid cor-
rection can be gained from the so-called “simplified coarse grid analysis” or first-
differential-approximation analysis [7, 9, 24]. As in [11] we apply this analysis for a
one-dimensional (1D) Helmholtz operator. Assuming that transfer operators do not
have any effect on the lowest frequencies, the quantity 1 − λ�

h/λ
2�
2h (� small) gives

some insight into the relation between the discrete fine and coarse grid operators.
This quantity should be close to zero and is an indication of the suitability of a coarse
grid operator in a multigrid method. For the original 1D Helmholtz equation and
α = 0 (no damping), this quantity reads [11]

1 − λ�
h/λ

2�
2h =

sin4 (�hπ/2)

sin2 (�hπ/2) cos2 (�hπ/2) − (kh/2)2
, � = 1, . . . , N.

It may give rise to a problematic coarse grid correction in the range where

sin2 (�hπ/2) cos2 (�hπ/2) ≈ (kh/2)2

and � is associated with a smooth mode. For a 1D version of the complex Helmholtz
operator, this quantity reads

1 − λ�
h/λ

2�
2h =

sin4 (�hπ/2)

sin2 (�hπ/2) cos2 (�hπ/2) − (kh/2)2(β1 − β2i)

=
sin4 (�hπ/2)

(
sin2 (�hπ/2) cos2 (�hπ/2) − (kh/2)2(β1 + β2i)

)
(
sin2 (�hπ/2) cos2 (�hπ/2) − (kh/2)2β1

)2
+ (kh/2)2β2

2

,

� = 1, . . . , N.
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This expression for the complex Helmholtz operator is close to zero for the (β1, β2)-
sets under consideration: the denominator does not reach zero, and the numerator
contains the term sin4 �hπ/2 which is very small for smooth eigenmodes.

Remark: h-ellipticity. When a Galerkin coarse grid discretization is used, it
is difficult to gain insight into the coarse grid correction, as the coarse grid stencil
elements are constructed with nontrivial formulas. Therefore, we discuss here for
the case (β1, β2) = (1, 0.5) two coarse grid discretizations. With h = 1/64, k = 40,
α = 0 in (4), we obtain by direct PDE discretization similar coarse grid stencils
as the fine grid stencil with grid sizes 2h or 4h, respectively. In that case, only the
central stencil element contains an imaginary contribution. When the Galerkin coarse
grid operator is employed, the imaginary part is distributed over all entries. With
operator-dependent interpolation and full weighting restriction we find

A2h
∧
=

⎡
⎣ −282.9 + 15.3i −665.8 + 80.6i −282.9 + 15.3i

−665.8 + 80.6i 2164.5 + 461.2i −665.8 + 80.6i

−282.9 + 15.3i −665.8 + 80.6i −282.9 + 15.3i

⎤
⎦ ,

A4h
∧
=

⎡
⎣ −129.5 + 43.0i −290.1 + 135.0i −129.5 + 43.0i

−290.1 + 135.0i −101.4 + 483.2i −290.1 + 135.0i

−129.5 + 43.0i −290.1 + 135.0i −129.5 + 43.0i

⎤
⎦ .(22)

The h-ellipticity measures are 0.28 and 0.18, indicating the suitability of the stencils
for pointwise smoothing [7, 24]. For the direct PDE discretization, the h-ellipticity
measures are 0.13 and 0.45 for the 2h- and 4h-discretizations, respectively. The fact
that these qualitative measures are not close to zero means that pointwise smoothers
can be constructed for these stencils. From these complicated coarse grid stencils it
is, however, difficult to judge between the different smoothers, relaxation parameters,
etc., but the three-grid Fourier analysis helps to some extent. We obtain very satis-
factory multigrid convergence with simple multigrid components, although the coarse
grid discretization (22) seems awkward. At least it does not spoil the h-independent
multigrid convergence. One merely needs to choose the underrelaxation parameter in
the smoother with some care.

4.4. Multigrid for the preconditioner. One multigrid iteration is taken for
approximating the inverse of the operator in (8). After some experimentation it
was found that it is sufficient to employ a multigrid iteration with a convergence
factor ρh ≈ 0.6 for the preconditioner. To some extend this can also be observed
qualitatively from spectral pictures obtained by Fourier analysis (again, constant k,
Dirichlet boundary conditions). Starting with a regular splitting of Mh,

Chφ
l+1
h = (Ch −Mh)φl

h + ψh, or φl+1
h = (Ih − C−1

h Mh)φl
h + C−1

h ψh.(23)

This splitting is considered to represent a multigrid iteration, with iteration matrix
(Ih − C−1

h Mh) and C−1
h an approximation of M−1

h . T 2h
h in (17) represents the two-

grid version of a multigrid iteration matrix. Therefore, we equate T 2h
h = Ih−C−1

h Mh.

