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Abstract. We describe the application of a staggered scheme with a compressible pressure
correction method to the computation of flow with cavitation modeled by the homogeneous
equilibrium model, resulting in a nonconvex hyperbolic system. Adaptation of the stan-
dard pressure correction algorithm to improve the stability for fully compressible flow is
discussed. Results are presented for a flow around a two dimensional hydrofoil, in which
the Mach number varies between 10−3 and 30.
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1 HOMOGENEOUS EQUILIBRIUM MODEL FOR FLOW WITH
CAVITATION

A rather simple way of modeling liquid/vapor two phase flow is the homogeneous equi-
librium model (HEM). Based on the assumption of thermodynamic equilibrium and the
neglect of velocity slip between both phases it is possible to derive single phase equations
for the two-phase mixture completed with a mixture equation of state. The equation of
state p = p(ρ) makes the density of the mixture equal to the density of the liquid phase
when the pressure is above the vapor pressure, and equal to the density of the vapor phase
below the vapor pressure, with a smooth artificial transition in between. When the pres-
sure of the mixture is either well below or above the vapor pressure, the speed of sound is
large but finite and the flow will be weakly compressible. In the phase transition region the
speed of sound will retain a very small value of O(1 m/s). In practical computations this
means that the Mach number will vary from 10−3 to an artificial value well in the range of
10-30. For efficient computation of two phase flow, with the HEM it is therefore required
that the time-integration method is accurate and stable uniformly in the Mach number for
0 < Ma < 30.

2 UNSTEADY SHEET CAVITATION

The HEM has been applied to model unsteady sheet cavitation on hydrofoils in [2, 3,
5, 7, 9, 12, 13, 16]. Unsteady sheet cavitation is the formation of thin vapor filled pockets
on the suction side of hydrofoils, when the pressure at the leading edge of the foil drops
below the vapor pressure. Unsteady sheet cavitation is a cyclic process, that is illustrated
in Figure 1.

Figure 1: Cyclic behavior of unsteady sheet cavitation on hydrofoil.

In each cycle the cavity grows from its initial length to a maximal length. Meanwhile a
re-entrant jet develops at the aft end of the cavity, that moves forward and upward. At a
certain instant the forward moving re-entrant jet touches the upper liquid/vapor interface
and the aft part of the cavitation bubble is shed. The periodical behavior commences
after a large number of cycles has occured, starting from the initial condition. Therefore
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a time-integration scheme is required that allows for large time-steps to bridge this initial
phase efficiently.

3 GOVERNING EQUATIONS

Under the assumption of inviscid isothermal flow, the application of the HEM leads
to the standard single phase Euler equations for the mixture and a barotropic mixture
equation of state:
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The equation of state and the speed of sound as a function of pressure are shown schemat-
ically in Figures 2a and 2b. It is to be noted that the equation of state is nonconvex, so
that the governing equations consitute a nonconvex hyperbolic system.
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(b) Speed of sound c as function of pressure.

Figure 2: Properties of the liquid/vapor mixture.

4 DISCRETISATION

4.1 Current trends

A number of different methods are currently used for discretisation of the equations for
the HEM:

• MacCormack [11],
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• Real gas extensions of flux splitting schemes: AUSM+ [4],

• Real gas extensions of approximate Riemann solvers: Roe [14],
• Jameson type schemes [5],
• Staggered schemes [3],
In the last years a number of approximate Riemann solvers and flux vector splitting

schemes, like the Roe and the AUSM+ scheme have been extended to handle the Van-
derWaals equation of state for real gases. This equation of state is very similar to the
equation of state of the HEM. The difference lies in the fact that the variation in density
is much smaller for the VanderWaals equation of state. In [17] an extension of the Osher
scheme to handle a general equation of state is presented. In this case the fluxes have to be
numerically evaluated from integral relations, rendering the scheme computationally much
more expensive than for the perfect gas case.
Another choice is a Jameson type scheme. This can be trivially extended for the HEM,

because no use is made of the complicated eigen-structure due to the nonconvex equation
of state. The difficulty lies in the adjustment of the artificial viscosity parameters for a very
large range of Mach numbers and shocks an order of magnitude stronger than generally
encountered in aerospace engineering.
Altough these schemes are well suited for applications where the freestream Mach num-

ber is O(1), e.g. cavitation in fuel line nozzles or in the wake of detonation driven un-
derwater projectiles [11], a major drawback of these schemes is the behavior for low Mach
number flow. To handle the stiffness of the system for Ma << 1, some form of artificial
compressibility/time-derivative preconditioning is needed, that will destroy the temporal
accuracy of the scheme. Because in this case the solution is time-dependent, each physical
time-step has to be solved for by stepping in pseudo-time until steady state. The latter
makes the use of both types of schemes computationally expensive, the more so because
there is still limited knowledge of optimal preconditioners for the HEM.
As opposed to the last two schemes, the staggered discretisation of [1], combined with a

compressible pressure correction algorithm, has computational cost and accuracy uniform
in the Mach number. Altough this approach may be more costly to apply when the Mach
number allows the use of the standard compressible schemes, in this application the bulk
of the computing time is incurred in the liquid phase with a low Mach number of O(0.001).
Of course it makes sense to choose a method that treats the large low Mach number region
very efficiently and the very small high Mach number region a little less efficiently, than
the other way around.

4.2 The staggered scheme

For sake of brevity we will discuss only the one-dimensional case. We use a staggered
placement of the unknowns, illustrated in Figure 3. Application of a first order upwind
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scheme in the momentum and mass conservation equation leads to the following discreti-
sation:
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Von Neumann stability has shown the necessity of the application of the density upwind
bias in the mass conservation to retain stability for fully compressible flow. The pressure
gradient is centrally discretised irrespective of the Mach number.

