
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 08-13

Numerical Methods for Industrial Flow Problems

Ibrahim, C. Vuik, F. J. Vermolen, and D. Hegen

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2008

Copyright  2008 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission from Department of Applied
Mathematical Analysis, Delft University of Technology, The Netherlands.

1

NUMERICAL METHODS FOR INDUSTRIAL FLOW PROBLEMS

IBRAHIM1, C. VUIK, F. J. VERMOLEN, AND D. HEGEN

Abstract. In this report, Partial Differential Equations (PDEs) are solved
numerically. These include Poisson Equation, Convection-Diffusion Equation,
either steady state or time-varying, and Burgers’ Equation. Methods used are
Standard Galerkin Algorithm (SGA) and Streamline Upwind Petrov-Galerkin.
For the nonlinear Partial Differential Equations, Picard Iteration is combined
with Finite Element Methods. For time-varying PDEs, Explicit, Implicit and
IMEX schemes are used. A system of nonlinear equations is solved by applying
the above mentioned methods.

1. Introduction

Mathematical modeling of many physical systems is often described by so called
conservation equations. In general, such equations are represendted by nonlinear
(coupled) partial differential equations. Analytical solutions are hard or impossible
to find for many PDEs. Experimental data are not available all the time. Numerical
Methods can be used even in such cases and sometimes it is the only choice. Error
estimation, solution convergence and stability are important issues in numerical
methods.

2. Finite Element Method

The finite element method is a numerical technique, used to find approximate so-
lutions of partial differential equations. It is more general, as compared to the finite
difference and the finite volume methods in the sense that, it can handle complex
geometries and it is not restricted to differential equations in conservative form.
The main features of the finite element are as follows. The domain of the problem
is represented by a collection of simple subdomains, called elements. The collection
of these elements is called the finite element mesh. Over each element, a property
u described by a partial differential equation is approximated and represented by
a sum of polynomials with coefficients uj , which are found from a set of algebraic
equations.

2.1. Standard Galerkin Approximation. We will use an example to explain
the standard Galerkin method. Consider the Poisson equation in one dimension:

−D
d2u

dx2
= f(x), 0 ≤ x ≤ 1, (1)

u(0) = 2, u(1) = 1. (2)
Multiply equation (1) by a test function v(x) and integrate it over the computational
domain, [0, 1].

−D

∫ 1

0

d2u(x)
dx2

v(x)dx =
∫ 1

0

f(x)v(x)dx. (3)

To get the weak formulation, apply integration by parts.

−D

[
du

dx
v(x)

]1

0

+ D

∫ 1

0

du

dx

dv

dx
dx =

∫ 1

0

f(x)v(x)dx. (4)

1The author is indebted to HEC, Pakistan and NUFFIC, The Netherlands for their financial
and other support.

1

We choose v(x) such that integrals in equation (4) exist. Furthermore, we take
v(0) = 0 and v(1) = 0. Therefore, the boundary term in the above equation van-
ishes. Now we discretize x, u(x) and v(x) in the following way. The computational
domain x ∈ [0, 1] is divided into n finite intervals by considering n + 1 nodes,
x0 = 0, x1, x3, ..., xn = 1. Each such interval is called an element. All elements
are taken with equal length h = 1

n . The ith element ei is the interval from xi−1 to
xi. The unknown variable u(x) is approximated by u = {uj}, where uj ≈ u(xj),
and j = 0, 1, ..., n. Now u(x) is written in terms of basis functions, φj(x), as
follows,

u(x) ≈
n∑

j=0

ujφj(x), (5)

where u0 = u(0) and un = u(1) are known. We choose the function v(x) as,

v(x) = φi(x), i = 1, 2, ..., n− 1. (6)

Now φi(x) is a piecewise linear function defined as:

φi(x) =





x−xi−1
xi−xi−1

, for x ∈ [xi−1, xi],
x−xi+1
xi−xi+1

, for x ∈ [xi, xi+1],

0, for x 6∈ [xi−1, xi+1].

(7)

φ0(x) =

{
x−x1
x0−x1

, for x ∈ [x0, x1],
0, for x 6∈ [x0, x1].

.

φn(x) =

{
x−xn−1

xn−xn−1
, for x ∈ [xn−1, xn],

0, for x 6∈ [xn−1, xn].
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

φ
0

φ
i

φ
n

Figure 1. The piecewise linear basis function: φi(x)

φi(xj) =

{
0, for j 6= i,

1, for j = i.

With this discretization, equation (1) takes the form

D

∫ 1

0

n∑

j=0

uj
dφj

dx

dφi

dx
dx =

∫ 1

0

f(x)φi(x)dx, i = 1, 2, ..., n− 1, (8)

or

D

n−1∑

j=1

uj

∫ 1

0

dφj

dx

dφi

dx
dx =

∫ 1

0

f(x)φi(x)dx + bi, i = 1, 2, ..., n− 1. (9)

2

Where bi is the ith element of vector b which incorporates boundary conditions and
it is given as,

bi =





−D
∫ x1

x0
u0

dφ0
dx

dφ1
dx dx, for i = 1,

−D
∫ xn

xn−1
un

dφn

dx
dφn−1

dx dx, for i = n− 1,

0, 1 < i < n− 1,

or,

bi =





u0
D
h , for i = 1,

un
D
h , for i = n− 1,

0, 1 < i < n− 1.

All the integrals on the left-hand side of equation (9) can be computed analytically.
For

∫ 1

0
f(x)φi(x)dx, we will use a numerical technique, if it is hard to determine

otherwise. In order to implement equation (9) to a computer program, we use the
following strategy. Equation (9) can be written in a matrix form:

Su = f + b, (10)

where S is an n − 1 by n − 1 matrix, called the stiffness matrix, u is the vector
consisting of uj , j = 1, 2, ..., n − 1 and f is a vector of length n − 1. The elements
of S and f are given by,

Si,j = D

∫ 1

0

dφi

dx

dφj

dx
dx,

fi =
∫ 1

0

f(x)φi(x)dx.

In order to find the matrix S, we calculate the element matrix Se,

Se = D

[∫ xi

xi−1

dφi−1
dx

dφi−1
dx dx

∫ xi

xi−1

dφi

dx
dφi−1

dx dx∫ xi

xi−1

dφi−1
dx

dφi

dx dx
∫ xi

xi−1

dφi

dx
dφi

dx dx

]
, (11)

or,

Se =
D

h

[
1 −1
−1 1

]
. (12)

For the current problem, we have D = 1, ∆x = h = 0.1, n = 10, f(x) = 1, u0 =
1, un = 0. Initially S is an n + 1 by n + 1 matrix filled with zeros for all elements.
With an index k, running from 1 to n, the stiffness matrix S is updated as:

Sk−1,k−1 = Sk−1,k−1 + Se1,1 ,

Sk−1,k = Sk−1,k + Se1,2 ,

Sk,k−1 = Sk,k−1 + Se2,1 ,

Sk,k = Sk,k + Se2,2 .