Matrix T̃ 2h
h in (19) is a block matrix related to T 2h

h : T̃ 2h
h = UhT

2h
h U−1

h , where Uh is
a unitary matrix with four consecutive rows defined by the orthogonal eigenvectors
related to (6). Uh transforms the two-grid iteration matrix into the block-diagonal

matrix T̃ 2h
h . Clearly,

T̃ 2h
h = Ih − UhC

−1
h MhU

−1
h , and

UhC
−1
h MhU

−1
h = UhC

−1
h U−1

h UhMhU
−1
h =: C̃−1

h M̃h
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Fig. 6. Spectral pictures of the preconditioned system with one two-grid iteration used for
preconditioning (β1, β2) = (1, 1), k = 40, h = 1/64: (a) one ω-JAC relaxation and (b) two ω-JAC
relaxations, ω = 0.7. (The eigenvalues with the exact inversion lie at the circles.)

is in block-diagonal form. We have C̃−1
h M̃hM̃

−1
h = (Ih− T̃ 2h

h )M̃−1
h . So, the expression

for the block-diagonal form ÃhC̃
−1
h (C̃−1

h is the approximation of M̃−1
h ) from (7) reads

ÃhC̃
−1
h = Ãh(Ih − T̃ 2h

h )M̃−1
h .(24)

As all the symbols of the operators in the right-hand side of (24) can be formed easily
with Fourier two-grid analysis, the corresponding eigenvalues can be visualized for
various multigrid cycles. These spectra can be compared to those in Figure 1, where
operator Mh from (8) is inverted exactly. Figure 6, for example, presents the spectrum
of the (β1, β2) = (1, 1)-preconditioned system where a two-grid iteration is used for
preconditioning for wavenumber k = 40 (h = 1/64). Figure 6(a) shows the spectrum
for one ω-JAC (ω = 0.7) smoothing iteration for which ρ2g ≈ 0.7, whereas Figure 6(b)
shows the two-grid spectral picture with two ω-JAC smoothing iterations, ν1+ν2 = 2,
operator-dependent interpolation, full weighting restriction, and Galerkin coarse grid
discretization (ρ2g = 0.45). Figure 6(b) shows a spectrum that coincides well with
the spectrum related to the exact inversion in Figure 1(d), whereas in Figure 6(a)
eigenvalues are also outside the circle obtained with the exact inversion.

Figure 7 presents the spectra with a two-grid iteration for the (β1, β2) = (1, 0.5)-
preconditioner and Galerkin coarsening, with ω-JAC relaxation (ω = 0.5). Figure 7(a)
is for ν = 1; Figure 7(b) is for ν = 2. Also for this approximate inversion of the precon-
ditioner the spectrum obtained in Figure 7(b) compares well with the exact inversion
in Figure 1(e), indicating that one multigrid iteration with two ω-JAC smoothing
steps may be sufficient for approximating M−1

h .
Indeed, a numerical comparison between inverting the preconditioner by several

multigrid iterations versus by only one multigrid iteration did not lead to substantially
different numbers of Krylov subspace iterations for solving the Helmholtz problem.

5. Applications. In this section the overall solution method, preconditioned Bi-
CGSTAB for the indefinite heterogeneous Helmholtz problems (1) with the complex
Helmholtz (β1, β2)-preconditioner, is evaluated. One multigrid F(1,1)-cycle is used
for approximately inverting the preconditioner equation with the complex Helmholtz
operator. Three problems of increasing difficulty are discussed.

5.1. Constant wavenumber. For constant wavenumbers k the Bi-CGSTAB
convergence for the Helmholtz equation with the three preconditioners is presented.
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Fig. 7. Spectral pictures of preconditioned system with one two-grid iteration used for pre-
conditioning (β1, β2) = (1, 0.5), k = 40, h = 1/64: (a) one ω-JAC relaxation and (b) two ω-JAC
relaxations, ω = 0.5. (The eigenvalues with exact inversion lie at the circles.)
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Fig. 8. Numerical solution at k = 50 for the model problem with k constant.

We consider a square domain Ω = (0, 1)2. A point source is located at the center of the
domain. The solution satisfies the second-order conditions (2). In these experiments
the finest grid size for each wavenumber is as shown in Table 1. The numerical
solution corresponding to k = 50 is presented in Figure 8. Unphysical reflections at
the boundaries are not present due to the boundary treatment.

