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1. Introduction

In this paper, we complete the global qualita-
tive analysis of a predator–prey system derived
from the Leslie–Gower type model, where the most
common mathematical form to express the Allee
effect in the prey growth function is considered;
see [Aguirre et al., 2014; González-Olivares et al.,
2006; González-Olivares et al., 2011]. The basis for
analyzing the dynamics of such complex ecological
or biomedical systems is the interactions between
two species, particularly the dynamical relation-
ship between predators and their prey [Li & Xiao,
2007]. From the classical Lotka–Volterra model,
several alternatives for modeling continuous time
consumer-resource interactions have been proposed
[Turchin, 2003]. In our paper, a predator–prey model
described by an autonomous two-dimensional dif-
ferential system is analyzed considering the fol-
lowing aspects: (1) the prey population is affected

by the Allee effect [Berec et al., 2007; Courchamp
et al., 1999]; (2) the functional response is linear
[Seo & Kot, 2008]; (3) the equation for predator is a
logistic-type growth function as in the Leslie–Gower
model [Aziz-Alaoui & Daher Okiye, 2003].

The main objective of the study in [González-
Olivares et al., 2011] was to describe the model
behavior and to establish the number of limit cycles
for the system under consideration. Such results are
quite significant for the analysis of most applied
mathematical models, thus facilitating the under-
standing of many real world oscillatory phenomena
in nature. The problem of determining conditions
which guarantee the uniqueness of a limit cycle or
the global stability of the unique positive equilib-
rium in predator–prey systems has been extensively
studied over the last decades. This question starts
with the work [Cheng, 1981] where it was proved for
the first time the uniqueness of a limit cycle for a
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specific predator–prey system with a Holling-type II
functional response using the symmetry of prey iso-
cline. It is well-known that if a unique unstable pos-
itive equilibrium exists in a compact region, then,
according to the Poincaré–Bendixon theorem, at
least one limit cycle must exist. On the other hand,
if the unique positive equilibrium of a predator–
prey system is locally stable but not hyperbolic,
there might be more than one limit cycle created
via multiple Hopf bifurcations [Chicone, 2006] and
the number of limit cycles must be established.
The studied system is defined in an open positive
invariant region and the Poincaré–Bendixon theo-
rem does not apply. Due to the existence of a hete-
roclinic curve determined by the equilibrium point
associated to the strong Allee effect, a subregion
in the phase plane is determined where two limit
cycles exist for certain parameter values, the inner-
most stable and the outermost unstable. Such result
has not been reported in previous papers and rep-
resents a significant difference with the Gause-type
predation models [González-Olivares et al., 2006].
In [González-Olivares et al., 2011], it was proved
also the existence of parameter subsets for which the
system can have: a cusp point (Bogdanov–Takens
bifurcation), homoclinic curves (homoclinic bifur-
cation), Hopf bifurcation and the existence of two
limit cycles, the innermost stable and the outermost
unstable, in inverse stability as they usually appear
in the Gause-type models. However, the qualita-
tive analysis of [González-Olivares et al., 2011] was
incomplete, since the global bifurcations of limit
cycles could not be studied properly by means of the
methods and techniques which were used earlier in
the qualitative theory of dynamical systems. Apply-
ing to the system new bifurcation methods and geo-
metric approaches developed in [Broer & Gaiko,
2010; Gaiko, 2003, 2011, 2012a, 2012b, 2012c, 2014,
2015, 2016, 2017; Gaiko et al., 2017], we complete
this qualitative analysis. In Sec. 2, we present sev-
eral predator–prey models which we considered ear-
lier in [Broer & Gaiko, 2010; Gaiko, 2016, 2017]
and will consider in this paper. In Sec. 3, we
give some basic facts on singular points and limit
cycles of planar dynamical systems. In Sec. 4, we
complete the global qualitative analysis of a quar-
tic dynamical system corresponding to the Leslie–
Gower system with the Allee effect which mod-
els the dynamics of the populations of predators
and their prey in a given ecological or biomedical
system.

