2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

3D bubbly flow simulation on the GPU - Iterative Solution of a linear system using
sub-domain and level-set deflation

Rohit Gupta
DIAM, Faculty of EEMCS
Delft University of Technology
Delft, The Netherlands
rohit.gupta@tudelft.nl

Abstract—Solving an ill-conditioned linear system with a
two level preconditioned Conjugate Gradient method on the
GPU presents many options. The viability of these options
is studied for different bubbly flow problems. On the basis
of experiments conducted, we propose strategies that make
our approach computationally suitable. We use the Truncated
Neumann series based preconditioning scheme in combination
with Deflation for implementing the two-level preconditioned
Conjugate Gradient method and test different configurations
on a unit cube with varying number of bubbles. Our results
exhibit up to an order of magnitude speedup on the GPU.
Our preconditioning scheme combined with deflation proves
competitive (in terms of computation time and convergence)
when compared to deflation with Incomplete Cholesky precon-
ditioning.

I. INTRODUCTION

In our research we model two-phase flow using the Navier
Stokes equation which we solve using the Mass conserving
Level-Set method. At every time-step of the solution of these
equations we are confronted with the pressure-correction
equation which is discretized and the resulting linear system
(1) is solved. It is given by,

Az =b, AcRV*N N eN, (1)
3

where N n° is the number of degrees of freedom
and n is the number of grid points in every coordinate
direction. This linear system can be very large, sparse and
symmetric positive semi-definite (SPSD). Therefore we use
the method of conjugate gradients (CG) to solve it. System
(1) is highly ill-conditioned due to jumps in the density of
the different mediums. Consequently CG can take the bulk
of computing time. Hence, preconditioning is required to
accelerate convergence. We precondition CG at two levels.

In our research we focus on computationally ’speeding-
up’ the solution of this system using GPUs.

A. Focus of this work

We have been investigating, [1], the idea of Two Level
Preconditioned Conjugate Gradient method on GPUs start-
ing with a simple problem and testing our preconditioning
schemes and deflation on it. We have found that it is possible

1066-6192/12 $26.00 © 2012 IEEE
DOI 10.1109/PDP.2013.58

Martin B. van Gijzen
DIAM, Faculty of EEMCS
Delft University of Technology
Delft, The Netherlands
m.b.vangijzen@tudelft.nl

359

Kees Vuik
DIAM, Faculty of EEMCS
Delft University of Technology
Delft, The Netherlands
cvuik@tudelft.nl

to efficiently map the deflation operation onto the GPU so
that most of the fine-grain parallelism can be exploited on it.
In addition we propose a preconditioning scheme (Section
III-A) which when coupled with deflation gives good results
and speedups for large problems.

In continuation of our research, [2], we worked with
simple deflation vectors called stripes on a 2D and a 3D
problem and found out that there is a limitation to their
effectiveness.

In the present paper we solve problems with bubbles in the
domain. In particular we use sub-domain based, level-set and
a combination of these vectors for deflation. Through our
experimental results we confirm that the choices of various
deflation vectors can be effective in accelerating convergence
for different problems (with varying number/position of the
bubbles).

We provide comparisons to established preconditioning
schemes and existing software for these problems.

B. Related Work

Preconditioning of sparse linear systems on the GPU
has now entered the mainstream GPU computing with the
inclusion of preconditioners in libraries like CUSP! and
CUSPARSE?.

There is an entire class of preconditioners based on
Multigrid [3], [4], [5] that are also viable options to solve the
kind of problems we are dealing with. Deflation, however,
can be advantageous, [6], for medium-sized problems that
fit on a single GPU. The author in [6] compares Multigrid
methods for solving similar problems and concludes that
results from two-level preconditioning with deflation can
be approximately similar to multigrid methods. In [7] a
new preconditioning is presented based on ILU with multi-
coloring but it requires re-organization of the input matrix.
In our method we use the input matrix directly and derive
our preconditioners (both levels) on the fly. A variation of
the SSOR based technique of making a preconditioner (that

"http://code.google.com/p/cusp-library/
Zhttp://developer.nvidia.com/cusparse

cps™

Conference Publishing Services

also uses a Neumann Series based approach like we use
for our preconditioner) is discussed in [8]. In our work we
present the two-level approach that involves preconditioning
first with a Truncated Neumann Series based preconditioner
followed by deflation.