A zero initial guess has been used during the computations. The Bi-CGSTAB
iteration is terminated as soon as the initial residual is reduced by 7 orders of magni-
tude. Note that each Bi-CGSTAB iteration involves two preconditioning steps.

For all three preconditioners, (β1, β2) = (0, 1), (1, 1), and (1, 0.5), the method
chosen to approximately invert the preconditioner consists of one multigrid F(1,1)-
cycle with ω-JAC, operator-dependent interpolation plus full weighting as the transfer
operators, and a Galerkin coarse grid discretization. The only difference is the value
of the underrelaxation parameter in ω-JAC, which is ω = 0.8 for (β1, β2) = (0, 1),
ω = 0.7 for (β1, β2) = (1, 1), and ω = 0.5 for (β1, β2) = (1, 0.5). The results for
different values of k and (β1, β2) = (0, 1) are presented in the upper part of Table 6.
In the middle part of Table 6, the Bi-CGSTAB convergence with the (β1, β2) = (1, 1)-
preconditioner is presented. In the lower lines of Table 6 the (β1, β2) = (1, 0.5)-
preconditioner is employed. Next to the results for the Helmholtz equation without
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Table 6

Number of preconditioned Bi-CGSTAB iterations and CPU time in seconds (in parentheses) to
reduce the initial residual by 7 orders. Damping parameter α is varied in the Helmholtz problem.

k
(β1, β2) α from (1) 40 50 80 100 150

α = 0 57 (0.44) 73 (0.92) 112 (4.3) 126 (7.7) 188 (28.5)
(0, 1) 2.5% damping 48 (0.38) 61 (0.77) 84 (3.3) 93 (5.6) 121 (18.5)

5% damping 45 (0.35) 55 (0.70) 69 (2.7) 75 (4.7) 97 (14.9)
α = 0 36 (0.30) 39 (0.51) 54 (2.2) 74 (4.5) 90 (13.9)

(1,1) 2.5% damping 33 (0.27) 37 (0.48) 44 (1.8) 51 (3.2) 61 (9.6)
5% damping 28 (0.24) 30 (0.39) 36 (1.5) 41 (2.6) 49 (7.5)
α = 0 26 (0.21) 31 (0.40) 44 (1.8) 52 (3.3) 73 (10.8)

(1,0.5) 2.5% damping 24 (0.20) 26 (0.35) 33 (1.4) 39 (2.5) 47 (7.3)
5% damping 21 (0.18) 23 (0.32) 28 (1.2) 32 (2.1) 37 (5.8)

Table 7

High wavenumbers, number of Bi-CGSTAB iterations, and CPU time in seconds (in parenthe-
ses) needed to reduce the initial residual by 7 orders with and without damping in the Helmholtz
problem.

k
(β1, β2) α in (1) 200 500 600

α = 0 114 (30.8) 291 (515) 352 (890)
(1,1) 2.5 % damping 74 (20.2) 125 (227) 145 (372)

5 % damping 56 (15.5) 95 (174) 80 (205)

α = 0 92 (25.4) 250 (425) 298 (726)
(1,0.5) 2.5 % damping 57 (15.2) 91 (164) 102 (252)

5 % damping 44 (11.9) 64 (115) 66 (165)

any damping (α = 0), we also show the convergence with 2.5% (α = 0.025) and
5% (α = 0.05) damping. The number of Bi-CGSTAB iterations are presented as
well as the CPU time on a Pentium 4 PC with 2.4 Ghz and 2 Gb RAM. From the
results in Table 6 we conclude that the preferred methods among the choices are
the preconditioners with β1 = 1. This was already expected from the spectra in
Figure 1. Fastest convergence is obtained for (β1, β2) = (1, 0.5). The components of
the multigrid iteration for this preconditioner have been validated with the help of
the Fourier analysis.

Table 6 shows that the Bi-CGSTAB convergence with some damping in the
Helmholtz problem is considerably faster than for α = 0. This was already ex-
pected from the spectra in Figure 3. Furthermore, the number of iterations in the
case of damping grows only slowly for increasing wavenumbers, especially for the
(β1, β2) = (1, 0.5)-preconditioner.

The difference between the two preconditioners with β1 = 1 is more pronounced
if we compute higher wavenumbers. The Bi-CGSTAB convergence and CPU time for
the higher wavenumbers, without and with damping in the Helmholtz problem, are
presented in Table 7. Also for the higher wavenumbers damping in the Helmholtz
problem by means of α 	= 0 improves the convergence significantly. Very satisfactory
convergence is found for high wavenumbers on fine grids.