2. Predator–Prey Models

In [Gaiko, 2016, 2017], we considered a quartic fam-
ily of planar vector fields corresponding to a ratio-
nal Holling-type dynamical system which models
the dynamics of the populations of predators and
their prey in a system which is a variation on the
classical Lotka–Volterra one. For the latter system
the change of the prey density per unit of time
per predator called the response function is propor-
tional to the prey density. This means that there is
no saturation of the predator when the amount of
available prey is large. However, it is more realis-
tic to consider a nonlinear and bounded response
function, and in fact different response functions
have been used in the literature to model the preda-
tor response; see [Bazykin, 1998; Broer et al., 2007;
Broer & Gaiko, 2010; Holling, 1965; Lamontagne
et al., 2008; Zhu et al., 2002].

For instance, in [Zhu et al., 2002], the following
predator–prey model has been studied:

ẋ = x(a − λx) − yp(x) (prey),

ẏ = −δy + yq(x) (predator).
(1)

The variables x > 0 and y > 0 denote the den-
sity of the prey and predator populations respec-
tively, while p(x) is a nonmonotonic response func-
tion given by

p(x) =
mx

αx2 + βx + 1
, (2)

where α, m are positive and where β > −2
√

α.
Observe that in the absence of predators, the num-
ber of prey increases according to a logistic growth
law. The coefficient a represents the intrinsic growth
rate of the prey, while λ > 0 is the rate of com-
petition or resource limitation of prey. The natu-
ral death rate of the predator is given by δ > 0.
In Gause’s model the function q(x) is given by
q(x) = cp(x), where c > 0 is the rate of conver-
sion between prey and predator [Zhu et al., 2002].

In [Broer et al., 2007; Broer & Gaiko, 2010], the
following family has been investigated:

ẋ = x

(
1 − λx − y

αx2 + βx + 1

)
,

ẏ = −y

(
δ + µy − x

αx2 + βx + 1

)
,

(3)

where α ≥ 0, β > −2
√

α, δ > 0, λ > 0, and µ ≥ 0
are parameters. Note that (3) is obtained from (1)
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by adding the term −µy2 to the second equation
and after scaling x and y, as well as the parameters
and the time t. In this way, competition has been
taken into account between predators for resources
other than prey. The non-negative coefficient µ is
the rate of competition amongst predators. Sys-
tems (1)–(3) represent predator–prey models with
generalized Holling response functions of type IV.

In [Lamontagne et al., 2008], the following
generalized Gause predator–prey system has been
considered:

ẋ = rx
(
1 − x

k

)
− yp(x),

ẏ = y(−d + cp(x)),
(4)

with a generalized Holling response function of
type III:

p(x) =
mx2

ax2 + bx + 1
. (5)

This system, where x > 0 and y > 0, has seven
parameters: the parameters a, c, d, k, m, r are pos-
itive and the parameter b can be negative or non-
negative. The parameters a, b, and m are fitting
parameters of response function. The parameter d
is the death rate of the predator while c is the effi-
ciency of the predator to convert prey into preda-
tors. The prey follows a logistic growth with a rate
r in the absence of predator. The environment has
a prey capacity determined by k.

The case b ≥ 0 has been studied earlier; see the
references in [Lamontagne et al., 2008]. The case
b < 0 is more interesting: it provides a model for
a functional response with limited group defence.
In opposition to the generalized Holling function
of type IV studied in [Broer et al., 2007; Broer &
Gaiko, 2010; Zhu et al., 2002], where the response
function tends to zero as the prey population tends
to infinity, the generalized function of type III tends
to a nonzero value as the prey population tends to
infinity. The functional response of type III with
b < 0 has a maximum at some point; see [Lamon-
tagne et al., 2008]. When studying the case b < 0,
one can find also a Bogdanov–Takens bifurcation
of codimension three which is an organizing center
for the bifurcation diagram of system (4) and (5)
[Lamontagne et al., 2008].

After scaling x and y, as well as the parame-
ters and the time t, this system can be reduced to a
system with only four parameters (α, β, δ, ρ) [Lam-
ontagne et al., 2008]:

ẋ = ρx(1 − x) − yp(x),

ẏ = y(−δ + p(x)),
(6)

where

p(x) =
x2

αx2 + βx + 1
. (7)

In [Gaiko, 2016, 2017], we studied the system

ẋ = x

(
1 − λx − xy

αx2 + βx + 1

)
,

ẏ = −y

(
δ + µy − x2

αx2 + βx + 1

)
,

(8)

where x > 0 and y > 0; α ≥ 0, −∞ < β < +∞,
δ > 0, λ > 0, and µ ≥ 0 are parameters.

