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Abstract

We present an implementation of Two-Level Preconditioned Conju-
gate Gradient Method for the GPU. We investigate a Truncated Neu-
mann Series based preconditioner in combination with deflation and
compare it with Block Incomplete Cholesky schemes. This combina-
tion exhibits fine-grain parallelism and hence we gain considerably in
execution time. It’s numerical performance is also comparable to the
Block Incomplete Cholesky approach. Our method provides a speedup
of up to 16 times for a system of one million unknowns when compared
to an optimized implementation on the CPU.

1 Introduction

Multi-phase flows occur when different fluids interact. These fluids have
different properties, e.g., in densities. To simulate two-phase flow we use
the Incompressible Navier Stokes Equation. A representative example of
such a flow could be thought of as an air bubble rising in water. Such phe-
nomena frequently arise in physical processes like oil refineries and nuclear
reactors and understanding them can affect the design and efficiency of such
processes.

1.1 Motivation

Our work is motivated by the Mass-Conserving Level Set approach (8) to
solve the Navier Stokes equations for multi-phase flow. The most time con-
suming step in this approach is the solution of the (discretized) pressure-
correction equation, which is a poisson equation with discontinuous coeffi-
cients.

For our research we choose a model problem with an interface layer
that divides a square domain. More details are provided in Section 2. The
discretized pressure-correction equation, takes the form of a linear system

Ax = b, A ∈ R
N×N , N ∈ N (1)

where N is the number of degrees of freedom. A is symmetric positive
definite (SPD). The entries of this matrix depend on the densities of the
fluids involved. So, e.g., if we consider a gas and liquid mixture then their
densities have a ratio of the order of 103. This leads to a large condition
number κ† for the matrix A, and slow convergence.

†κ = λN

λ1

, where 0 < λ1 ≤ λ2... ≤ λN are eigenvalues of the matrix A arranged in
ascending order
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1.2 Focus of this research

The convergence for the system Ax = b mentioned in the previous section is
slow when an iterative method like the Conjugate Gradient (CG) is applied.
To achieve faster convergence, the linear system is preconditioned:

M−1Ax = M−1b, (2)

where the matrix M is symmetric and positive. The choice of M is such
that the operation M−1y, for some vector y, is computationally cheap and M
can also be stored efficiently. We first consider Block Incomplete Cholesky
Precondtioner which is an established method and provides some level of
parallelism. However, due to the block structure of the preconditioner and
also because of small eigenvalues (in the matrix A) the preconditioned matrix
M−1A still has a high condition number. In order to further reduce it
we have to apply a second level of preconditioning called deflation (10).
Deflation removes the smaller eigenvalues so that the condition number of
the matrix M−1A is reduced. For more details we refer the interested reader
to (23).

For the GPU, however, Block Incomplete Cholesky preconditioning is not
the optimal choice. It is inherently sequential in every block. The amount of
data-parallelism is limited by the number of blocks. However, increasing the
number of blocks degrades the effectiveness of the preconditioner. Through
this research we aim to find preconditioning schemes that offer fine-grain
parallelism. Hence they would be better suited to the GPU and at the same
time should prove effective in bringing down the condition number of M−1A.
We compare the schemes we have developed with Block-Incomplete Cholesky
(Block-IC) Preconditioners, as a benchmark to check the quality of our
preconditioning schemes. The numerical performance of the preconditioners
we introduce in this paper comes close to it’s Block-IC counterparts for our
model problem and they also offer more parallelism for the GPU.

1.3 Related work

With the advent of CUDA in 2007 scientific computing, it became easier to
develop for the NVIDIA GPU platform. Some of the earliest advances into
many core computing had to do otherwise (6).

Developing with CUDA had its caveats and it required an understanding
of the way applications are executed on the GPU hardware (22) to get the
maximum performance and parallelism promised by a GPU. This challenge
was duly taken up by the scientific community. In particular for iterative
methods the GPUs were proven to be extremely useful as suggested in a
number of earlier works ((15), (18), (19), (20) and (14)).

There have been some previous works that have explored preconditioners
with similar properties and we provide a brief overview in this section. In (1),

2



a highly parallelizable preconditioner was introduced that was specifically
designed for a Poisson type problem. Our experience with this precondi-
tioner tells us that it is not an effective preconditioner for ill-conditioned
matrices, though it works very well for smooth Poisson problems. The pre-
conditioning technique we introduce in this paper is able to overcome this
limitation. Comparisons with existing schemes (implemented on both CPU
and GPU) establish its relevance to achieve convergence quickly and accu-
rately. We discuss this preconditioning in more detail in Section 3.3.