Before using S in further calculations, we omit its first and the last row as well
as the first and the last column because we need to find only n − 1 variables, ui.
For the integral on the right hand side, we can use a Newton-Cotes formula (the
trapezoidal rule),

∫ x2

x1

f(x)dx ≈ x2 − x1

2
(f(x2) + f(x1)). (13)

Of course, the integral in our case is simple enough to calculate analytically. Now
the element vector for f is given as:

fe =
[∫

ei
f(x)φi−1dx∫

ei
f(x)φidx

]
. (14)

3

Again an index k, running from 1 to n, helps to update the vector f , initially loaded
with zeros only.

fk−1 = fk−1 + fe1 ,

fk = fk + fe2 .

The first and the last elements of f are not considered. Hence we are left with n−1
elements. Now the approximate solution vector uj can be determined, once we have
S, f and b,

u = S−1f + S−1b. (15)
Once we have the element matrix, in this case Se, assembly of the corresponding
matrix S is the same for all proceeding examples. Except that, if a boundary is
not subject to an essential boundary condition, we will no longer remove the cor-
responding row and column of the stiffness matrix. A natural boundary condition
applies in this case. The vector b and f are treated in a similar way. The equation
(15) has been implemented in MATLAB. The result is shown in Figure 2, along
with the relative difference with the exact solution, u(x) = x2

2 − 3
2x+2. We observe

that for such a simple problem, there is (almost) no error i.e., u(x) = uj at node
points x = xj . In this example, boundary conditions were specified explicitly for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2
(a) Numerical Solution

x

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2
x 10

−16 (b) Relative Error in Numerical Solution

x

Figure 2. (a) The solution of Poisson equation by SGA, D =
1, f = 1, u(0) = 2, u(1) = 1, (b) Relative Error u−u(xj)

u(xj)
, u(x) =

x2

2 − 3
2x + 2.

both ends. We can have other type of boundary conditions. Among many, few
types are mentioned below.
Dirichlet Boundary Conditions: If boundary values are given explicitly, they
are called Dirichlet Boundary conditions. e.g., u(0) = 1, u(1) = a etc. For our
purpose they are also called Essential Boundary Conditions.
Neumann Boundary Condition: It is the derivative of the unknown variable
given at certain boundary point, e.g., du

dx = 0 at x = 1.
Robin Boundary Condition: It is a combination of above two boundary condi-
tions. e.g., du

dx + σu = a, σ > 0, x = 1.
For second order partial differential equations, the last two conditions are also called
natural boundary conditions. If we do not specify boundary condition for one end,
say at x = 1, then du

dx = 0 for x = 1 applies by default [2]. Of course it is true
only approximately for a numerical solution. In this case we no longer omit the last
column and row from S, f and b. Furthermore bn−1 = bn = 0. The result for this
new condition is shown in Figure 3, with u(0) = 1.

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Solution u(x)

x −−−>

Approximate Solution
Exact solution

Figure 3. The solution of the diffusion equation by (red) SGA,
D = 1, f = 1, u(0) = 1, du(1)

dx = 0, (blue) The exact solution,
u(x) = x2

2 − x + 1.

3. Convection Diffusion Problem

In this section, we considered the steady state convection diffusion equation. Ini-
tially, we applied Standard Galerkin method to compute the approximate solution.
When convection dominates over diffusion, we face undersireable wiggles in the
numerical solution. We applied another method to overcome this difficulty.

−ε
d2u

dx2
+ c

du

dx
= 0, 0 < x < 1, (16)

u(0) = 1,

u(1) = 0,

where c is speed of the wave and ε is the diffusion coefficient. Both c and ε are as-
sumed to be constant. Function u could be the temperature or some other physical
quantity. In order to solve this equation, we apply the Standard Galerkin approach.
Multiply equation(16) by a test function v(x) and integrate over the problem do-
main.

−ε

∫ 1

0

d2u

dx2
v(x)dx + c

∫ 1

0

du

dx
v(x)dx = 0. (17)

Integration by parts for the first integral on the left-hand side gives the following
result.

−ε

[
du

dx
v(x)

]1

0

+ ε

∫ 1

0

du

dx

dv

dx
dx + c

∫ 1

0

du

dx
v(x)dx = 0.

Again, choosing v(0) = v(1) = 0 makes the first term equal to zero. Discretization
used for u(x) is given by,

u ≈
n∑

j=0

ujφj(x),

where u0 = u(0) and un = u(1), are known. The definition of the basis functions
φj(x) and v(x) is the same as given in the previous section. Equation (17) can be
written as,

ε

∫ 1

0

d

dx




n∑

j=0

ujφj


 dφi

dx
dx + c

∫ 1

0

d

dx




n∑

j=0

ujφj


φidx = 0, i = 1, 2, ..., n− 1.

(18)

5

Now the element stiffness matrix is given by,

Se = ε

[∫ xi

xi−1

dφi−1
dx

dφi−1
dx dx

∫ xi

xi−1

dφi

dx
dφi−1

dx dx∫ xi

xi−1

dφi−1
dx

dφi

dx dx
∫ xi

xi−1

dφi

dx
dφi

dx dx

]
(19)

+c

[∫ xi

xi−1

dφi−1
dx φi−1dx

∫ xi

xi−1

dφi

dx φi−1dx∫ xi

xi−1

dφi−1
dx φidx

∫ xi

xi−1

dφi

dx φidx

]
,

or,

Se =
ε

h

[
1 −1
−1 1

]
+

c

2

[−1 1
−1 1

]
, (20)

where h is the length of an element. We have divided our domain uniformly, there-
fore h is a constant. The first element of the vector b is given by,

b1 = −ε

∫ 1

0

u0
dφ0

dx

dφ1

dx
dx− c

∫ 1

0

u0
dφ0

dx
φ1dx,

or,

b1 =
ε

h
u0 +

c

2
u0.

Similarly, bn−1 = ε
hun− c

2un. All other elements of b are zero. Equation (18) in the
matrix form is written as,

Su = b,

or,

u = S−1b (21)

This equation has been implemented in MATLAB. Two graphs are shown in
Figure 4. In the blue graph, ε = 1, c = 1, while in the dotted graph, ε = 0.1, c = 4.
When convection dominates over diffusion term, we observe wiggles in the output,
where the Standard Galerkin Approximation is used. To get rid of these undesired
wiggles, we used a method called Streamline Upwind Petrov-Galerkin (SUPG).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x −−−>

Solution u

Equal Convection Diffusion
Convection Dominant

Figure 4. The numerical solution of the convection-diffusion
equation, (blue) ε = 1, c = 1, (red) ε = 0.1, c = 4.

6

Streamline Upwind Petrov-Galerkin. In this method, a modified test function
is used,

w(x) = v(x) + p(x),

where v(x) is the classical test function. The additional term p(x) introduces ar-
tificial diffusion and hence counters the convection dominance. This idea is taken
from the finite difference method [1].

p(x) =
h

2
dφi

dx
ξ.

For a first order upwind, we have ξ = 1, which we will use in this study (other
values of ξ are also used for different reasons). Hence,

w(x) = φi +
h

2
dφi

dx
.

Using w(x) in equation (17) instead of v(x) we have,

ε

∫ 1

0

du

dx

dw

dx
dx + c

∫ 1

0

du

dx
w(x)dx = 0, (22)

or,

ε

∫ 1

0

d

dx




n∑

j=0

ujφj


 d

dx

(
φi +

h

2
dφi

dx

)
dx + c

∫ 1

0

d

dx




n∑

j=0

ujφj




(
φi +

h

2
dφi

dx

)
dx = 0.