This article is organized as follows: in the next section we
present the setup of our problem followed by the overview
of our first-level preconditioning schemes in Section III.
We also comment on the eigenvalue spectrum of the matrix
after preconditioning and how its properties must be kept in
mind while implementing the second level preconditioning.
In Section IV we present the second level preconditioning
(deflation) and the choices of implementation. We present
our implementation approach and results for some test cases
on the GPU in Section V. In conclusion (Section VI) we
present a summary of our findings and an outlook for future
research.

II. PROBLEM DEFINITION

We continue to use the problem (Figure 1(a)) defined in
our previous work [2]. There can be two different config-
urations on the basis of the density of the medium and
bubbles e.g. air bubbles rising in water or water droplets
falling through air. For these two cases it is only necessary
to consider the ratio of the density contrast which influences
the conditioning of the problem and the number of small
eigenvalues in the spectrum of the coefficient matrix. We
change the position and number of these bubbles in our
experiments, to cover different scenarios which can arise in
physical problems (e.g. bubbles cutting sub-domains). The
problem is solved on a single core of a dual core CPU
(E8500 a @3.16GHz) and the solution (generated on the
CPU) of the linear system is compared with those generated
on NVIDIA C2070 GPU. As an extension to this experiment
we also provide results for an OpenMP accelerated CPU
implementation that is executed on a dual-quad core CPU
from Intel. The CPU version of the code is highly optimized
to reduce operations and computationally speedup the DPCG
algorithm. All calculations are done in double precision. For
CUSP implementations the GPU code runs and stays entirely
on the GPU except for the synchronization points in CG.
These occur for two reasons in the CG iteration.

1) For the calculation of the ratio of dot products; and

2) Comparing the norm of the current residual with the

stopping criteria to decide whether to continue to the

next iteration or not.
For CUSPARSE (in CUDA 5.0.7) implementation this hap-
pens only once for the second point mentioned above.
In this version of CUDA it is possible to use the scalar
product/norm functions and store the result on the GPU
instead of returning them to the CPU. However, the version
of CUSP we use, 0.3, supports CUDA 4.1 only, so we have
not used CUDA 5.0.7 with CUSP 0.3.

360

A. Discretization

The pressure correction equation (in Figure 1(a) and
mentioned in previous sections) is approximated using finite
differences (with central discretization) and a uniform cubic
mesh in three dimensions. The result is a 7-diagonal matrix,
A, albeit with a jump in the coefficients at bubble/droplet
interfaces. The number of unknowns is given by N
n X n x n, where n is the grid size in each dimension.
The matrix is SPSD (symmetric positive semi-definite). This
matrix is stored in diagonal (DIA) format where the 7
diagonals are stored in arrays of size N each. This is a
very useful storage pattern, especially on the GPU [9].

Our solver is called by a CPU code written in Fortran.
It is a Navier Stokes solver with additional routines for
solving other variables (e.g. velocity) every time-step. It
passes the coefficient matrix A, x and b and termination
criteria as parameters, to the GPU based solver whose results
are discussed in this work.

We define the termination criteria for our solvers (CPU
and GPU) as

[7i ll2<]]2 €,

2

where 7; is the residual at the i*" step, b is the right-hand
side and e is the tolerance. The initial guess chosen (on CPU
and GPU) is a random vector since we want to avoid the
situation where (unrealistic) convergence could be aided by
the choice of a zero or constant vector.

In our results we use the bubble geometry presented in
Figure 1(b) and 1(c).

III. PRECONDITIONING

In this section we give a brief overview of the precon-
ditioning schemes that we consider. The preconditioning
operation changes the linear system (1) into (3), which is
given by

M~1Ax = M~ 1. 3)

The primary aim of the preconditioning operation is to ac-
celerate convergence. The preconditioner must also be light
on storage requirements and cheap to compute. The CPU
code uses the Incomplete Cholesky (IC) preconditioner [10].
The combination of IC and CG with zero diagonals for fill
in is called ICCG(0) method. However, this preconditioning
technique has its limitations for GPU implementation since
it is inherently sequential. On the CPU we use a sequential
version of the code with IC preconditioner for the first level.