The Leslie–Gower predator–prey model incor-
porating the Allee effect phenomenon on prey is
described by the Kolmogorov-type rational dynam-
ical system [González-Olivares et al., 2011]:

ẋ = x
(
r
(
1 − x

K

)
(x − m) − qy

)
(prey),

ẏ = sy
(
1 − y

nx

)
(predator),

(9)

where the parameters have the following biologi-
cal meanings: r and s represent the intrinsic prey
and predator growth rates, respectively; K is the
prey environment carrying capacity; m is the Allee
threshold or minimum of viable population; q is the
maximal per capita consumption rate, i.e. the max-
imum number of prey that can be eaten by a preda-
tor in each time unit; n is a measure of food quality
that the prey provides for conversion into predator
births.

System (9) can be written in the form of a
quartic dynamical system [González-Olivares et al.,
2011]:

ẋ = x2((1 − x)(x − m) − αy) ≡ P,

ẏ = y(βx − γy) ≡ Q.
(10)

Together with (10), we will also consider an auxil-
iary system (see [Bautin & Leontovich, 1990; Gaiko,
2003; Perko, 2002])

ẋ = P − δQ, ẏ = Q + δP, (11)

applying to these systems new bifurcation methods
and geometric approaches developed in [Broer &
Gaiko, 2010; Gaiko, 2003, 2011, 2012a, 2012b,
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2012c, 2014, 2015, 2016, 2017; Gaiko et al., 2017],
and completing the qualitative analysis of (9).

3. Basic Facts on Singular Points
and Limit Cycles

The study of singular points of system (9) [or (10)
and (11)] will use two Poincaré Index Theorems; see
[Bautin & Leontovich, 1990]. But first let us define
the singular point and its Poincaré Index.

Definition 3.1 [Bautin & Leontovich, 1990]. A sin-
gular point of the dynamical system

ẋ = P (x, y), ẏ = Q(x, y), (12)

where P (x, y) and Q(x, y) are continuous functions
(for example, polynomials), is a point at which the
right-hand sides of (12) simultaneously vanish.

Definition 3.2 [Bautin & Leontovich, 1990]. Let S
be a simple closed curve in the phase plane not
passing through a singular point of system (12)
and M be some point on S. If the point M goes
around the curve S in positive direction (counter-
clockwise) one time, then the vector coinciding with
the direction of a tangent to the trajectory pass-
ing through the point M is rotated through the
angle 2πj (j = 0,±1,±2, . . .). The integer j is
called the Poincaré Index of the closed curve S rel-
ative to the vector field of system (12) and has the
expression

j =
1
2π

∮
S

PdQ − QdP

P 2 + Q2
.

According to this definition, the index of a node
or a focus, or a center is equal to +1 and the index
of a saddle is −1.

Theorem 3.1 (First Poincaré Index Theorem)
[Bautin & Leontovich, 1990]. If N, Nf , Nc, and C
are respectively the number of nodes, foci, centers,
and saddles in a finite part of the phase plane and
N ′ and C ′ are the number of nodes and saddles at
infinity, then it is a valid formula

N + Nf + Nc + N ′ = C + C ′ + 1.

Theorem 3.2 (Second Poincaré Index Theorem)
[Bautin & Leontovich, 1990]. If all singular points
are simple, then along an isocline without multi-
ple points lying in a Poincaré hemisphere which is

obtained by a stereographic projection of the phase
plane, the singular points are distributed so that a
saddle is followed by a node or a focus, or a center
and vice versa. If two points are separated by the
equator of the Poincaré sphere, then a saddle will
be followed by a saddle again and a node or a focus,
or a center will be followed by a node or a focus, or
a center.

Consider polynomial system (12) in the vector
form

ẋ = f(x,µ), (13)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial
vector function).

Let us recall some basic facts concerning limit
cycles of (13). But first of all, let us state two funda-
mental theorems from theory of analytic functions
[Gaiko, 2003; Perko, 2002].