The preconditioning technique mentioned in (11), utilizes the same idea
as presented in (1) albeit with a relaxation factor. In (11) the authors use
the Neumann Series approximation to devise a new preconditioner with the
same focus i.e. to adapt the preconditioning techniques for the many-core
platform.

In (12), the authors used an LU decomposition based preconditioner
with fill-in, reordered using multi-coloring. They decide in advance on the
sparsity pattern of the incomplete factorization based on the matrix power
|A|p+1 and it’s multi-coloring permutation. In contrast, our approach is
based on the strictly lower triangular part of the scaled version of the coef-
ficient matrix A. The scaling is applied once and can be done in parallel so
the cost is minimal.

This paper is organized as follows: in the next section we present a brief
discussion of the discretization approach used to construct the matrix A.
A brief overview of the preconditioning schemes and their features can be
found in Section 3. We discuss the approach of second level preconditioning
in Section 4. In Section 5 we list the Conjugate Gradient Algorithm with
Preconditioning and Deflation. Furthermore we comment on two different
implementation methods for this method in Section 6. In Section 7 we
present our results and we end with a discussion in Section 8.

2 Problem Definition

In this section we present the test problem used to evaluate the different
algorithms.

2.1 Test Problem

The discretized pressure-correction equation for a 2-D square grid (n × n)
takes the form of 5-point Poisson type matrix for our method (as mentioned
in Section 1.1). One set of diagonals have offsets ±1 and the other two have
offsets of ±n with respect to the main diagonal. For a system with only one
phase, the matrix would have the stencil, [−1, − 1, 4, − 1, − 1] for an
inner cell.

However, with the introduction of multiple phases we see a jump in the
coefficient values at the interface. This jump is also visible in the eigenval-

3



0 50 100 150 200 250
10

−6

10
−4

10
−2

10
0

10
2

eigenvalues

m
ag

ni
tu

de

 

 

two−phase matrix single phase matrix

Figure 1: 2D grid (16 × 16) with 256 un-
knowns. Jump at the Interface due to
density contrast.

Figure 2: Two phase Flow
Computational Model

Figure 3: Unit Square with
boundary conditions.

Figure 4: Discretized Unit Square
with Interface

ues. To show this we consider the simple case of a 2-D grid and plot the
eigenvalues in Figure 1. The jump results from the density contrast of the
two fluids. This jump in eigenvalues leads to a large condition number, κ.

The computational domain can be pictured as in Figure 2. It has two
fluids with a high density contrast and appropriate boundary conditions.
We define a unit square as our domain (Figure 3) and an interface at the
middle of this square (Figure 4).

2.2 Solution of the Discrete System

After making the coefficient matrix using the stencils, we solve the resulting
system with an iterative method. We define a desired accuracy of the solu-
tion we wish to achieve. The iterative method refines the solution vector x
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at every step until it reaches a desired norm of the residual

‖ rk ‖2≤‖ b ‖2 ǫ, (3)

where rk is the residual at the k-th step, b‡ is the right-hand side and ǫ is
the tolerance. In our experiments we choose ǫ = 10−6. We measure the
accuracy of our results using the relative error norm of the solution. It is
defined as the difference of the computed solution and the exact§ solution,

‖ xexact − xk ‖2

‖ xexact ‖2
, (4)

where xk is the solution computed by the iterative method at the kth step
of the iteration and xexact is the exact solution. The initial guess (x0) is
a random vector to avoid artificially fast convergence due to a smooth so-
lution. The ill-conditioned two-phase matrix requires that we augment the
Preconditioned Conjugate Gradient method with a second level precondi-
tioner. This is essential to achieve reasonable performance of the iterative
solver. This technique of second level preconditioning, called Deflation, was
investigated in detail in (5).

It is essential to mention here that our simple model can be easily ex-
tended to a 3D model since then the only change is to the coefficient matrix
where the number of non-zeros in each row of A increases. More diagonals
are added with larger offsets. For example for a 7-point stencil in 3D we
can have two more diagonals at nx × ny offsets if the grid dimensions are
nx × ny × nz.