A. Truncated Neumann Series based Preconditioners

Factorization based preconditioners can be approximated
by

M = KDKT, 4)

V=5V p()=f(x)
2 p(‘)
y — = — 4+

X

(0,0,0)
Neumann boundary Conditions
on all faces.

(a) Problem Definition. Unit cube in 3-D.

(b) 8 bubble

(c) 9 bubble

Figure 1: 3D Test Problem.

where K = (I + LD™1), L is strictly lower triangular,
D is the diagonal of A and I is the identity matrix.
Such approximations are valid for ICCG and successive
over-relaxation (SSOR) based preconditioners. In order to
calculate M ~' we have to approximate (I + LD~1)~L.
This can be achieved by using the Neumann series for
(I+LD™1):

(I+LD Y '=I-LD '+ (LD 1)’-
(LD Y’ 4 if | LD ||os< 1.

)

In order to limit the costs for this preconditioner we truncate
the number of terms in the series (5) to 3 (up to (LD’l)Q).
The approximation adds to the fine-grain parallelism of the
preconditioner. It becomes as parallelizable as a diagonal
scaling preconditioner but remains much more effective
than diagonal scaling at reducing the condition number

361

of M—'A. In order to implement this preconditioner we
only need to store LD~ M~' can be calculated every
time this preconditioning is applied. The cost of performing
this preconditioning compared to the IC Preconditioning is
almost twice (in terms of number of FLOPS) for the variant
where we use two terms of the series (5). We use this variant
in the GPU code and abbreviate it as (neu2).

B. Properties of the Preconditioned Matrix

In this section we give the motivation for second level
preconditioning using deflation. In Figure 2 we show the plot
for eigenvalues of a small problem with 8 bubbles defined
similarly as the problem introduced in Section II, Figure
1(b). We use a loglog scale in Figure 2. M ~!A(ic) refers to
ICCG(0).

magnituae

= A
o DA

o M'A (ic)

° M7'A (neu2

° 10' 10 10°

index

Figure 2: Spectrum of preconditioned matrices. 163 number
of unknowns.

As noticed in Figure 2 there are 7 eigenvalues in the
preconditioned matrix that are of the order of the density
contrast i.e. 1073, In this case the outer medium (e.g., water)
has density 10° times the inner medium (e.g., air). Therefore
preconditioning must be complemented by another level of
preconditioning that can remove these small eigenvalues
from the spectrum of the preconditioned matrix.

There is also 1 small eigenvalue due to the choice of
Neumann boundary conditions and preconditioning pushes
it down further. We can invert the density contrast so that
the outer medium’s density is 10~ times the inner one. In
that case the problem is relatively less ill-conditioned and
has no small eigenvalues. In our results we only show the
data for the case when the outer medium’s density is 103
times the density of the inner medium, because this problem
is challenging (due to a bad condition number owing to
small eigenvalues) and the deflation operation is therefore
beneficial. In Figure 2 there are also a lot of large magnitude
eigenvalues, which after scaling are condensed into the 7
small eigenvalues.

IV. REMOVING SMALL EIGENVALUES USING DEFLATION:
CHOICES AND REASONS

In this section we briefly introduce the concept of defla-
tion and point the reader to sources with elaborate informa-
tion.

A. Deflation

Deflation is a technique specifically to bring the small
eigenvalues to 0. It involves solving the system

M~'PA# = M~'Pb, (6)

where
P:=1-AQ, Q:=ZE'zZ¥ E:=2ZTAZ (1)
in which M is the preconditioner we use, and Z € RV **

can be interpreted as a deflation subspace matrix. The matrix
7 should contain the approximation to the eigenvectors of
M~1A. The closer the approximation, the better the result
from the deflation operation. The resulting method is called
the Deflated Preconditioned Conjugate Gradient (DPCGQ)
Method. If M is the ICCG(0) preconditioner it is called the
DICCG(0) method. We implement the algorithm as given in
[11].