Theorem 3.3 (Weierstrass Preparation Theorem)
[Gaiko, 2003; Perko, 2002]. Let F (w, z) be an ana-
lytic in the neighborhood of the point (0, 0) function
satisfying the following conditions

F (0, 0) =
∂F (0, 0)

∂w
= · · · =

∂k−1F (0, 0)
∂k−1w

= 0;

∂kF (0, 0)
∂kw

�= 0.

Then in some neighborhood |w| < ε, |z| < δ of
the points (0, 0) the function F (w, z) can be repre-
sented as

F (w, z) = (wk + A1(z)wk−1 + · · · + Ak−1(z)w

+ Ak(z))Φ(w, z),

where Φ(w, z) is an analytic function not equal
to zero in the chosen neighborhood and A1(z), . . . ,
Ak(z) are analytic functions for |z| < δ.

From this theorem it follows that the equation
F (w, z) = 0 in a sufficiently small neighborhood of
the point (0, 0) is equivalent to the equation

wk + A1(z)wk−1 + · · · + Ak−1(z)w + Ak(z) = 0,

for which the left-hand side is a polynomial with
respect to w. Thus, the Weierstrass Preparation
Theorem reduces the local study of the general case
of implicit function w(z), defined by the equation
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F (w, z) = 0, to the case of implicit function, defined
by the algebraic equation with respect to w.

Theorem 3.4 (Implicit Function Theorem) [Gaiko,
2003; Perko, 2002]. Let F (w, z) be an analytic func-
tion in the neighborhood of the points (0, 0) and
F (0, 0) = 0, F ′

w(0, 0) �= 0.
Then there exist δ > 0 and ε > 0 such that

for any z satisfying the condition |z| < δ the equa-
tion F (w, z) = 0 has the only solution w = f(z)
satisfying the condition |f(z)| < ε. The function
f(z) is expanded into the series on positive integer
powers of z which converge for |z| < δ, i.e. it is a
single-valued analytic function of z which vanishes
at z = 0.

Assume that system (13) has a limit cycle

L0 : x = ϕ0(t)

of minimal period T0 at some parameter value µ =
µ0 ∈ Rn; see Fig. 1 [Gaiko, 2003; Perko, 2002].

Let l be the straight line normal to L0 at the
point p0 = ϕ0(0) and s be the coordinate along l
with s positive exterior of L0. It then follows from
the Implicit Function Theorem that there is a δ > 0
such that the Poincaré map h(s,µ) is defined and
analytic for |s| < δ and ‖µ − µ0‖ < δ, which is
a mapping from l to itself obtained by following
trajectories from one intersection of l to the next
[Gaiko, 2003; Perko, 2002]. Besides, the displace-
ment function for system (13) along the normal line
l to L0 is defined as the function

d(s,µ) = h(s,µ) − s.

In terms of the displacement function, a multi-
ple limit cycle can be defined as follows.

Definition 3.3 [Gaiko, 2003; Perko, 2002]. A limit
cycle L0 of (13) is a multiple limit cycle iff d(0,µ0) =
ds(0,µ0) = 0 and it is a simple limit cycle (or

hyperbolic limit cycle) if it is not a multiple limit
cycle; furthermore, L0 is a limit cycle of multiplic-
ity m iff

d(0,µ0) = ds(0,µ0) = · · · = d
(m−1)
s (0,µ0) = 0,

d
(m)
s (0,µ0) �= 0,

where ds(0,µ0) and d
(j)
s (0,µ0), j = 2, . . . ,m, are

partial derivatives of the displacement function
d(s,µ) with respect to s for s = 0 and µ = µ0.

Note that the multiplicity of L0 is independent
of the point p0 ∈ L0 through which we take the
normal line l.

Let us write down also the following formulas
which have already become classical ones and deter-
mine the derivatives of the displacement function
in terms of integrals of the vector field f along the
periodic orbit ϕ0(t) [Gaiko, 2003; Perko, 2002]:

ds(0,µ0) = exp
∫ T0

0
∇ · f(ϕ0(t),µ0)dt − 1

and

dµj (0,µ0) =
−ω0

‖f(ϕ0(0),µ0)‖

×
∫ T0

0
exp

(
−

∫ t

0
∇ · f(ϕ0(τ),µ0)dτ

)

× f ∧ fµj (ϕ0(t),µ0)dt

for j = 1, . . . , n, where ω0 = ±1 according to
whether L0 is positively or negatively oriented,
respectively, and where the wedge product of two
vectors x = (x1, x2) and y = (y1, y2) in R2 is
defined as

x ∧ y = x1y2 − x2y1.