For the realistic problem of bubbly flow we consider the domain being
composed of air bubbles rising in water. The coefficient matrix for this
problem has similar properties as defined in Section 1.1. Only now the
interfaces are not as clear as in the model problem shown in Figure 2. Instead
there would be spheres/circles cutting a cell partially. To formulate the
matrix A for such a multi-bubble/multi-phase case, suitable approaches (cut
cell, weighted averaged) can be used as suggested in (8).

3 Preconditioning Schemes

In this section we first discuss standard preconditioning schemes for matrix
A when using an iterative method like Conjugate Gradient. Further, we
provide details of the preconditioning schemes that we have developed.

‡b = Axexact
§The exact solution is generated using the cosine function xexact(i) = cos(i−1), where

i = 1...N . N is the number of unknowns.
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Figure 5: Block-IC block structure. Elements excluded from a 8× 8 grid for
a block size of 2n = 16.

3.1 Block Incomplete Cholesky preconditioning

We consider an adapted incomplete Cholesky decomposition: A = LD−1LT−
R where the elements of the lower triangular matrix L and diagonal matrix
D satisfy the following rules:

1. lij = 0 ∀ (i, j) where aij = 0 i > j,

2. lii = dii,

3. (LD−1LT )ij = aij ∀ (i, j) where aij 6= 0 i ≥ j.

In order to make blocks for the Block-Incomplete Cholesky approach we first
apply the block structure on the matrix A. In Figure 5 we show how some
of the elements belonging to the 5-point Poisson type matrix are dropped
when a block incomplete scheme is applied to make the preconditioner for
A. The red colored dots are the elements that are dropped since they lie
outside the blocks. With this A we make the L as suggested in (13).

In each iteration we have to compute y from

y = M−1
BICr, where MBIC = LD−1LT . (5)

This is done by doing forward substitution followed by diagonal scaling and
then backward substitution. The number of blocks is N/g, where g is the
size of the blocks. Within a block all calculations are sequential. However,
each block forms a system that can be solved independently of other blocks.
Hence they can be solved in parallel.

The parallelism offered by Block-IC is limited to the number of blocks.
In order to increase the number of parallel operations we must decrease the
block size, g. However, doing this would lead to more loss of information,
and consequently, delayed convergence. So, we must think of alternatives.
In this paper the Block-IC Preconditioners are characterized by their block
size. We denote it by a number in brackets e.g. blkic(8n) or M−1

Blk−IC(8n).
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Here 8n is the block-size so for a matrix A with N = n×n unknowns, hence
the number of blocks is n

8 .

3.2 Incomplete Poisson preconditioning

In (1), a new kind of incomplete preconditioning is presented. The precon-
ditioner is based on a splitting of the coefficient matrix A using it’s lower
triangular part L and the diagonal D,

A = L + D + LT . (6)

Specifically the preconditioner is defined as,

M−1
IP = (I − LD−1)(I − D−1LT ), (7)

where L is the strictly lower triangular part of A and D is the diagonal
matrix containing diagonal elements of A. The arrangement of the terms
in (7) seems unusual (transpose terms after non-transpose terms) but the
authors use this expression in their work. After calculation of the entries of
M−1, the values that are below a certain threshold value are dropped, which
results in an incomplete decomposition that is applied as the preconditioner.
As this preconditioner was used for a Poisson type problem, the authors call
it the Incomplete Poisson (IP) preconditioner. A detailed heuristic analysis
about the effectiveness of this preconditioning technique can be found in (1).
The main advantage of this technique is that it (Equation (5)) is reduced
to sparse matrix vector products¶ which have been heavily optimized for
many-core platforms (7). However, this algorithm if used in the form as
presented in the original publication gives slow convergence for a two-phase
matrix. It must be used with the scaled versions of A, x and b.

Ã = D− 1

2 AD− 1

2 . (8)

x̃ = D
1

2 x. (9)

b̃ = D− 1

2 b. (10)

In such a setting the results are much better. We call this improvement
Incomplete Poisson preconditioning with scaling. This technique can be
further improved as we show in the next section.