All the deflation vectors we use are piece-wise constant.
They take the value of 1 in the domain where they are
defined and O elsewhere.

B. Implementing deflation

For the deflation operation we have to calculate the
product Pr every iteration, where P is the deflation matrix
introduced earlier and r is the residual of the i** iteration.
This operation can be broken down as follows,

a1 =ZTr, (8a)
as = E~tay, (8b)
a3 = AZas, (8c)

s=1r—as. (8d)

(8b) shows the solution of the inner system that results
during the implementation of deflation. E is the so called
Galerkin matrix. Solving this system presents us with the
following options:

1) calculate E~' on the CPU, copy it to the GPU and

use it every iteration in gemv for (8b),

2) use (triangular) factorization to solve Fas = ay,

3) use Conjugate Gradient (without preconditioning) to
solve Fas = aj, but with a higher tolerance than the
outer iteration.

We have tested all these options on the GPU. However in
our results we only use the option of calculating the explicit
inverse of F since the number of vectors considered is small
(dimensions of E = number of vectors). The explicit inverse
approach consumes the least time when the matrix £~ is
small. The CPU code against which we test solves the inner
system Fas = a; with a CG iteration.

1) Stripe-wise Vectors: Stripe-wise vectors (Figure 3(a))
are easy to implement and use on the GPU. For an effective
deflation operation many of these vectors must be used (as
found out in [2]). However, this directly translates into a
larger Galerkin matrix ' and a consequent bottleneck in the
calculation of E~1.

362

(a) Stripe-wise (b) Block-wise

(c) Level-Set

Figure 3: 3 kinds of deflation vectors. Each color corre-
sponds to a column in Z.

2) Block-wise Sub-domain (SD) Vectors: One can also
make deflation vectors that are based on dividing the grid
into sub-domains. They are shown in Figure 3(b). In 3
dimensions one can think of these as cubes made up of
individual cells. These vectors are more effective than strip-
wise vectors when used for deflation.

Let €2, the unit cube, be divided into open (equal, non-
overlapping) sub-domains Q;,7 = 1,2, - , k, such that Q =
Uk Q; and Q;NQ; = 0 for all i # j. The discretized
subl-a})mains are denoted by €2, . For each 2, we introduce
a deflation vector, z;, as follows:

(Zi)j — { 0, Tj € Qh\th;

1, M IS th
Then the Z matrix for sub-domain (block-wise) deflation
vectors is defined by

)

Zsp = 2120 2], (10)

On the GPU Zgp (where S D stands for sub-domain) is built
with k& — 1 vectors but on the CPU it is made with k vectors.
The reason is that with k vectors the sum of all columns, z;
of Zsp is given by,

k

Zi:l 2 =1n, an

where 1,, is a vector with all 1’s. Since 1,, is an eigenvector
of A, corresponding to eigenvalue 0, the inner system E will
be singular, therefore inverse calculation fails. On the CPU
the inner system is solved using a CG iteration which can
handle a singular system as well.

An important idea here is to make sure that each sub-
domain contains a part of at most one bubble. Otherwise
one or more small eigenvalues will remain in the spectrum
of M~1PA, the deflated preconditioned matrix.

3) Level-Set (LS) Vectors: The level-set vectors [12]
utilize the knowledge of the physical problem underlying
the simulation and can be very effective at accurately ap-
proximating the deflation subspace. The level-set function
is defined as a signed distance function which takes e.g.
a positive value within bubble(s) and a negative value if
outside the bubble(s).

Hence if there are k& bubbles in the system then we can
define k vectors v, which can be assembled to form Z. It
must be noted that the number of columns in Z,5 is chosen
to be one less than the number of bubbles as mentioned in
[13].