(23)

The additional term of h
2

dφi

dx is effective only in the convection part since elemen-
twisely, the derivative of p(x) is zero. The element matrix in this case is given
by,

Se = ε

[∫ xi

xi−1

dφi−1
dx

dφi−1
dx dx

∫ xi

xi−1

dφi

dx
dφi−1

dx dx∫ xi

xi−1

dφi−1
dx

dφi

dx dx
∫ xi

xi−1

dφi

dx
dφi

dx dx

]
+ c

[∫ xi

xi−1

dφi−1
dx φi−1dx

∫ xi

xi−1

dφi

dx φi−1dx∫ xi

xi−1

dφi−1
dx φidx

∫ xi

xi−1

dφi

dx φidx

]

+
hc

2

[∫ xi

xi−1

dφi−1
dx

dφi−1
dx dx

∫ xi

xi−1

dφi

dx
dφi−1

dx dx∫ xi

xi−1

dφi−1
dx

dφi

dx dx
∫ xi

xi−1

dφi

dx
dφi

dx dx

]
,

or,

Se =
ε

h

[
1 −1
−1 1

]
+

c

2

[−1 1
−1 1

]
+

c

2

[
1 −1
−1 1

]
. (24)

b1 takes the form,

b1 = −ε

∫ 1

0

u0
dφ0

dx

dφ1

dx
dx− c

∫ 1

0

u0
dφ0

dx
φ1dx− c

h

2

∫ 1

0

u0
dφ0

dx

dφ1

dx
dx,

or,

b1 =
ε

h
u0 +

c

2
u0 +

c

2
u0.

Note that the discretization of u(x, t) is not changed. Now S and b are determined
as usual and the equation (21) is used for the numerical solution. The solution
obtained by the Streamline Upwind Petrov Galerkin (SUPG) method is shown in
Figure 5, along with the exact solution, u(x) = 1

1−em (emx − em) , m = c
ε . Again, we

used ε = 0.1, c = 4, but with the test function w(x). We observe that the numerical
solution in this case is smooth but it deviates from the analytical solution, where
u(x) varies sharply. This clipping effect is due to the artificial diffusion term and
it can be reduced by taking a finer mesh. The result shown in Figure 6 indicates
this fact. We expect that u → u as n →∞. Again, a finer mesh means that extra
memory and more computational time is required. For the current problem, a finer
mesh also eliminates the need of SUPG method.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x −−>

Solution u

SUPG
Exact Solution

Figure 5. The solution of the convection-diffusion equation, ε =
0.1, c = 4, u(0) = 1, u(1) = 0, (1) by SUPG method with h = 0.1
and (2) analytically, u(x) = 1

1−em (emx − em) , m = c
ε ,.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x −−>

Solution u

SUPG
Exact Solution

Figure 6. The solution of the convection-diffusion equation, ε =
0.1, c = 4, u(0) = 1, u(1) = 0, (1) by SUPG method with h = 0.02
and (2) analytically, u(x) = 1

1−em (emx − em) , m = c
ε ,.

3.1. Solution of Transient Convection Diffusion Equation. Consider the fol-
lowing time-dependent convection-diffusion equation,

∂u(x, t)
∂t

+ c
∂u(x, t)

∂x
= D

∂2u(x, t)
∂x2

. (25)

u(0, t) = 1, u(1, t) = (2− t), u(x, 0) =
1

e− 1
(ex − 1) + 1.

Here D and c, represent the diffusion coefficient and the flow velocity and these
quantities are assumed to be constant. We can use the Newton-Cotes rule in case
c and D are specified by some given functions of x. Initial conditions u(x, 0) and
boundary values u(0, t) and u(1, t) are also given. After multiplying equation (25)
by a test function v(x) of our choice and integrating over the problem domain, we

8

get the weak formulation.
∫ 1

0

∂u(x, t)
∂t

v(x)dx + c

∫ 1

0

∂u(x, t)
∂x

v(x)dx = −D

∫ 1

0

∂u(x, t)
∂x

∂v(x)
∂x

dx. (26)

We divide our domain into n elements as explained in the previous section, then
the discretization of u(x, t) is done as follows

u(x, t) ≈
n∑

j=0

uj(t)φj(x), where u0(t) and un(t) are given.

For brevity, we will use the notation uj(t) = uj and φj(x) = φj .
∫ 1

0

∂

∂t

n∑

j=0

ujφjφidx + c

∫ 1

0

∂

∂x
(

n∑

j=0

ujφj)φidx = −D

∫ 1

0

∂

∂x
(

n∑

j=0

ujφj)
∂φi

∂x
dx,

i = 1, 2, .., n− 1.

(27)

or,

d

dt

n−1∑

j=1

uj

∫ 1

0

φjφidx = −c

n−1∑

j=1

uj

∫ 1

0

dφj

dx
φidx−D

n−1∑

j=1

uj

∫ 1

0

dφj

dx

dφi

dx
dx + bi,

(28)

where,

bi =





−u0

∫ x1

x0

(
D dφ0

dx
dφ1
dx + cdφ0

dx φ1

)
dx, for i = 1,

−un

∫ xn

xn−1

(
D dφn

dx
dφn−1

dx + cdφn

dx φn−1

)
dx, for i = n− 1,

0, 1 < i < n− 1,

or,

bi =





u0
D
h + u0

c
2 for i = 1,

un
D
h − un

c
2 , for i = n− 1,

0, 1 < i < n− 1.

The matrix form of the equation(28) is given by,

M
du

dt
= −Su + b, (29)

(30)

where the (i, j)th element of the mass matrix M is,

Mi,j =
∫ 1

0

φiφjdx.

Its element matrix Me is given by,

Me = D

[∫ xi

xi−1
φi−1(x)φi−1(x)dx

∫ xi

xi−1
φi(x)φi−1(x)dx∫ xi

xi−1
φi−1(x)φi(x)dx

∫ xi

xi−1
φi(x)φi(x)dx

]
, (31)

or,

Me =
h

6

[
2 1
1 2 .

]
(32)

The procedure for the assembly of the matrix M is exactly the same as for the
matrix S. Applying the the Forward Euler scheme for the time discretization, we
have,

M
up+1 − up

∆t
= −Sup + bp, (33)
9

where p is the time index. We have taken a time step ∆t = 0.01, hence p = 1, 2, 3...
corresponds to ∆t, 2∆t, 3∆t..., in the time scale. Equation (33) can be written as,

up+1 = (I −∆tM−1S)up + ∆tM−1bp. (34)

Note that up is already computed in the previous iteration p. This time-discretization
scheme is called “explicit”. In the explicit scheme we are faced with a stability con-
dition. Let λ be an eigenvalue of I − ∆tM−1S, then ∆t should be chosen such
that,

|λ| ≤ 1, ∀ λ.

Otherwise we will have an unstable result. For the current example we have, h =
0.1, ∆t = 0.01, n = 10, D = 1, u(0, t) = 0, u(1, t) = (1−t), u(x, 0) = e

e−1 (1−e−x).
The result is shown in Figure 7.