3.3 Neumann Series based preconditioning

Building up on the improvements we found in the previous section for In-
complete Poisson Preconditioning we now define the preconditioning matrix,
M as

M = (I + L̃)(I + L̃T ), (11)

¶M−1

IP is stored just like A in DIA format
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where L̃ is the strictly lower triangular part of Ã as mentioned in (8). In
order to calculate M−1 we use the Neumann Series of (I + L̃) and (I + L̃T ).
This is defined as

(I + L̃)−1
≅ I − L̃ + L̃2 − L̃3 + · · · . (12)

The series converges if
‖ L̃ ‖∞< 1. (13)

This is true for our problem and hence the Neumann Series is a valid choice
for approximating the inverse of (I + L̃). So we can redefine M−1 as

M−1 = (I − L̃T + · · · )(I − L̃ + · · · ) (14)

For making our preconditioners we truncate the series (12) after 1 or 2 terms.
We refer to these as the Neu1 and Neu2 Preconditioners. Note that

M−1
Neu1 = (I − L̃T )(I − L̃) (15)

and

M−1
Neu2 = (I − L̃T + (L̃T )2)(I − L̃ + L̃2). (16)

We define K = (I − L̃) for (15) and K = (I − L̃ + L̃2) for (16). Note
that the order of terms (transposed and non-transposed) is as expected. It
appears that M−1

Neu1 and M−1
IPScal have approximately the same convergence

behavior. M−1
Neu1 has the same number of operations per application when

compared to Incomplete Poisson and Block-IC variants. M−1
Neu2, which has

another higher order term in K has 2 times as many.
For Incomplete Poisson, we store M−1

IP one time (similar to A or Ã) and
use it over and over again in the iteration for the operation M−1r. Since
M−1 has the same sparsity structure as A (5 diagonals). Total computation
cost of M−1r is 10N operations which is the same as for Ax.

For the preconditioner as given by (15) we calculate KT Kx by term‖

in every iteration. Every term in the expansion of M−1 = KT K can be
(roughly) computed at the cost of one Lx operation. This is around 2N
multiplications and N additions.

3.4 Eigenvalue Spectrum Comparison of different precondi-

tioning schemes

In this section we show how the eigenvalue spectrum changes for different
preconditioning schemes. The plots are for a 2-D grid with N = 4096
unknowns arranged in an n×n grid where n = 64. The contrast in densities
is 1000 : 1. Condition numbers for the different preconditioners applied to
this matrix are listed in Table 1.
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Preconditioning Scheme Condition Number for (M−1A or M−1Ã)

Block-IC (blocksize=2n) 2.50e+03

Block-IC (blocksize=4n) 1.93e+03

Block-IC (blocksize=8n) 1.60e+03

IP (without scaling) 2.97e+06

IP (with scaling) 2.68e+03

Truncated Neumann(Neu1) 2.66e+03

Truncated Neumann(Neu1) 1.74e+03

Table 1: Condition Numbers after Preconditioning. Condition number of
A = 9.68e + 03.

In each of the plots of Figure 6 the eigenvalues of A and the eigenvalues of
the preconditioned versions M−1A are plotted. The eigenvalues of A show
a jump due to the contrast in densities. All preconditioners are efficient
except for IP without scaling (M−1

IP ). IP with scaling (M−1
IPScal) performs

comparable to M−1
Neu1. The Block Incomplete Cholesky preconditioners are

successful in bringing most eigenvalues to 1 which also brings down the
condition number, κ. Note that κ decreases as the block size increases. The
Neumann type preconditioning schemes perform similar to Block-IC in these
respects, with the second type (with K = I − L + L2) performing as good
as Block-IC(8n). For the Truncated Neumann Series preconditioners we
always use the diagonally scaled version of A. For Block-IC and Truncated
Neumann Series based preconditioners we provide a separate zoom to show
the effect of preconditioner on smaller eigenvalues.

4 Deflation

To improve the convergence of our method we also use a second level of pre-
conditioning. Deflation aims to remove the remaining bad eigenvalues from
the preconditioned matrix, M−1A or M−1Ã. This operation increases the
convergence rate of the Preconditioned Conjugate Gradient (PCG) method.