4) Level-Set Sub-domain (LSSD) Vectors: It is possible
to extend the level-set vectors with sub-domain vectors and
improve their effectiveness. We can define

Zrssp = [Z1, Za], (12)

where,
Zy = Zsp [(1n — | ZLs), (13a)
Zy = ZLSﬂZSD~ (13b)

The operation () in (13a) and (13b) creates a matrix (or a
vector) whose columns are equal to all possible component-
wise multiplications between the columns of the two argu-
ments on either side of the operator (). Operation | J on the
other hand creates a vector out of the matrix (on the right
hand-side of the operator J) whose entries are the maximum
entries of each row of the matrix. Hence, Z; consists of all
sub-domain vectors of Zgp where the entries corresponding
to the medium outside the bubble are zero. Z5 consists of
columns whose entries correspond to the bubbles divided by
the sub-domains of Zgp. As one additional step we remove
the last column of Z; gsp (where LSSD stands for Level-
Set Sub-domain). The reasons for such a construction of
Zrssp and the choice of the number of deflation vectors
has been previously studied in [13]. The choice for removing
one vectors in constructing the vectors in Section IV-B3 and
IV-B4 has been made in accordance with the conjectures first
presented in [13].

V. EXPERIMENTS

In this section we present results of experiments we
conducted and comment on the results obtained.

A. Notes on Implementation

We use MAGMABLAS? library for the gemv operation
and for triangular solve (dpotrf and dpotrs), depending on
how we solve the inner system.

We use CUSP and CUSPARSE in our implementations
on the GPU. Particularly for CUSP we store

1) A in DIA,

3http://icl.cs.utk.edu/magma/docs/

363

2) AZ in HYB,

3) E~!in dense,

4) Z in ELL,

5) LD~! in DIA.

For CUSPARSE we store all matrices in CSR format. As
mentioned earlier in Section IV-B there are three options to
solve the inner system.

We will only present results for the 1% option. This is
because with the improved (block-wise sub-domain) vectors
we do not have to choose a large number of vectors to
achieve faster convergence and in that case the triangular
solve and explicit inverse method have the same computa-
tional times. Similarly and because the GPU implementation
of the 37¢ option takes a bit more time than the 1% option
we do not report the results of the last option. We note,
however, that for larger number of vectors (O(n?)) it might
prove useful compared to the 1°¢ option.

B. Results

In this section we present the results of two-level pre-
conditioned CG for 2 representative geometries mentioned
in Figure 1. These geometries are instrumental in capturing
the effect of different deflation vector choices.

1) Speedup and reported timing: The speedups we report
are the ratios of the time it takes for the iterations of the
DPCG algorithm on the CPU vis-a-vis the GPU. We report
Total time which includes the time required to do iterations
and setup time. Setup time refers to translating raw data (A,
x and b) into the library data structures. It also includes
the time to setup Z, AZ, E~! (in explicit solve case)
and LD~ (for preconditioner) and the time it takes to do
the operations before entering the CG iteration. Note that
memory allocation times are not included in *Total time’,
since they can be done once when this iterative linear system
solver (after the prototyping phase) is integrated into the
full software for the simulation of bubbly flow using the
Level-Set approach. We do not include setup time as it varies
across different choices of libraries. It is implicit and can be
expressed from our results as Total Time minus the Iteration
Time.

The CPU optimization saves on storage and uses much
less operations for the deflation steps (more details in the
Appendices of [13]).

In all our experiments we have a 3D grid with 128
gridpoints per dimension. The tolerance (¢) is set to 1075.
The outer medium’s density is 10® times the density of the
inner medium. In the results that follow this jump in density
is mentioned as the density contrast of 1073,

An explanation of some of the abbreviations in the tables
that follow are given below.

1) DICCG(0) - runs exclusively on the CPU.
2) The following apply to the GPU code.

o DPCG(neu2) - refers to DPCG with the neu2
preconditioner and an explicit inverse based inner
system solve.

SD-j refers to Sub-domain and LSSD-j refers to
Level-Set Sub-domain vectors for deflation. The
j refers to the number of columns in Z. = been
calculated according to the information given in
Sections IV-B2 and IV-B4. In subsequent sections
we also have LS-j which has been constructed on
the basis of the discussion in Section IV-B3.