0
20

40
60

80
100

0
0.2

0.4

0.6
0.8

1
1

1.2

1.4

1.6

1.8

2

p

u(x,t)

x

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 7. The numerical solution of the time dependent
convection-diffusion equation by SGA, D = 1, c = 1, u(0, t) =
1, u(1, t) = (2− t), u(x, 0) = 1

e−1 (ex − 1) + 1

Implicit Scheme: If we use Backward Euler scheme for equation (30), we have

M
up+1 − up

∆t
= −Sup+1 + bp+1.

Let G = (M + ∆tS)−1, then,

up+1 = GMup + ∆tGbp+1.

This equation is implemented in MATLAB. The result is not shown because it is
visually the same as for the explicit case. An advantage of the implicit method is
that it is unconditionally stable. But, in general, it is relatively more demanding in
terms of use of memory and processing time.

3.2. Solution of the Non-Linear Burgers’ Equation by Finite Elements.
Consider the following non-linear equation, also called Burgers’ Equation,

∂u(x, t)
∂t

+ u(x, t)
∂u(x, t)

∂x
= D

∂2u(x, t)
∂x2

, (35)

u(0, t) = 1, u(1, t) = (2− t), u(x, 0) =
e

e− 1
(1− e−x) + 1.

The weak formulation of equation (35) is given by,
∫ 1

0

∂u(x, t)
∂t

v(x)dx +
∫ 1

0

u(x, t)
∂u(x, t)

∂x
v(x)dx = −D

∫ 1

0

∂u(x, t)
∂x

∂v(x, t)
∂x

dx. (36)

10

In this equation the non-linear term u∂u
∂x is the difficult part. It can be treated by

a number of ways. One option is that we use the same discretization for every u,
given by,

u(x, t) ≈
n∑

j=0

uj(t)φj(x), (37)

where u0(t) and un(t) are known. With this scheme, the given non-linear equation
takes the form,

∫ 1

0

∂

∂t

n∑

j=0

ujφjφidx +
∫ 1

0

n∑

j=0

ujφj

(
∂

∂x

n∑

k=0

ukφk

)
φidx

= −D

∫ 1

0

∂

∂x
(

n∑

j=0

ujφj)
∂φi

∂x
dx, i = 1, 2, .., n− 1,

(38)

or,

d

dt

n−1∑

j=1

uj

∫ 1

0

φjφidx = −D

n−1∑

j=1

uj

∫ 1

0

dφj

dx

dφi

dx
dx− Li + bi, i = 1, 2, ..., n− 1,

(39)

where Li results from the non-linear term and bi contains the boundary values.
Computation of Li, i.e., the discretized form of the non-linear term in the ith row
is given by,

Li =
∫ 1

0

(
n∑

k=0

ukφk

) 
 ∂

∂x

n∑

j=0

ujφj


 φidx, i = 2, 3.., n− 2. (40)

We will determine L1 and Ln−1 separately, because they are slightly different from
the general form Li. Now considering only the nonzero terms in equation (40), we
have,

Li =
∫ xi

xi−1

(ui−1φi−1 + uiφi)
(

ui−1
dφi−1

dx
+ ui

dφi

dx

)
φidx+

∫ xi+1

xi

(uiφi + ui+1φi+1)
(

ui
dφi

dx
+ ui+1

dφi+1

dx

)
φidx,

Li =
1
h

(−ui−1 + ui)
∫ xi

xi−1

(ui−1φi−1 + uiφi)φidx+

1
h

(−ui + ui+1)
∫ xi+1

xi

(uiφi + ui+1φi+1)φidx,

Li =
1
h

(−ui−1 + ui)
(

ui−1
h

6
+ ui

h

3

)
+

1
h

(−ui + ui+1)
(

ui
h

3
+ ui+1

h

6

)
,

Li =
1
6
[−(ui−1)2 − ui−1ui + uiui+1 + (ui+1)2].

Now L1 and Ln−1 are given by,

L1 =
1
6
[−u0u1 + u1u2 + (u2)2],

Ln−1 =
1
6
[−(un−2)2 − un−2un−1 + un−1un].

11

In L1 and Ln−1, we did not consider −1
6 u2

0 and 1
6u2

n. These known values are taken
by b1 and bn−1, respectively,

b1 =
(u0)2

6
+ u0

D

h
,

bn−1 = − (un)2

6
+ un

D

h
.

The matrix form of equation (39) is given by,

M
du

dt
= −Su− L + b.

After applying the Euler Backward scheme, we get,

(M + ∆tS)up+1 = −∆tLp+1 + Mup + ∆tbp+1,

where p is a time index and Lp+1 = L(up+1). In a Picard iteration, we already have
up+1, either as an initial guess or a value close to the final solution, in case we have
convergence. Let G = (M + ∆tS)−1, then,

up+1 = G(−∆tLp+1 + Mup + ∆tbp+1).

Let b1 = G(Mup + ∆tbp+1), which is a constant for each time iteration p.

up+1 = −∆tGLp+1 + b1. (41)

This equation is solved by Picard Iteration. Picard iteration is used to solve non-
linear equations written in the form,

unew = f(uold). (42)

Where uold starts with an initial guess. We calculate unew by using equation (42).
In the next iteration, the value of unew is assigned to uold. This procedure goes on
until a stopping condition is satisfied. The iteration stops successfully if the infinity
norm of unew−uold

unew
is less than a specified value, i.e.,

max
(∣∣∣∣

unew − uold

unew

∣∣∣∣
)

< δ,

where δ is an acceptable error level. In this case we move on to the next time step.
If this condition is not met within a specified number of iterations or unew → ∞,
the Picard iteration stops, unsuccessfully. Equation (42) can be formulated in many
ways. If it is divergent in one form, it might converge in another form. For the
current time dependent problem, we used up as the initial guess in Picard iteration
for up+1. This procedure is more elaborated in Algorithm 1. The approximate
solution u(xj , p) is shown in Figure 8. In Algorithm 1, it can be seen that the
vector L is computed from up+1, but up+1 is taken from the previous Picard itera-
tion. Hence the entire non-linear term is treated at the previous Picard iteration.
Semi-Implicit and Fully Implicit Methods

We reconsider the non-linear problem (equation (35)), first discretize it in time
and then in space. In this way we take certain unknown variables at previous time
iteration p (the semi-implicit scheme), hence the problem is linearized.

up+1 − up

∆t
+ up ∂up+1

∂x
= D

∂2up+1

∂x2
, x ∈ (0, 1), p = 1, 2, 3, ..., (43)

12

0
20

40
60

80
100

0

0.2

0.4

0.6

0.8

1
1

1.2

1.4

1.6

1.8

2

p

u(x,t)

x
 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 8. The numerical solution of Burgers’ equation by SGA,
D = 1, u(0, t) = 1, u(1, t) = (2− t), u(x, 0) = 1

e−1 (ex − 1) + 1

Solution Algorithm for the Non-linear Burgers’ Equation

n=number of elements, h = 1
n , xj = jh, j = 0, 1, ..., n,

u0(t) = 0, un(t) = (1− t), u(x, 0) = 1
e−1 (ex − 1),

Initialize L, b, M , and S with zeros,
Compute Me, Se, M , S, and G,

Time Loop Starts with p=1,
up+1 = up, %serves as guess
Compute b1, bn−1, b1,

Picard Loop starts here,
Compute L,
y = −∆tGL + b1
If stopping condition=true, break Picard Loop
up+1 = y