If we assume

P = I − AQ,Q = ZE−1ZT , E = ZT AZ, (17)

where E ∈ R
k×k is the invertible Galerkin Matrix, Q ∈ R

n×n is the cor-
rection Matrix, and P ∈ R

n×n is the deflation operator. Z is the so-called
’deflation-subspace matrix’ whose k columns are called ’deflation’ vectors

‖KT Kx = (I − LT )y, where y = (I − L)x
Number of operations = (2N+2N)[multiplications] + (4N)[additions]
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or ’projection’ vectors. The linear system Ax = b can then be solved by
employing the splitting

x = (I − P T )x + P T x ⇔ x = Qb + P T x (18)

⇔ Ax = AQb + AP T x (19)

⇔ b = AQb + PAx (20)

⇔ Pb = PAx. (21)

The x at the end of the expression is not necessarily a solution of the
original linear system, since it might contain components of the null space of
PA, N (PA). Therefore this ’deflated’ solution is denoted as x̂ rather than
x. The deflated system is now

PAx̂ = Pb. (22)

4.1 Deflated Preconditioned Conjugate Gradient Method

The deflated preconditioned version of the Conjugate Gradient Method can
now be presented. The deflated system (22) can be solved using a symmetric
positive definite (SPD) preconditioner, M−1. We therefore seek a solution
of

M−1PAx̂ = M−1Pb. (23)

The resulting method is called the Deflated Preconditioned Conjugate Gra-
dient (DPCG) method (details in (23)).

We choose Sub-domain Deflation and use piecewise constant deflation
vectors. We make stripe-wise deflation vectors (see Figure 9) unlike the
block deflation vectors suggested in (5). These vectors lead to a regular
structure for AZ and, therefore, an efficient storage of AZ.

5 Two Level Preconditioned Conjugate Gradient

-Implementation

In Algorithm 1 we list out the steps involved in a typical implementation
of the Deflated Preconditioned Conjugate Gradient method. We follow this
implementation in writing out the code for GPU and CPU.

The deflation operation ŵj := PApj is broken into the following steps:

1. Set a1 = ZT pj.

2. Solve Ea2 = a1.

3. Set a3 = AZa2.

4. Set wj = pj − a3.

11



Algorithm 1 Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b − Ax0 and r̂0 = Pr0, Solve My0 =
r̂0 and set p0 := y0.

2: for j:=0,..., until convergence do

3: ŵj := PApj

4: αj :=
(r̂j ,yj)
(pj ,ŵj)

5: x̂j+1 := x̂j + αjpj

6: r̂j+1 := r̂j − αjŵj

7: Solve Myj+1 = r̂j+1

8: βj :=
(r̂j+1,yj+1)

(r̂j ,yj)

9: pj+1 := yj+1 + βjpj

10: end for

11: xit := Qb + P T xj+1

Step 2 can be solved in two different ways as we will see in Section 7. The
kernel for step 1 is a sum operation. Steps 3 and 4 can be done by one
kernel. Given the storage format we choose for AZ these operations reduce
to similar number of operations, memory access pattern and performance as
the sparse matrix vector product Ax.

5.1 Storage of the matrix AZ

The structure of the matrix AZ if stored as an N × d matrix, where d is the
number of domains/deflation vectors, can be seen in Figure 7. In Figure 7
to 9 it must be noted that d = 2 × n here and N = n × n = 64, n = 8.
The AZ matrix is formed by multiplying the Z matrix (a part of which is
shown in the adjoining figure of matrix AZ in Figure 7) with the coefficient
matrix, A. The colored boxes indicate non-zero elements in AZ. They have
been color coded to provide reference for how they are stored in the compact
form. The red elements are in the same space as the deflation vector. The
green elements result from the horizontal fill-in and the blue elements result
from the vertical fill-in. The arrangement of the deflation vectors (on the
grid) is shown in Figure 9. Each ellipse corresponds to the non-zero part
of the corresponding deflation vector in matrix Z. The trick to store AZ
in an efficient way (for the GPU) is to make sure that memory accesses are
ordered. For this we need to have a look at how the operation a3 = AZa2

works, where a2 is a d×1 vector. For each element of the resulting vector a3

we need an element from at most 5 different columns of the AZ matrix. Now
it must be recalled that in case of A multiplied with x we have 5 elements
of A in a single row multiplied with 5 elements of x as detailed in (7). So
we start looking at the different colored elements and group them so that
the access pattern to calculate each element of a3 is similar to the Sparse-
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Figure 7: Parts of Z and AZ matrix.
Number of Deflation Vectors =2n.

Figure 8: AZ matrix after
compression.

Figure 9: Deflation Vectors for
the 8 × 8 grid.

Matrix Vector Product operation. Wherever there is no element in AZ we
can store a zero. So writing out all the red elements is trivial as they are N
in number. Similarly the blue elements can also be written in a row. Only
they would have an offset at the beginning or the end that must be padded
with zeros in order to make them N entries long.