Similar formulas for dss(0,µ0) and dsµj (0,µ0)
can be derived in terms of integrals of the vector

Fig. 1. The Poincaré return map in the neighborhood of a multiple limit cycle.
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field f and its first and second partial derivatives
along ϕ0(t).

Now we can formulate the Wintner–Perko Ter-
mination Principle [Perko, 2002] for polynomial
system (13).

Theorem 3.5 (Wintner–Perko Termination Prin-
ciple) [Perko, 2002]. Any one-parameter family of
multiplicity-m limit cycles of relatively prime poly-
nomial system (13) can be extended in a unique way
to a maximal one-parameter family of multiplicity-
m limit cycles of (13) which is either open or
cyclic.

If it is open, then it terminates either as the
parameter or the limit cycles become unbounded;
or, the family terminates either at a singular
point of (13), which is typically a fine focus of
multiplicity-m, or on a (compound) separatrix cycle
of (13) which is also typically of multiplicity-m.

The proof of this principle for general polyno-
mial system (13) with a vector parameter µ ∈ Rn

parallels the proof of the planar termination princi-
ple for the system

ẋ = P (x, y, λ),

ẏ = Q(x, y, λ)
(14)

with a single parameter λ ∈ R (see [Perko, 2002]),
since there is no loss of generality in assuming that
system (13) is parameterized by a single parame-
ter λ; i.e. we can assume that there exists an ana-
lytic mapping µ(λ) of R into Rn such that (13) can
be written as (14) and then we can repeat every-
thing, what had been done for system (14) in [Perko,
2002]. In particular, if λ is a field rotation parame-
ter of (14), the following Perko’s theorem on mono-
tonic families of limit cycles is valid; see [Perko,
2002].

Theorem 3.6 [Perko, 2002]. If L0 is a nonsingular
multiple limit cycle of (14) for λ = λ0, then L0

belongs to a one-parameter family of limit cycles
of (14); furthermore:

(1) if the multiplicity of L0 is odd, then the family
either expands or contracts monotonically as λ
increases through λ0;

(2) if the multiplicity of L0 is even, then L0 bifur-
cates into a stable and an unstable limit cycle
as λ varies from λ0 in one sense and L0 disap-
pears as λ varies from λ0 in the opposite sense;
i.e. there is a fold bifurcation at λ0.

4. Global Bifurcation Analysis

Consider system (10). This system has two invariant
straight lines: x = 0 (double) and y = 0. Its finite
singularities are determined by the algebraic system

x2((1 − x)(x − m) − αy) = 0,

y(βx − γy) = 0.
(15)

From (15), we have got: three singular points (0, 0),
(m, 0), (1, 0) (suppose that m < 1) and at most two
points defined by the system

(1 − x)(x − m) − αy = 0,

βx − γy = 0.
(16)

According to the Second Poincaré Index Theorem
(Theorem 3.2), the point (0, 0) is a double (saddle-
node), (m, 0) is a node, and (1, 0) is a saddle (for
m < 1); see also [González-Olivares et al., 2011].
In addition, a double singular point (saddle-node)
may appear in the first quadrant and bifurcate into
two singular points. If there exist exactly two simple
singular points in the open first quadrant, then the
singular point on the left with respect to the x-
axis is a saddle and the singular point on the right
is an anti-saddle [González-Olivares et al., 2011].
If a singular point is not in the first quadrant, in
consequence, it has no biological significance.

To study singular points of (10) at infinity, con-
sider the corresponding differential equation

dy

dx
=

y(βx − γy)
x2((1 − x)(x − m) − αy)

. (17)

Dividing the numerator and denominator of the
right-hand side of (17) by x4 (x �= 0) and denoting
y/x by u (as well as dy/dx), we will get the equation

u = 0, where u =
y

x
, (18)

for all infinite singularities of (17) except when
x = 0 (the “ends” of the y-axis); see [Bautin &
Leontovich, 1990; Gaiko, 2003]. For this special case
we can divide the numerator and denominator of
the right-hand side of (17) by y4 (y �= 0) denot-
ing x/y by v (as well as dx/dy) and consider the
equation

v4 = 0, where v =
x

y
. (19)

According to the Poincaré Index Theorems (The-
orems 3.1 and 3.2), Eqs. (18) and (19) give two

1850151-6
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singular points at infinity for (17): a simple node
on the “ends” of the x-axis and a quartic saddle-
node on the “ends” of the y-axis.