Picard Loop Ends
If condition=divergence, break Time Loop

Time Loop Ends
Display results

where up = u(x, p∆t). The weak form and the corresponding space-discretization
are given by,

1
∆t

∫ 1

0

(
up+1 − up

)
v(x)dx +

∫ 1

0

up(x, t)
∂up+1

∂x
v(x)dx = −D

∫ 1

0

∂up+1

∂x

dv

dx
dx,

(44)

1
∆t

∫ 1

0

n∑

j=0

(
up+1

j − up
j

)
φjφi(x)dx +

∫ 1

0

(
n∑

k=0

up
kφk

) 
 ∂

∂x

n∑

j=0

up+1
j φj


 φidx

+D

∫ 1

0

∂

∂x




n∑

j=0

up+1
j φj


 dφi

dx
dx = 0, i = 1, 2, ..., n− 1.

(45)

13

In the following computations, we used a Newton-Cotes integration rule (the Trape-
zoidal rule given by equation (13)). The element stiffness matrix is determined in
the following way,

Se1,1 =
∫ xi

xi−1

(
up

i−1φi−1 + up
i φi

) dφi−1

dx
φi−1dx + D

∫ xi

xi−1

dφi−1

dx

dφi−1

dx
dx,

Se1,1 = −up
i−1

2
+

D

h
.

The complete element matrix is given by,

Se =
D

h

[
1 −1
−1 1

]
+

1
2

[−up
i−1 up

i−1

−up
i up

i

]
. (46)

Since, S is a function of up, therefore, Se and S are computed at each time iteration.
We will denote S by Sp. The mass element matrix Me is different in this case,
because we have not computed it analytically.

Me =
h

2

[
1 0
0 1

]
(47)

The mass matrix M is assembled as usual. The first element of the vector bp is
given by,

bp
1 = −

∫ 1

0

(up
0φ0 + up

1φ1)up+1
0

dφ0

dx
φ1dx−D

∫ 1

0

up+1
0

dφ0

dx

dφ1

dx
dx,

or,

bp
1 =

up+1
0 up

1

2
+

up+1
0 D

h
.

Similarly,

bp
n−1 = −up+1

n up
n−1

2
+

up+1
n D

h
.

Now the equation (45) written in a matrix form is given by,

M
up+1 − up

∆t
+ Spup+1 = bp, (48)

up+1 = (M + ∆tSp)−1 (Mup + ∆tbp) . (49)

The numerical solution is shown in Figure 9. Now we consider the fully implicit

0
20

40
60

80
100

0

0.2

0.4

0.6

0.8

1
1

1.2

1.4

1.6

1.8

2

p

u(x,t)

x
 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 9. The numerical solution of Burgers’ equation by the
semi-implicit scheme, D = 1, u(0, t) = 1, u(1, t) = (2 −
t), u(x, 0) = 1

e−1 (ex − 1) + 1

14

case. In this case, again Euler Backward scheme is used for discretization of the
time derivative but all other variables are taken at the current time iteration p + 1.
We used a Picard method to solve the non-linear problem, so it is linearized with
respect to Picard iteration. The time-discretized form of equation (35) is given by,

up+1
new − up

∆t
+ up+1

old

∂up+1
new

∂x
= D

∂2up+1
new

∂x2
, x ∈ (0, 1), p = 1, 2, 3, ... (50)

The method explained in Algorithm 3.2 is equivalent to the following linearization.

up+1
new − up

∆t
+ up+1

old

∂up+1
old

∂x
= D

∂2up+1
new

∂x2
, x ∈ (0, 1), p = 1, 2, 3, ... (51)

The element stiffness matrix corresponding to equation (50) is given by,

Se =
D

h

[
1 −1
−1 1

]
+

1
2

[−(up+1
i−1)old (up+1

i−1)old

−(up+1
i)old (up+1

i)old

]
, (52)

Similarly the matrix form corresponding to the discretization of equation (50) is
given by,

M
(up+1)new − up

∆t
+ (Sp+1)old(up+1)new =

(
bp+1

)
old

, (53)

(up+1)new =
(
M + ∆t(Sp+1)old

)−1 (
Mup + ∆t

(
bp+1

)
old

)
. (54)

Equation (54) is solved by Picard iteration. The result is close to the semi-implicit
case. For the comparison, their difference is shown in Figure 10. The difference
decreases with the increasing time.

0
20

40
60

80
100

0
0.2

0.4
0.6

0.8
1

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
−4

p

Relative Difference Between Semi− and Fully Implicit Solutions

x

−2

−1

0
x 10

−4

Figure 10. The difference in two solutions of Burgers’ equation
by Semi-Implicit and Fully-Implicit schemes, D = 1, u(0, t) =
1, u(1, t) = (2− t), u(x, 0) = 1

e−1 (ex − 1)

4. System of Non-linear Equations

In this section, we have computed a numerical solution for a system of nonlinear,
coupled equations. The system of equations is given by,

∂(ρh)
∂t

+
∂(ρhv)

∂x
= D1

∂2T

∂x2
+ q(x, t), (55)

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (56)

15

v(x, t) = −λ1
∂P

∂x
, (57)

P (x, t).V = RT (x, t), (58)

h(x, t) = cT (x, t). (59)

This is a one-dimensional, simplified case of the flow of a certain fluid through a
porous medium. The system is taken from Master Thesis of Abdelhaq Abouhafç.
In this system, the unknown variables are the density ρ(x, t), the velocity v(x, t),
the pressure P , the temperature T , and the enthalpy h(x, t). On the other hand
the volume V , the diffusion coefficient D1, the universal gas constant R, λ1, and
c are given constants. The source function q(x, t) is also known. In this section,
the symbol h and v are already taken, so we will use the symbol ∆x for the length
of an element and η(x) for the classical basis function. We have used both, the
semi-implicit and the fully implicit scheme to solve this problem. After eliminating
P and T , we rewrite the above system as,

∂(ρh)
∂t

+
∂(ρhv)

∂x
= D

∂2h

∂x2
+ q(x, t), (60)

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (61)

v(x, t) = −λ
∂h

∂x
, (62)

where D = D1/c and λ = λ1R
cV . From equation (60) and (61) we have,

ρ
∂h

∂t
+ h

∂ρ

∂t
+ h

∂(ρv)
∂x

+ ρv
∂h

∂x
= D

∂2h

∂x2
+ q(x, t), (63)

∂ρ

∂t
= −∂(ρv)

∂x
. (64)

Using equation (64) into equation (63), we have,

ρ
∂h

∂t
− h

∂(ρv)
∂x

+ h
∂(ρv)
∂x

+ ρv
∂h

∂x
= D

∂2h

∂x2
+ q(x, t), (65)

or,

ρ
∂h

∂t
+ ρv

∂h

∂x
= D

∂2h

∂x2
+ q(x, t). (66)

Using v = −λ∂h
∂x in equations (66) and (61) we have the following system of equa-

tions, ready to be solved numerically.