For the green elements we look at each of the columns in which they are
present. We store one set of green non-zeros which correspond to the left
of the domain in the second row of the data structure shown in Figure 8
and the other set is stored in the 4th row. Thus in the compacted form the
N × d matrix AZ can be stored in 5N elements as illustrated in Figure 8.

Stored in such a way the AZ matrix can be used to do faster calculation
of matrix vector products within the iteration. The golden arrows in Figure
8 show how each thread on the GPU can compute one element when the
operation AZa2 is performed where a2 is a d × 1 vector. The black arrows
show the accesses done by multiple threads. This is similar to the DIA
format of storage and calculating Sparse Matrix Vector Product as suggested
in (7).

Other than deflation and preconditioning the algorithm involves Sparse
Matrix Vector Products (SpMVs), Dot Products, Saxpy’s etc. These opera-
tions form the building blocks that must be optimized for a parallel/many-
core version of the code. For standard operations like dot products, norms,
daxpys we use the CUBLAS library on the GPU and ATLAS library on the

13



(a) CPU (b) GPU

Figure 10: Setup+Initialization Time as a percentage of the total time
for triangular solve approach across different sizes of deflation vectors for
DPCG.

CPU.

6 GPU Implementation of Deflation

Since we are working with a 5-point stencil we have a regular sparse matrix.
We store the matrix in the Diagonal (DIA) format and we follow the imple-
mentation as detailed in (7). We also managed to store the matrix AZ in a
similar format. The details can be found in (9).

Other operations include solving the system E−1x = b which can be
solved in two ways. Here E is the Galerkin Matrix given by E = ZTAZ.

1. Calculating E−1 explicitly so that the E−1b becomes a dense matrix
vector product which can be calculated using the MAGMA BLAS
library for the GPU.

2. Using the dpotrs∗∗ and dpotrf †† functions to solve the system Ex = b
on the CPU using an optimized BLAS library.

In the second method we have to do a host-to-device transfer and back in ev-

ery iteration. This adversely affects the run-time of the complete algorithm
when we consider the GPU implementation.

In the first method calculation of E−1 (which is only done once in the
setup phase) becomes prohibitively expensive (almost 100%) as the number
of unknowns increases. In Figure 10 we see how the time for setup (for the
triangular solve approach using dpotrs and dpotrf ) stays below 10% for the
CPU while for the GPU it scales with the number of deflation vectors.

∗∗dpotrs solves a system of linear equations Ax = B with a symmetric positive definite
matrix A using the Cholesky factorization A = UT U or A = LLT computed by dpotrf

††dpotrf computes the Cholesky factorization of a real symmetric positive definite matrix
A.

14



(a) with preconditioning only (b) with deflation and preconditioning

Figure 11: convergence rate variation with two levels of preconditioning.

7 Numerical Results

In this section we present the results for the preconditioning methods we
propose compared with some well known preconditioners. We comment on
the numerical performance of the preconditioner and further present results
on its ability to exploit the parallel computation power of the GPU.

7.1 Comparing Preconditioning Schemes

We first demonstrate with MATLAB implementations of our DPCG algo-
rithm, how the two levels of preconditioning incrementally work at reducing
the number of iterations it takes for the Conjugate Gradient Method to con-
verge. The experiments are done for three different 2 dimensional grids with
sizes 16 × 16, 32 × 32 and 64 × 64. The ratio of densities for the two fluids
modeled is 103. Figure 11 shows how the convergence rate (measured in
terms of number of iterations) varies with different preconditioners for the
CG method. We note that the Neumann type Preconditioners denoted by
Neu1 and Neu2 are comparable to the Block-IC approaches with block sizes
2n (blkic(2n)) and 8n (blkic(8n)). We have not shown the results for plain
Incomplete Poisson preconditioning (without scaling) here since they are at
least 3 times higher than the diagonal preconditioning results. In Figure 11
we also notice how deflation effectively halves the number of iterations it
requires to converge.

7.2 Experiments on the GPU

We performed our results on the hardware available with the Delft Institute
of Applied Mathematics.
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• For the CPU version of the code we used a single core of Q9550 @ 2.83
Ghz with 6MB L1 cache and 8 GB main memory.

• For the GPU version we used a NVIDIA Tesla(Fermi) C2070 with 6GB
memory.