5 SOLUTION PROCEDURES

5.1 Compressible pressure correction (CPC)

The solution procedure we use is a modification of the compressible pressure correction
algorithm [1] for a perfect gas. Based on Von Neumann analysis the original time-stepping
method was modified to have more favorable stability properties for highly compressible
flow. The solution procedure consists of the following 4 stages:

1. solve density predictor equation
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2. solve momentum predictor equation
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3. solve pressure correction equation
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4. update the tentative momentum and old pressure field:
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Some remarks concerning this method are:
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Figure 3: Staggered placement of unknowns

• Newton linearisation is used for the convective terms in the momentum equation.

• A Crank-Nicolson type scheme is used for the velocity in the convective terms in
the pressure correction equation (4). This gives a more favorable spectrum of the
eigenvalues of the time-integration methods, resulting in increased damping in the
high frequency modes, enhancing (almost) unconditional stability for 0 < Ma < 30
[15].

• The pressure correction equation is solved by a nonlinear Gauss-Seidel method ac-
celerated by intermediate linearized steps with preconditioned GMRES. Due to the
density upwind bias together with the spatial variations in the speed of sound, the
Jacobian of the pressure correction equation is far from diagonally dominant.

• The Newton linearized formulation of the convective terms enables extension of the
method to second order temporal accuracy, with the θ-method [15].

• Higher order spatial discretisation are achieved by introducing intermediate deferred/
defect correction steps.

5.2 Compressible pressure correction and SIMPLE

In the SIMPLE method in its generic form the following set of equations is solved until
convergence of ‖ (p(k+1) − p(k)

) ‖:
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+
(
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)
= −p(k)

x (7)
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(9)

as opposed to the single step solution procedure of CPC.
The main difference between the pressure correction method and SIMPLE lies in the

possibility to iteratively solve a nonlinear scheme with a large stencil implicitly. Within
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the framework of compressible pressure correction we distinguish between the target, ac-
tual and resolved discretisation. The target discretisation is obtained after finite volume
discretisation, can be nonlinear, and can only be solved for in an iterative manner. The
actual discretisation follows from the target discretisation after linearisation, and the in-
troduction of further approximations, such as deferred or defect correction. Finally, the
resolved discretisation includes the segregated (pressure correction) solution procedure.
Altough SIMPLE and compressible pressure correction have the same target discretisa-

tion, the resolved discretisation is totally different. In the former case, due to the iterative
nature of the algorithm, the target and resolved discretisation are identical, whereas in
the latter case this is definitely not the case. The stability properties of the method are
determined by the stability properties of the resolved discretisation.
In practice this means that the CFL-condition for the compressible pressure correction

algorithm is more severe than for SIMPLE. However, the application of SIMPLE is much
more expensive than CPC, requiring multiple accurate solutions of the nonlinear pressure
correction equation.
For this time-dependent application it was found that the CPC algorithm is much more

efficient, the more so because considerable underrelaxation has to be applied to the SIMPLE
algorithm to achieve convergence within each iteration.

6 RESULTS

For high to moderate values of the cavitation number σ defined as:

σ =
p∞ − pvapor

1
2
ρ∞V∞

the cavitation bubble on a hydrofoil will remain steady. For this simulation the momentum
and mass conservation equations are discretised with the third order ISNAS-scheme [18],
applied in a deferred correction manner. We have chosen the density ratio ρliquid/ρvapor =
100.
Figure 4 shows the density distribution on a NACA66 hydrofoil, as computed with the

current method. Darker shading corresponds to lower density. The cavitation bubble is
captured as a low density region . In Figure 4 the density varies between 10 (liquid phase)

Figure 4: NACA66, α = 4o, σ = 0.87
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and 0.1 (vapor phase). The cavity extend is predicted with an accuracy, comparable to
the accuracy as obtained by interface capturing methods.

Figure 5: EN-wing, α = 6.2o, σ = 1.2

For a larger angle of attack or lower σ the cavity becomes unsteady and shows the
behavior as discussed in Section 2. In Figure 5 results are shown for the EN-hydrofoil,
that has been studied extensively experimentally in [6] and numerically in [8]. In [8] σ
was lowered from the experimental value of σ = 1.2 to σ = 1.1 so that the numerically
predicted average cavity length matched the experimentally found value. We have retained
σ = 1.2. Figure 5 shows in a sequence of snapshots of the density field, how a vapor cloud
is convected downstream and collapses, after the aft part of the fixed cavity has been
shed. To obtain these unsteady results use was made of a first order upwind scheme, for
both the mass conservation equation and the momentum equation. The results show good
agreement with the experimental results of [6], with respect to shedding frequency and
average cavity length.
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7 CONCLUSIONS

The Homogeneous Equilibrium Model for two phase flow is a numerically demanding
application due to the simultaneous occurrence of almost incompressible (Ma < 0.001) as
well as highly compressible (Ma = 10− 20) regions in the flow domain. Standard schemes
for compressible flow will have to be preconditioned to handle the weakly compressible flow
of the liquid phase. Standard schemes for weakly compressible flow are either inefficient
for time-dependent flow or suffer from a severe stability induced restriction on the time-
step for highly compressible flow. Based on Von Neumann analysis a noniterative pressure
correction time-stepping method is developed that has stability properties almost uniform
in the Mach number. The method has been applied to the computation of steady and
unsteady sheet cavitation on hydrofoils.

8 FUTURE RESEARCH

To further verify the results we intend to adapt the method for axi-symmetric flows
to compare with the experimental results in [10]. Furthermore, an energy equation will
be incorporated to be able to handle cavitating flow of cryogenic fluids, where the strong
dependence of the vapor pressure on the local temperature has to be taken into account
to correctly predict the extent of the cavitating region.
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