2) 8 Bubbles: We consider 8 bubbles placed symmetri-
cally inside the 3D unit cube (Figure 1(b)). The arrangement
of the bubbles is such that when (block-wise) sub-domain
vectors are used, each of the block vectors contains a bubble.
It is a favorable arrangement of bubbles as it helps in making
a point about sub-domain deflation and the speedup we have
achieved with this variety of deflation vectors.

CPU
DICCG(0)
SD-8
Number of
Iterations 197
Total Time 33.79
Itferatlon 33.49
Time

Table I: 8 bubbles. CPU implementation.

Further we discuss the implementation on the GPU for
the problem where the inner system, (8b), is solved with an
explicit inverse of £ using a gemv operation.

CUSP CUSPARSE
LSSD- LSSD-
SD-7 | LST | |% SD-7 | LST | 1>

Number of || o/ 381 | 203 245 381 | 203
Iterations
Total Time || 7.4 9.5 6.6 865 | 9.56 | 8.8
Iteration 4.4 65 | 3.6 7.3 6.3 7.92
Time
Speedup 7.6 5.1 9.3 158 | 5.31 | 3.80

Table 1I: 8 bubbles. Comparison of deflation vector choices
on the GPU (CUSP & CUSPARSE based implementation).

From Table II we can see how Level-Set Sub-domain
deflation can be effective at accelerating convergence. The
speedup can be attributed to the fact that,

o There are more vectors in the Level-Set Sub-domain
based Z, and;

o For this geometry all bubbles are inside the sub-
domains so that Level-Set Sub-domain is the optimal
choice to create Z.

For CUSPARSE results in Table II the speedup falls across
all deflation variants. Setup time for CUSPARSE is less than
CUSP (for some versions) but iteration times are larger in
almost all cases. This continues to be the trend for all the

364

experiments that follow so we do not present CUSPARSE
results from this point on.

3) 9 bubbles: The 9 bubble case (from Figure 1(c)) is an
extension of the scenario presented in the previous section
(V-B2). It has the 8 bubbles as in the previous case but in
addition it has a 9** bubble. In this problem the number of
sub-domains are kept fixed at 8 as in the previous problem.
The sub-domains are now cutting (Figure 1(c)) the bubble in
the middle and this delays the convergence of sub-domain
deflation. This example highlights the advantage of using
Level-Set and Level-Set Sub-domain deflation vectors.

In Table III the convergence seems to be considerably
delayed compared to the neatly arranged 8 bubble case
discussed in the previous section. To remedy this we have
to consider better deflation vector choices.

CPU GPU-CUSP
DICCG(0) DPCG(neu2)

SD-8 SD-7 | LS-7 | LSSD-23
?”ml?er of 508 632 | 381 206
terations
Total Time 85.9 144 | 93 6.8
Ith’ra“"“ 85.6 1.3 | 65 3.8

me

Speedup - 7.57 13.1 22.5

Table III: 9 bubbles. Comparison of deflation vector choices
for deflation on the GPU (CUSP based implementation) vs.
CPU.

For GPU results in Table III we can infer that the Level-
Set vectors alone can accelerate convergence, but Level-Set
sub-domain vectors are better.

4) More Vectors: In this section, we increase the number
of deflation vectors (in all variants) for the 9 bubble problem
and see the effect on speedup and convergence. We consider
two new sizes. One of 64 sub-domains and another of 512
sub-domains.

The Level-Set only case is not presented since the results
do not change as the number of Level-Set vectors stay the
same.

The tolerance had to be increased when increasing the
number of vectors from 8 to 64 and 512. This is due to
the increase in rounding errors in the solution of the inner
system which becomes increasingly ill-conditioned.

For the case of 8 sub-domain vectors, we refer to Table III.
We observe how speedup for these implementations changes.
Level-Set sub-domain GPU versions are the most promising.

Looking at Table IV we can say that for CUSP based
implementations it is possible to obtain more than 30 times
speedup. Due to the increase in the number of vectors for
the deflation operation for the Level-Set Sub-domain case,
the gemv operation (using explicit inverse of E) for (8b)
has greater data parallelism to offer. Level-Set sub-domain
based vectors better approximate the deflation subspace so
the iteration counts also go down.