ρ
∂h

∂t
− λρ

∂h

∂x

∂h

∂x
= D

∂2h

∂x2
+ q(x, t), (67)

∂ρ

∂t
− λ

∂h

∂x

∂ρ

∂x
− λρ

∂2h

∂x2
= 0. (68)

The initial conditions and the boundary values are given by,

h(x, 0) = 3− x, h(0, t) = 2 + sin5t, h(1, t) = 2 + cost

ρ(x, 0) = 1.5− x, ρ(0, t) = 1.5
These equations are linearized in the same manner as in case of Burgers’ equation
i.e., not more than one variable is taken at current time index, in each term (semi-
implicit case). Equations (67) and (68) take the forms (with q(x,t)=0),

ρp hp+1 − hp

∆t
− λρp ∂hp

∂x

∂hp+1

∂x
= D

∂2hp+1

∂x2
, (69)

16

ρp+1 − ρp

∆t
− λ

∂hp

∂x

∂ρp+1

∂x
− λρp+1 ∂2hp

∂x2
= 0. (70)

Now the weak form of equation (69) and (70) is given by,

1
∆t

∫ 1

0

ρp
(
hp+1 − hp

)
η(x)dx− λ

∫ 1

0

ρp ∂hp

∂x

∂hp+1

∂x
η(x)dx = −D

∫ 1

0

∂hp+1

∂x

dη

dx
dx,

(71)

1
∆t

∫ 1

0

(
ρp+1 − ρp

)
w(x)dx− λ

∫ 1

0

∂hp

∂x

∂ρp+1

∂x
w(x)dx

−λ

∫ 1

0

ρp+1 ∂

∂x

(
∂hp

∂x

)
w(x)dx = 0. (72)

We have used the following discretization for unknown variables,

h(x, t) ≈
n∑

i=0

hi(t)φi(x), ρ(x, t) ≈
n∑

i=0

ρi(t)φi(x).

Now the discretization of equation (71) is given by,

1
∆t

∫ 1

0

n∑

k=0

ρp
kφk

n∑

j=0

(hp+1
j − hp

j)φjφidx− λ

∫ 1

0

n∑

k=0

ρp
kφk

n∑

l=0

hp
l

∂φl

∂x

n∑

j=0

hp+1
j

∂φj

∂x
φidx

= −D

∫ 1

0

n∑

j=0

hp+1
j

∂φj

∂x

dφi

dx
dx i = 1, 2..., n− 1.

(73)

We will use this equation to find the enthalpy h. Therefore we add an h subscript to
the matrices corresponding to this equation. The first element of the mass element
matrix Mhe , is given by,

Mhe1,1
=

∫ xi

xi−1

(
ρp

i−1φi−1 + ρp
i φi

)
φi−1φi−1dx =

∆x

2
ρp

i−1, (74)

where we have used a Newton-Cotes integration rule (the trapezoidal rule). The
complete element matrix Mhe is given by,

Mhe =
∆x

2

[
ρp

i−1 0
0 ρp

i

]
. (75)

Similarly, the first element in the stiffness element matrix She , is determined as
follows,

She1,1
= −λ

∫ xi

xi−1

(
ρp

i−1φi−1 + ρp
i φi

) (
ρp

i−1

dφi−1

dx
+ ρp

i

dφi

dx

)
dφi−1

dx
φi−1dx

−D

∫ 1

0

∂φi−1

∂x

dφi−1

dx
dx,

(76)

She1,1
=

λ

2∆x

(−hp
i−1 + hp

i

)
ρp

i−1 +
D

∆x
. (77)

The complete element matrix She is given by,

She =
λ

2∆x

(−hp
i−1 + hp

i

) [
ρp

i−1 −ρp
i−1

ρp
i −ρp

i

]
+

D

∆x

[
1 −1
−1 1

]
. (78)

From these element matrices, we assemble global matrices, Mh and Sh. Let bh be a
vector, which includes boundary values corresponding to variables in equation (69).

17

Then bh1 = −Sh2,1h0 and bhn−1 = −Shn−1,n
hn. The element matrices corresponding

to equation (72) are given as follows (Streamline Upwind Petrov-Galerkin applied),

Mρe =
∆x

4

[
1 −1
1 3

]
, (79)

Sρe =
λ

(−hp
i−1 + hp

i

)

2∆x

[
0 0
2 −2

]
. (80)

The final equations in the matrix form are given by,

hp+1 = (Mp
h + ∆tSp

h)−1 (Mp
hhp + ∆tbp

h) ,

ρp+1 =
(
Mρ + ∆tSp

ρ

)−1 (
Mρρ

p + ∆tbp
ρ

)
.

The numerical solution obtained from these equations is shown in Figure 11 for two
time resolutions ∆t = 0.01 and ∆t = 0.1. The remaining variables, v, P , and T are
computed as post processing. In case of fully implicit scheme, equation (67) and

0
50

100

0

0.5

1
1

2

3

p

h

x 0
50

100

0

0.5

1
0

1

2

p

ρ

x

0
5

10

0

0.5

1
1

2

3

p

h

x 0
5

10

0

0.5

1
0

1

2

p

ρ

x

∆ t = 0.01

∆ t = 0.1

Figure 11. The numerical solution of h and ρ, D = 1, q = 0,∆x =
0.1, h(x, 0) = 3−x, h(0, t) = 2+ sin5t, h(1, t) = 2+ costρ(x, 0) =
1.5− x, ρ(0, t) = 1.5

(68) are linearized in the following way (q=0),

(
ρp+1

)
old

(
hp+1

)
new

− hp

∆t
− λ

(
ρp+1

)
old

∂
(
hp+1

)
old

∂x

∂
(
hp+1

)
new

∂x
= D

∂2
(
hp+1

)
new

∂x2
,

(81)

(
ρp+1

)
new

− ρp

∆t
− λ

∂
(
hp+1

)
old

∂x

∂
(
ρp+1

)
new

∂x
− λ

(
ρp+1

)
new

∂2
(
hp+1

)
old

∂x2
= 0.

(82)

18

Where the subscript ’old’ indicates the value at previous Picard iteration. The
element matrices are given by,

Mhe
=

∆x

2




(
ρp+1

i−1

)
old

0

0
(
ρp+1

i

)
old


 . (83)

She
=

λ

2∆x

(
−

(
hp+1

i−1

)
old

+
(
hp+1

i

)
old

)



(
ρp+1

i−1

)
old

−
(
ρp+1

i−1

)
old(

ρp+1
i

)
old

−
(
ρp+1

i

)
old


 +

D

∆x

[
1 −1
−1 1

]
. (84)

Sρe
=

λ
(
−

(
hp+1

i−1

)
old

+
(
hp+1

i

)
old

)

2∆x

[
0 0
2 −2

]
. (85)

The final equations in the matrix from are given by,
(
hp+1

)
new

=
((

Mp+1
h

)
old

+ ∆t
(
Sp+1

h

)
old

)−1 ((
Mp+1

h

)
old

hp + ∆t
(
bp+1
h

)
old

)
,

(
ρp+1

)
new

=
(
(Mρ + ∆t

(
Sp+1

ρ

)
old

)−1 (
Mρρ

p + ∆t
(
bp+1
ρ

)
old

)
.