5.2. The wedge model. A problem of intermediate difficulty is the wedge
model. It is used to evaluate the preconditioner’s behavior for a simple heteroge-
neous medium. The problem is adopted from [19]. The domain is defined to be a
rectangle of dimension 600× 1000 m2. The second-order boundary conditions (2) are
set, and a point source is located at the center of the upper surface (which is assigned
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Fig. 9. Wedge problem: (a) Problem geometry with velocity profile indicated, (b) real part of
numerical solution at 30 Hz, and (c) real part of numerical solution at 50 Hz.

to be y = 0) with frequency, f = kc/(2π)L, varying from 10 to 60 Hz (where c is the
speed of sound). The corresponding values of the local dimensionless wavenumbers k
vary between 20 (smallest for 10 Hz) and 240 (biggest for 60 Hz). For the problem
at 10 Hz approximately 18 points per wavelength are used. Figure 9(a) presents the
domain, the wedge, and the variation of c in the medium. The variation of c is due to
the different local properties of the medium. The real part of the numerical solution
for the wedge problem at 30 Hz and 50 Hz is plotted in Figures 9(b) and 9(c).

In the preconditioner (8) wavenumber k(x, y) is chosen as in the original problem.
Also the boundary conditions in the preconditioner are as for the original problem.
The number of Bi-CGSTAB iterations with one multigrid iteration for the precondi-
tioner with (β1, β2) = (0, 1), (1, 1), and (1, 0.5) are displayed in Table 8 for frequencies
ranging from 10 to 60 Hz on corresponding grid sizes. Results with and without
damping in the Helmholtz problem are presented. The only difference in the multi-
grid methods for the preconditioner is the value of the relaxation parameter: for
(β1, β2) = (0, 1) ω = 0.8, for (β1, β2) = (1, 1) ω = 0.7, and for (β1, β2) = (1, 0.5)
ω = 0.5. A zero initial guess has been used as a starting approximation. The con-
vergence results for (β1, β2) = (1, 0.5) are best, also without any damping in the
original problem. The convergence with the (1,0.5)-preconditioner is about 1.5 times
faster than with the (1,1)-preconditioner and about 3 times faster than with the (0,1)-
preconditioner. The Bi-CGSTAB convergence for the wedge problem for α = 0 and
different frequencies are also visualized for (β1, β2) = (1, 0.5) in Figure 10.

5.3. The Marmousi problem. This example is a part of the full Marmousi
problem which mimics subsurface geology [4]; see also [19]. The domain is rectangular
with a dimension of 6000×1600 m2. A point source is placed at the center of the upper
surface. The values for the speed of sound c are irregularly structured throughout the
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Table 8

Bi-CGSTAB convergence for the wedge problem with and without damping and the three multi-
grid based (β1, β2)-preconditioners compared. The number of Bi-CGSTAB iterations and the CPU
time in seconds (in parentheses) are shown.

(β1, β2)
f (Hz) Grid Damping (0,1) (1,1) (1,0.5)

0.0% 52 (1.2) 30 (0.67) 19 (0.42)
10 75 × 125 2.5% 48 (1.1) 27 (0.62) 17 (0.39)

5.0% 42 (0.91) 25 (0.57) 16 (0.38)
0.0% 91 (8.8) 45 (4.5) 27 (2.8)

20 149 × 249 2.5% 75 (7.2) 39 (4.0) 23 (2.4)
5.0% 65 (6.3) 35 (3.5) 20 (2.1)
0.0% 128 (30.6) 64 (15.8) 37 (9.4)

30 232 × 386 2.5% 94 (22.8) 49 (12.3) 29 (7.5)
5.0% 86 (21.0) 42 (10.7) 25 (6.6)
0.0% 161 (66.1) 80 (33.5) 49 (20.8)

40 301 × 501 2.5% 116 (48.0) 60 (25.4) 35 (15.2)
5.0% 91 (37.9) 46 (19.8) 28 (12.4)
0.0% 205 (134.5) 98 (65.5) 58 (38.7)

50 376 × 626 2.5% 135 (89.0) 67 (45.5) 37 (24.8)
5.0% 99 (66.5) 54 (37.1) 32 (22.0)
0.0% 232 (247.3) 118 (127.6) 66 (71.9)

60 481 × 801 2.5% 147 (159.1) 74 (81.1) 42 (47.1)
5.0% 110 (119.6) 58 (64.5) 32 (36.7)
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Fig. 10. Bi-CGSTAB convergence plot for (β1, β2) = (1, 0.5) for the wedge problem at different
frequencies, α = 0.

domain; see Figure 11(a). The minimum number of points per wavelength equals 17.
The frequency is varied between 1 and 30 Hz.