CPU GPU-CUSP
DICCG(0) DPCG(neu2)
Inner
Tolerance=10—9)
SD-64 SD-63 | LSSD-135
Number of
I . 472 603 136
terations
Total Time 81.39 13.61 5.58
¥.era“°“ 81.1 10.61 2.48
ime
Speedup - 7.64 32.7

Table 1V: 9 bubbles. Two deflation variants. GPU and CPU
Execution Times and Speedup. 64 sub-domains.

In table V Level-Set Sub-domain deflation does not show
any effect on convergence because the sub-domains have
become so small that each sub-domain has at most one part
of the bubble in the center. Hence the problem again is suited
to sub-domain deflation more than to Level-Set sub-domain
(like in Section V-B2). It is also interesting to note that the
speedup in Table V solely reduces (when compared with
64 vectors case in Table IV) due to the decrease in number
of iterations of the CPU version (owing to more accurate
solution of the inner system) of the code by a drastic amount.

CPU GPU-CUSP
DICCG(0) DPCG(neu2)
Inner
Tolerance=10—19 .
SD-512 SD-511 | LSSD-583
Number —of || ¢ 81 81
Iterations
Total Time 12.51 4.56 4.62
ITt.era“O“ 12.18 1.56 1.62
ime
Speedup - 7.81 7.52

Table V: 9 bubbles. Two deflation variants. GPU and CPU
Execution Times and Speedup. 512 sub-domains.

We have tested the CPU version with OpenMP paralleliza-
tion but the CPU version gains are limited due to the fact
that majority of the time is spent in the IC preconditioner
which is inherently serial.

In Table VI we show the new execution times for the
CPU results presented in Tables III, IV and V but with the
CPU code accelerated with OpenMP. The CPU used is a
dual-quad-core system running at 2.4GHz and the number
of OpenMP threads is set to be 8.

In Table VII we show the results for the execution of our
CPU implementation on a single core of the same quad-core
machine used to generate results in Table VI.

In Figure 4 we compare the speedups that we achieve for a
sequential CPU code (from Table VII) (running on one core
of the dual quad core CPU) versus the OpenMP version(from
Table VI) as compared to the GPU implementation presented
in Tables III, IV and V. On the Y-axis in Figure 4 the
CPU version / GPU version of the code are mentioned.

365

CPU-OpenMP(8 threads)
SD-8 SD-64 SD-512
Inner Toler- 10-8 10-9 10-10
ance
Number —of || 505 | 479 67
Iterations
Total Time 72 68.35 10
jperation 7176 | 68.1 9.7
ime

Table VI: 9 bubbles. CPU versions of DPCG with 8, 64 and
512 vectors with OpenMP acceleration.

CPU(single thread)

SD-8 | SD-64 | SD-512
Inner Toler- 10-8 10-9 10-10
ance
pumber ol 5o | 472 67
terations
Total Time 82.1 77.56 13.26
lteration 81.83 | 77.28 | 12.96
Time

Table VII: 9 bubbles. CPU versions of DPCG with 8, 64 and
512 vectors without OpenMP acceleration (on single core of
a dual quad core).

The speedup figures change by at most 25% by the use

SD-512/LSSD-583 [

SD-512/SD-511 |

SD-64 / LSS D- 135 |

SD-64/SD-63
SD-8/LSSD-23 |
SD-8/1LS-7
SD-8/SD-7
0 5 10

Speedup

15 20 25 30 35

M Single Core ® OpenMP-8 threads

Figure 4: Comparison of Speedup with openMP paralleliza-
tion of CPU code

of OpenMP (8 threads) primarily because in the CPU
version the Incomplete Cholesky(IC) Preconditioning is a
bottleneck.