Using the obtained information on singular
points and applying a geometric approach devel-
oped in [Broer & Gaiko, 2010; Gaiko, 2003, 2011,
2012a, 2012b, 2012c, 2014, 2015, 2016, 2017; Gaiko
et al., 2017], we can study the limit cycle bifurca-
tions of system (10). The sense of this approach
consists of constructing canonical systems with field
rotation parameters by means of Erugin’s Two-
Isocline Method, using geometric properties of the
trajectories, and applying the Wintner–Perko Ter-
mination Principle connecting all local bifurcations
of limit cycles.

Our study will use some results obtained in
[González-Olivares et al., 2011]: in particular, the
results on the cyclicity of a singular point of (10).
However, it is surely not enough to have only these
results to prove the main theorem of this paper
concerning the maximum number of limit cycles of
system (10).

Applying the definition of a field rotation
parameter [Bautin & Leontovich, 1990; Gaiko, 2003;
Perko, 2002], i.e. a parameter which rotates the field
in one direction, to system (10), let us calculate the
corresponding determinants for the parameters α,
β, and γ, respectively:

∆α = PQ ′
α − QP ′

α = x2y2(βx − γy), (20)

∆β = PQ ′
β − QP ′

β

= x3y((1 − x)(x − m) − αy), (21)

∆γ = PQ ′
γ − QP ′

γ

= −x2y2((1 − x)(x − m) − αy). (22)

It follows from (20) that in the first quadrant the
sign of ∆α depends on the sign of βx − γy and
from (21) and (22) that the sign of ∆β or ∆γ

depends on the sign of (1 − x)(x − m) − α y on
increasing (or decreasing) the parameters α, β, and
γ, respectively.

Therefore, to study limit cycle bifurcations of
system (10), it makes sense together with (10) to
consider also an auxiliary system (11) with a field
rotation parameter δ for which

∆δ = P 2 + Q2 ≥ 0. (23)

System (11) is more general than (10), but the
introduced rotation parameter δ does not change

the location and the indexes of the finite singular-
ities of (10) and, as we will see below, does not
give additional limit cycles; see also [Broer & Gaiko,
2010; Gaiko, 2003, 2016, 2017]. Using system (11)
and applying Perko’s results [Perko, 2002], we will
prove the following theorem.

Theorem 4.1. The Leslie–Gower system with the
Allee effect (10) can have at most two limit cycles
surrounding one singular point.

Proof. In [González-Olivares et al., 2011], it was
proved that system (10) can have at least two limit
cycles. Let us prove now that this system has at
most two limit cycles. The proof is carried out
by contradiction applying Catastrophe Theory; see
[Gaiko, 2003; Perko, 2002].

Suppose that system (10) with two finite sin-
gularities in the first quadrant, a saddle S and an
anti-saddle A, has three limit cycles surrounding A.
Consider system (11) with four parameters: α, β, γ,
and δ (we can fix the parameter m fixing the posi-
tion of the node on the x-axis). The field rotation
parameter δ does not change the location and the
indexes of the finite singularities of (10) [Bautin &
Leontovich, 1990; Gaiko, 2003]. Besides, it is a
rough parameter. If we vary this parameter in one
sense, the smallest limit cycle will disappear in the
focus A (the Andronov–Hopf bifurcation) and two
other limit cycles will combine into a semi-stable
limit cycle which will then disappear in a “trajec-
tory concentration” surrounding A [Bautin & Leon-
tovich, 1990; Gaiko, 2003]. If we vary the parame-
ter δ in the opposite sense, the largest limit cycle
will disappear in a separatrix loop of the saddle S
and two others combining a semi-stable limit cycle
will also disappear in a “trajectory concentration”
[Bautin & Leontovich, 1990; Gaiko, 2003]. A possi-
bility of the appearance of an additional semi-stable
limit cycle surrounding A under the variation of δ,
as we will see now, can also be excluded.