In Figure 12, the relative difference h1−h2
h2

and
ρ
1
−ρ

2
ρ
2

is shown, where h1 and h2 come
respectively from semi-implicit and fully implicit solutions. A similar argument
applies to ρ

1
and ρ

2
. The difference is more noticeable where the gradient is large

in actual variables.

0

50

100

0

0.2

0.4

0.6

0.8

1
−10

−8

−6

−4

−2

0

2

x 10
−3

p

(h
1
−h

2
)/h

2

x 0

50

100

0

0.2

0.4

0.6

0.8

1
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

p

(ρ
1
−ρ

2
)/ρ

2

x

Figure 12.
h1−h2

h2
and

ρ
1
−ρ

2
ρ
2

, D = 1, q = 0, ∆x = 0.1, h(x, 0) =

3− x, h(0, t) = 2 + sin5t, h(1, t) = 2 + costρ(x, 0) = 1.5− x, ρ(0,
t) = 1.5

5. Finite Elements in Two Dimensions

We have divided the two-dimensional unit domain into triangular elements. The
mesh and the element topology is shown in Figure 13. Total number of elements in
this case is n = 2(nx−1)(ny−1), where nx and ny are the node count in respective

19

directions. We have considered 2-node boundary elements. Total number of bound-
ary elements are 2(nx− 1)+2(ny − 1) = 2(nx +ny)− 4. For two-dimensional prob-
lems throughout this report, we maintained this convention for node and boundary
numbering order.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

31 2 4

5 6 7 8

9 11 12

13 14 15 16

18

21 22 23 24

31 32

Γ
1

Γ
2Γ

4

6

19 20

28
18

26

Γ
3

17
13 14 15

17
16

22 24

9 10

543

23

20

10
87

12
11

19
27

21 25

1
2

29 30

25

Figure 13. A 5x5 mesh, red numbers indicate nodes and blue
number are the element labels. Γi are the non-overlapping bound-
ary segments

Again, the linear basis functions φ(x) has been used. Where x = [x, y]T and
φ(x) is defined as,

φ(x) = a + bx + cy, (86)

φi(xj) = δij . (87)

For a typical element ek, with nodes x1, x2, and x3, the basis function is determined
by using equations (86) and (87), given by,




a1 a2 a3

b1 b2 b3

c1 c2 c3







1 x1 y1

1 x2 y2

1 x2 y2


 =




1 0 0
0 1 0
0 0 1


 , (88)

where,

xk = [xk, yk]T , k = 1, 2, 3.

All the coefficients are determined by solving equation (88) and they are given by,

b1 = 1
∆ (y2 − y3) , b1 = 1

∆ (y3 − y1) , b1 = 1
∆ (y1 − y2) ,

c2 = 1
∆ (x3 − x2) , c2 = 1

∆ (x1 − x3) , c2 = 1
∆ (x2 − x1) ,

a1 = 1− b1x1 − c1y1, a2 = 1− b2x2 − c2y2, a3 = 1− b3x3 − c3y3.
(89)

Where ∆ = (x2 − x1)(y3 − y2) − (y2 − y1)(x3 − x2), which also is twice the area
of the triangle. Hence we require non-zero area for all elements. For the triangular
elements, the following Newton-Cotes quadrature rule has been used:

∫

Ω

g(x)dΩ =
|∆|
6

(g(x1) + g(x2) + g(x3)) . (90)

20

5.1. Poisson Equation in Two Dimensions. The steady-state diffusion equa-
tion in two dimensions is given by,

−−→∇ .
(
D
−→∇u

)
= f(x), on Ω (91)

u = 2− x, at Γ1,
u = 1 + x, at Γ3,
∂u
∂n̂ = 0, on Γ2 ∪ Γ4,

where,
−→∇ = 〈 ∂

∂x
,

∂

∂y
〉,

and n̂ is the outward pointing unit normal vector. The computational domain
is represented by the open region Ω, while Γ = ∪4

i=1Γi represents the domain
boundary. The weak form of equation (91) is given by the following equation.

−
∫

Ω

−→∇ .
(
D
−→∇u

)
η(x)dΩ =

∫

Ω

f(x)η(x)dΩ. (92)

Using Gauss Theorem, we have,

D

∫

Ω

−→∇u.
−→∇η(x)dΩ−D

∫

Γ

∂u

∂n̂
η(x)dΓ =

∫

Ω

f(x)η(x)dΩ. (93)

We take η(x) = 0 for x ∈ Γ1 ∪ Γ3. This makes the boundary integral
∫
Γ

∂u
∂n̂η(x)dΓ

equal to zero because ∂u
∂n̂ = 0 for x ∈ Γ2 ∪ Γ4. After eliminating the boundary

integral, the discretized form of equation (93) is given by,

D

∫

Ω

n∑

j=1

uj
−→∇φj(x).

−→∇φi(x)dΩ =
∫

Ω

f(x)φidΩ,

∀i ∈ {1, 2, ..., n} for which xi /∈ Γ1 ∪ Γ3. (94)

The element matrix Se pertaining to the kth element ek is computed as follows,

Sei,j = D

∫

Ω

−→∇φj(x).
−→∇φi(x)dΩ =

|∆|
6

(bibj + cicj) , i, j = 1, 2, 3. (95)

Let xk1
, xk2

, and xk3
be three nodes of ek. Then the stiffness matrix S is updated

in the following way,

Ski,kj = Ski,kj + Sei,j , i, j = 1, 2, 3, k = 1, 2, ..., n.

A similar procedure is followed for the right-hand side of equation (94) i.e., the
element vector f

e
is determined for all elements and the global vector f is updated

accordingly. Equation (94) written in a matrix form is given by,

Sn×nun = f
n
. (96)

Next we partition vectors and the matrix in the above equation such that all the
known values in un could be taken to the right hand side of the equation. Let
n = m+ r such that um are unknown values and ur are given values (from essential
boundary conditions) i.e., we rearrange equation (96) for rows and columns for this
purpose. Equation (96) is rewritten as,

(S)m+r×m+r (u)m+r =
(
f
)
m+r

, (97)

or,
[

Sm×m Sm×r

Sr×m Sr×r

] [
um

ur

]
=

[
f

m
f

r

]
. (98)

From this equation we have,

Sm×m um + Sm×r ur = f
m

,
21

or,
Sm×m um = f

m
− Sm×r ur,

or,
u = S−1

(
f + b

)
,

where b = −Sm×r ur

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1
1

1.2

1.4

1.6

1.8

2

x
y

 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 14. The numerical solution of the diffusion equation,
D = 1, f = 1

5.2. Convection-Diffusion Equation in Two-Dimension. Given the problem,

−−→∇ .
(
D
−→∇u

)
+−→v .

−→∇u = 0, (99)

u = 1, at Γ1,
u = 2, at Γ3,
∂u
∂n̂ = 0, at Γ2 ∪ Γ4.

Let SD
e and SC

e be element matrices due to diffusion and convection terms respec-
tively. We have computed SD

e in the previous section and the other part is given
by,

SC
ei,j

= −→v .