VI. CONCLUSION AND OUTLOOK

In our results we observed that neu2 Preconditioning
performs similar to ICCG(0) based preconditioning when
coupled with Deflation. This is very useful for solving such
ill-conditioned systems since preconditioning is required in
order to solve them in a realistic time-frame. ICCG(0) is
very difficult to parallelize and is even more difficult for
general stencils. In comparison, the neu2 preconditioners
we present, exhibit fine-grain parallelism as desired for the
best performance on GPUs. It is simple to construct and
one can use this preconditioner for general stencils, which

makes it applicable to a wider variety of problems and
discretization choices. We store the matrices (A in DIA,
AZ in HYB, Z in ELL) in generic storage formats. This
makes the performance of the operations involved in the
DPCG algorithm less dependent on the choice of stencils and
structure of the meshes. Our results show that with suitable
deflation vectors and neu2 preconditioning it is possible to
achieve between 5-30 times speedup for certain problems.
We note that increasing the number of vectors must be
balanced with the approach to reduce setup times.

As a continuation of our research we want to further
optimize the code so that setup times can be reduced. We
plan to implement our algorithm for multiple GPUs and
multiple multi-core CPUs connected through a fast intercon-
nect to test the scalability of our two-level preconditioning
approach.

REFERENCES

[1] R. Gupta, M. B. van Gijzen, and C. Vuik, “Efficient
two-level preconditioned conjugate gradient method on
the GPU,” Delft University of Technology, Delft, The
Netherlands, Tech. Rep., 2011, DIAM Report 11-15.
——, “Efficient two-level preconditioned conjugate
gradient method on the gpu.” Springer Lecture Notes
in Computer Science., submitted for publication.

D. Jacobsen and I. Senocak, “A full-depth amalga-
mated parallel 3d geometric multigrid solver for GPU
clusters,” in 49th AIAA Aerospace Sciences Meeting.
American Institute of Aeronautics and Astronautics
(AIAA), 2011.

J. Bolz, 1. Farmer, E. Grinspun, and P. Schroder,
“Sparse matrix solvers on the GPU: conjugate gradients
and multigrid,” ACM Trans. Graph., vol. 22, no. 3, Jul.
2003.

H. Knibbe, C. W. Oosterlee, and C. Vuik, “GPU imple-
mentation of a helmholtz krylov solver preconditioned
by a shifted laplace multigrid method,” J. Comput.
Appl. Math., vol. 236, no. 3, Sep. 2011.

J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik,
“A comparison of two-level preconditioners based on
multigrid and deflation,” SIAM J. Matrix Anal. Appl.,
vol. 31, no. 4, pp. 1715-1739, Mar. 2010. [Online].
Available: http://dx.doi.org/10.1137/08072084X

V. Heuveline, D. Lukarski, N. Trost, and J.-P. Weiss,
“Parallel smoothers for matrix-based geometric multi-
grid methods on locally refined meshes using multicore
CPUs and GPUs,” in Facing the Multicore - Challenge
11, ser. Lecture Notes in Computer Science, 2012.

H. Rudi and J. Koko, “Parallel preconditioned conju-
gate gradient algorithm on GPU,” Journal of Computa-
tional and Applied Mathematics, vol. 236, no. 15, pp.
3584 — 3590, 2012.

N. Bell and M. Garland, “Implementing sparse matrix-
vector multiplication on throughput-oriented proces-

(2]

(3]

[4]

[5]

(6]

[7]

(8]

(9]

366

sors,” in Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis,
ser. Supercomputing, 2009.

[10] J. A. Meijerink and H. A. van der Vorst, “An iterative
solution method for linear systems of which the coeffi-
cient matrix is a symmetric m-matrix,” Mathematics of
Computation, vol. 31, no. 137, pp. 148-162, jan 197.

[11] J. Tang and C. Vuik, “New variants of deflation tech-
niques for pressure correction in bubbly flow prob-
lems,” Journal of Numerical Analysis, Industrial and
Applied Mathematics, vol. 2, pp. 227-249, 2007.

[12] ——, “Efficient deflation methods applied to 3-D
bubbly flow problems,” Electronic Tramnsactions on
Numerical Analysis, vol. 26, pp. 330-349, 2007.

[13] J. Tang, “Two-level preconditioned conjugate gradient
methods with applications to bubbly flow problems,”
Ph.D. dissertation, Delft University of Technology,
Delft, The Netherlands, 2008.