Note that, if we vary the parameter δ in one
sense, two limit cycles of system (11) will combine
into a semi-stable (multiplicity-two) limit cycle; if
we vary this parameter in the opposite sense, we
will get another semi-stable (multiplicity-two) limit
cycle; and the inner limit cycle, which is between the
largest and the smallest ones, will be common for
the formed semi-stable cycles. Therefore, varying
the other parameters of (11), α, β, and γ, we will
obtain two fold bifurcation surfaces of multiplicity-
two limit cycles forming a cusp bifurcation surface

1850151-7
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Fig. 2. The cusp bifurcation surface.

of multiplicity-three limit cycles in the space of the
parameters α, β, γ, and δ; see Fig. 2, where C+

2
and C−

2 are the bifurcation curves of multiplicity-
two limit cycles [Gaiko, 2003; Perko, 2002].

The corresponding maximal one-parameter
family of multiplicity-three limit cycles cannot be
cyclic, otherwise there will be at least one point
corresponding to the limit cycle of multiplicity four
(or even higher) in the parameter space; see Fig. 3,
where C0

2, C1
2, and C2

2 are the bifurcation surfaces
of multiplicity-two limit cycles; C+

3 and C−
3 are the

bifurcation curves of multiplicity-three limit cycles;

Fig. 3. The swallow-tail bifurcation surface.

C4 is the bifurcation point of a multiplicity-four
limit cycle [Gaiko, 2003; Perko, 2002].

Extending the bifurcation curve of multiplicity-
four limit cycles through this point and parame-
terizing the corresponding maximal one-parameter
family of multiplicity-four limit cycles by the field
rotation parameter δ, according to Theorem 3.6, we
will get again two monotonic curves of multiplicity
three and one, respectively, which, by the Wintner–
Perko Termination Principle (Theorem 3.5), termi-
nate either at the point A or on a separatrix loop
surrounding this point. Since we know at least the
cyclicity of the singular point which is equal to two
(see [González-Olivares et al., 2011]), we have got a
contradiction with the Termination Principle (The-
orem 3.5); see Fig. 4, where C+

2 (C+
3 ) and C−

2 (C−
3 )

are the bifurcation surfaces of multiplicity-two (or
multiplicity-three) limit cycles; C3(C4) is the bifur-
cation curve of multiplicity-three (or multiplicity-
four) limit cycles [Gaiko, 2003; Perko, 2002].

If the maximal one-parameter family of
multiplicity-three limit cycles is not cyclic, using
the same Principle, this again contradicts the cyclic-
ity of A (see [González-Olivares et al., 2011]) not
admitting the multiplicity of limit cycles higher
than two.

On the same reasons, we can exclude a possibil-
ity of the appearance of an additional semi-stable
limit cycle surrounding A under the variation of δ.

Fig. 4. The bifurcation curve (one-parameter family) of
multiple limit cycles.

1850151-8
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Moreover, it also follows from the Termination Prin-
ciple that a separatrix loop cannot have the multi-
plicity (cyclicity) higher than two in this case.

Thus, we conclude that system (11) [and sys-
tem (10) as well] cannot have either a multiplicity-
three limit cycle or more than two limit cycles
surrounding a singular point which proves the
theorem. �

5. Conclusions

In this paper, we have completed the global bifur-
cation analysis of the Leslie–Gower system with
the Allee effect which models the dynamics of the
populations of predators and their prey in a given
ecological or biomedical system. Studying global
bifurcations of limit cycles, we have proved that
such a system can have at most two limit cycles
surrounding one singular point.

The mathematical tools used in this paper may
also be helpful in the qualitative analysis of any
two-dimensional model of species interactions in a
biological system, in particular, in the contexts of
conservation and biological control. Another line of
research could be directed, for instance, towards
studying the interaction of the Allee effect with ran-
dom environmental conditions such as alien species
invasions or other catastrophic events, which may
increase the amplitude of population fluctuations
and even drive a population to extinction; see
[Aguirre et al., 2014; González-Olivares et al., 2006;
González-Olivares et al., 2011] and the references
therein.
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