Preconditioning consists of one multigrid iteration for the complex Helmholtz
equation with the multigrid components prescribed. The underrelaxation parameter
in ω-JAC is varied as usual depending on (β1, β2). In the preconditioner again the
wavenumbers k(x, y) are as in the original problem. Also the boundary conditions are
as in the original problem. Table 9 presents the number of Bi-CGSTAB iterations to
solve the indefinite Helmholtz–Marmousi problem with the CPU times required shown
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Fig. 11. Marmousi problem (not to scale). (a) Velocity distribution in meter/s, (b) real part
of the solution for f = 20 Hz, no damping, and (c) real part of the solution for f = 20 Hz, 2.5%
damping.

Table 9

Bi-CGSTAB convergence for the Marmousi problem with and without damping and the three
multigrid based (β1, β2)-preconditioners are presented. The number of Bi-CGSTAB iterations and
the CPU time in seconds (in parentheses) are shown.

(β1, β2)
f (Hz) Grid Damping (0,1) (1,1) (1,0.5)

0.0% 74 (37.5) 54 (27.6) 38 (19.7)
1 751 × 201 2.5% 67 (34.1) 55 (28.2) 32 (17.0)

5.0% 64 (32.5) 53 (27.3) 31 (16.5)
0.0% 180 (89.2) 84 (42.4) 47 (24.2)

10 751 × 201 2.5% 119 (59.4) 59 (30.1) 33 (17.5)
5.0% 96 (48.3) 48 (24.8) 28 (15.0)
0.0% 414 (832.3) 168 (308.7) 104 (212.1)

20 1501 × 401 2.5% 203 (410.8) 88 (179.9) 55 (115.3)
5.0% 145 (294.7) 64 (133.4) 37 (79.3)
0.0% 458 (1724.8) 211 (799.4) 136 (519.4)

30 2001 × 534 2.5% 197 (745.6) 94 (361.1) 58 (226.8)
5.0% 119 (455.3) 61 (238.4) 38 (151.9)

in parentheses. Results are presented for α = 0, 0.025, and 0.05. A zero initial guess
has been used. The (β1, β2) = (1, 0.5)-preconditioner shows a satisfactory and robust
convergence for this problem with irregularly varying wavenumbers. For α = 0.05 the
number of iterations increases only very slowly for increasing frequencies. With the
(β1, β2) = (1, 0.5)-preconditioner the CPU time is reduced by a factor of 3 compared to
the performance of the (β1, β2) = (0, 1)-preconditioner for the challenging problems.
The difference with the (β1, β2) = (1, 1) is less pronounced but still significant.

The real parts of the solutions at 20 Hz for α = 0 and α = 0.025 are presented in
Figures 11(b) and 11(c). The effect of damping of the solution is significant, as can be
deduced from these global pictures. However, in the actual geophysics applications,
some damping is present. Figure 11(c) may therefore be a more realistic solution for
the real application. An adaptation of the solution method presented to a variant
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of the Helmholtz problem in which the damping parameter α is varying locally is an
easy generalization in our preconditioner.

6. Conclusions. In this paper a complex Helmholtz preconditioner has been
proposed for handling indefinite Helmholtz problems in heterogeneous media. In the
preconditioner we advocate the use of a Helmholtz operator with a negative real
term, as in the original Helmholtz problem, plus a positive imaginary Helmholtz part.
Multigrid is proposed for approximately inverting the complex Helmholtz operator
in the preconditioner. As the original Helmholtz problems are defined on square do-
mains with structured grids (a common choice for many geophysical applications),
a geometric multigrid method based on cartesian grids can be defined for the com-
plex Helmholtz preconditioner. Extension of the geometric multigrid to the complex
Helmholtz operator is straightforward. We can employ very similar multigrid com-
ponents as those for the Laplacian, with some variation of the underrelaxation pa-
rameter in the point-wise Jacobi smoother, and an operator-dependent prolongation
operator to deal with highly varying wavenumbers. These components are validated
by Fourier analysis tools. The smallest size of the β2-parameter in front of the imag-
inary Helmholtz term in the preconditioner, for which the multigrid method can be
successfully employed, has been determined. After a parameter study all parameters
appearing in the method are fixed (i.e., β1 = 1, β2 = 0.5, ω = 0.5 in ω-JAC).

Bi-CGSTAB, preconditioned with a multigrid iteration for the complex Helm-
holtz operator, proves to be an efficient and robust iterative solution method to solve
heterogeneous high wavenumber Helmholtz problems. The applications ranged from
constant wavenumber to irregular heterogeneity structures in a medium. The multi-
grid components have been chosen such that the solution method is well parallelizable.
The method proposed and the corresponding analysis are easily generalized to three
dimensions. This is currently being done.
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