The time we report for our implementations is the total time it takes to
complete k iterations (excluding the setup time) required for convergence.
A single iteration involves steps 2 to 10 in Algorithm 1. In our results,
speedup is measured as a ratio of the time taken to complete k iterations
(of the DPCG method) on the two different architectures,

Speedup =
kCPU

kGPU

(24)

The setup phase includes the following operations

1. Assigning space to variables required for temporary storage during the
iterations.

2. Making matrix AZ.

3. Making matrix E.

4. Populating x, b.

5. Doing the operations as specified in the first line of Algorithm 1 in
Section 5.

We kept the setup time out of our results since we had two alternate ap-
proaches for handling the operation Ea2 = a1 as mentioned in Section 6.
This way it is easier to see that explicit inverse calculation could be beneficial
for speedup whereas the triangular solve is not.

The problem description is as described in Section 2. The stopping
criteria is defined at ǫ = 10−6. For deflation we have used 2n deflation
vectors. The number of unknowns is N , where N = n × n. The CPU
version of the code uses optimized BLAS library ATLAS and is compiled
with −O3 optimization flags. The GPU version uses MAGAMABLAS for
some of the operations like daxpy, dcopy, ddot etc. For the triangular solve
every step we use a MAGMABLAS dpotrs function every iteration after
having used dpotrf once before entering the iteration loop. This function
is executed in co-operation with the CPU.

In Figure 12 we see that the speedup values for all schemes stay more
or less constant. This is because in these cases the largest part of the time
for the iteration is spent in the highly sequential Block Incomplete Cholesky
Preconditioning on the GPU. The speedup increases with increasing problem
size since more and more parallelism (fine-grain) is exposed.

In Figure 13 and 14 we note that:
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Figure 12: Comparison of Explicit versus triangular solve strategy for
DPCG. Block-IC Preconditioning with 2n, 4n and 8n block sizes.

Figure 13: Comparison of Explicit
versus triangular solve strategy for
DPCG. Incomplete Poisson Pre-
conditioning (with and without
scaling).

Figure 14: Comparison of Explicit
versus triangular solve strategy
for DPCG. Neumann Series based
Preconditioners M−1 = KT K.

1. For Incomplete Poisson Schemes with dpotrs and dpotrf based calcu-
lation of E−1a1 the speedup is comparable to the results for the choice
where E−1 is explicitly calculated.

2. Using explicit E−1 calculation combined with Incomplete Poisson(IP),
and both the variants of Truncated Neumann Series based precondi-
tioners (M−1

Neu1/M
−1
Neu2), we observe a factor 4 increase in speed with

respect to the triangular solve solve approach using dpotrs and dpotrf.

A comparison of how the wall-clock times for the different precondition-
ing algorithms vary for the Deflated Preconditioned Conjugate Gradient
Method is presented in Figure 15. Finally in Figure 16 we present the num-
ber of iterations required for convergence for the different preconditioning
schemes considered in this paper. It can be noticed that the second type of
Neumann Series based Preconditioner (with K = (I − L + L2) lies between
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Figure 15: Deflated Precondi-
tioned Conjugate Gradient. Wall-
Clock Times for a 1024 × 1024
grid. 2n deflation vectors. Stop-
ping Criteria 10e − 06.

Figure 16: Deflated Precondi-
tioned Conjugate Gradient. Iter-
ations required for convergence.

the Block-IC scheme with block sizes 4n and 8n.

8 Conclusions and Future work

We have shown how two level preconditioning can be adapted to the GPU
for computational efficiency. In order to achieve this we have investigated
preconditioners that are suited to the GPU. At the same time we have made
new data structures in order to optimize deflation operations.

Through our results we demonstrate that the combination of Truncated
Neumann based preconditioning and deflation proves to be computation-
ally efficient on the GPU. At the same time it’s numerical performance is
also comparable to the established method of Block-Incomplete Cholesky
Preconditioning.

We have also evaluated two different approaches of implementing the
deflation step. From the model problem we have learned that the choice of
implementing deflation method could be crucial in the overall run-time of
the method.

Using this knowledge we are now working on model problems with bub-
bles instead of simple interfaces. With these geometries we can use the
Level-Set Sub-domain based deflation vectors to capture and eliminate small
eigenvalues with considerably less deflation vectors. This way we can use the
explicit inverse calculation for E and have double-digit speedups for larger
problems.
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