∫

Ω

−→∇φj(x)φi(x)dΩ =
|∆|
6

(vxbj + vycj) , i, j = 1, 2, 3. (100)

The numerical solution of equation (99) is shown in Figure 15. Now boundary

0

0.5

1

0

0.5

1
1

1.2

1.4

1.6

1.8

2

x

u

y

Figure 15. Numerical Solution of Steady-State Convection-
Diffusion equation, D = 1, nx = ny = 5

22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.648

1.6485

1.649

1.6495

1.65

1.6505

1.651

1.6515

1.652

u(x,y
0
), y

0
=0.75

x

Figure 16. Graph of u(x, y0), y0 = 0.75) expected to be con-
stant, D = 1, nx = ny = 5

conditions are such that all variations are in the y-direction and we expect a constant
solution in the x-direction. In Figure 16 we have shown the solution u(x, y0), y0 =
0.75. We observe a small variation even in the x-direction. In order to investigate
the cause of this, we divide our domain into two elements, shown in Figure 17 and
take the following boundary conditions,

u = 1, at Γ1,
∂u
∂n̂ = 1, at Γ3,
∂u
∂n̂ = 0, at Γ2 ∪ Γ4.

Only two element matrices Se1 and Se2 are to be determined in this case. Taking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h

h

e
1

e
2

2
1

4
3

Figure 17. Computational Domain with two elements

vx = 0 everywhere, we have the element matrix due to the convection part,

SC
ei,j

=
|∆|
6

vycj , i, j = 1, 2, 3, (first element). (101)

It is clear from equation (89) that cj can be expressed in terms of h and ∆. Hence
we can write,

SC
ei,j

= hβj , (102)

where h is defined in Figure 17 and βj = vy
∆cj

6h is independent of the element
dimension h and the area ∆

2 (because cj ∝ h
∆). The complete element matrix for

23

the first element e1 is given by,

SC
e1

=




hβ1 hβ2 hβ3

hβ1 hβ2 hβ3

hβ1 hβ2 hβ3


 =

vy

6



−1 0 1
−1 0 1
−1 0 1


 . (103)

With current topology β2 is always zero (regardless of h and ∆ values). We update
the global matrix SC and it is given by,

SC =




hβ1 0 0 hβ3

hβ1 0 0 hβ3

0 0 0 0
hβ1 0 0 hβ3


 . (104)

Similarly SC
e2

and the updated SC are given by,

SC
e2

=




hβ1 hβ3 0
hβ1 hβ3 0
hβ1 hβ3 0


 =

vy

6



−1 1 0
−1 1 0
−1 1 0


 , (105)

SC =




2hβ1 0 hβ3 hβ3

hβ1 0 0 hβ3

hβ1 0 hβ3 0
2hβ1 0 hβ3 hβ3


 . (106)

Now we come to the diffusion part;

SD
e1

=
∆
2

(bibj + cicj) , i, j = 1, 2, 3. (107)

From equations (89) and (107), it is obvious that SD
e1

is independent of h and ∆.
The diffusion part of the stiffness matrix (computed from SD

e1
and SD

e2
) is given by,

SD =
1
2




2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


 , (108)

which is symmetric about both diagonals. Therefore we can write it in the following
form;

SD =




d1 d2 d3 d4

d2 d1 d4 d3

d3 d4 d1 d2

d4 d3 d2 d1


 , (109)

where d1 = 1, d2 = − 1
2 , d3 = − 1

2 , and d4 = 0. The stiffness matrix is given by the
following equation.

S = SD + SC =




2hβ1 + d1 d2 hβ3 + d3 hβ3 + d4

hβ1 + d2 d1 d4 hβ3 + d3

hβ1 + d3 d4 hβ3 + d1 d2

2hβ1 + d4 d3 hβ3 + d2 hβ3 + d1


 . (110)

The vector b is determined as,
[

b3

b4

]
=

[
S3,1 S3,2

S4,1 S4,2

] [
u1

u2

]
, (111)

or,
[

b3

b4

]
=

[
hβ1 + d3 d4

2hβ1 + d4 d3

] [
1
1

]
=

[
hβ1 + d3 + d4

2hβ1 + d3 + d4

]
. (112)

24

Now unknown values u3 and u4 are determined as,
[

u3

u4

]
=

[
S3,3 S3,4

S4,3 S4,4

]−1 ([
b3

b4

]
+

[
1
1

])
, (113)

where the last vector on the right hand side comes from natural boundary condi-
tions,

[
u3

u4

]
=

1
∆s

[
hβ3 + d1 −d2

−hβ3 − d2 hβ3 + d1

] [
hβ1 + d3 + d4 + 1
2hβ1 + d3 + d4 + 1

]
, (114)

where ∆s = (hβ3 + d1) (hβ3 + d1)− d2 (hβ3 + d2).[
u3

u4

]
=

1
∆s

[
(hβ3 + d1) (hβ1 + d3 + d4 + 1)− d2 (2hβ1 + d3 + d4 + 1)
(−hβ3 − d2) (hβ1 + d3 + d4 + 1) + (hβ3 + d1) (2hβ1 + d3 + d4 + 1)

]
.

(115)

Finally we check for the variation the in x-direction;

∆u = u4 − u3 =
h

∆s
[hβ1β3 + β1d2 − β3 (hβ1 + d3 + d4 + 1)] , (116)

as h → 0, ∆s → d2
1 − d2

2 and ∆u → 0. It is clear from equation (116) that we
can not have constant numerical solution in x-direction with given conditions. This
effect can be reduced by using a finer mesh.

Further more, we consider only the diffusion part and set vy = 0. That makes
βi = 0 (βi = ∆

6hvyci). From equation (116) we have,

u4 − u3 = 0, (117)

i.e., we have no error in the x-direction.

6. FEM Model of Darcy Flow in Porous Medium

The system of non-linear equations is reconsidered here in two dimensions.

∂(ρh)
∂t

+
−→∇ .(ρh−→v) =

−→∇ .
(
D1
−→∇T

)
+ q(x, t), (118)

∂ρ

∂t
+
−→∇(ρ−→v) = 0, (119)

−→v (x, t) = −λ1
−→∇P (120)

P (x, t).V = RT (x, t), (121)

h(x, t) = cT (x, t). (122)

Initial and boundary conditions are also known. We apply the same procedure as
given in the section for system of equations in one dimension. The above system
can be reduced to the following two equations in two variables (without a source
term),

ρ
∂h

∂t
− λρ

−→∇h.
−→∇h =

−→∇ .
(
D
−→∇h

)
, (123)

∂ρ

∂t
− λρ

−→∇ .
−→∇h− λ

−→∇h.
−→∇ρ = 0. (124)

We take the following initial and boundary conditions,

h(x, t = 0) = 1− x

2
− y

2

ρ(x, t = 0) = 1− x

2
− y

2
25

h =





1− x
2 at Γ1,

1
2 − y

2 , at Γ2,
1
2 − x

2 , at Γ3,

1− y
2 at Γ4.

ρ =

{
1− x

2 at Γ1,

1− y
2 at Γ4.

Where Γ1, and Γ1 are inflow boundaries. The time discretization of equation (123)
and (124) is done as follows (semi-implicit scheme),

ρp hp+1 − hp

∆t
− λρp−→∇hp.

−→∇hp+1 =
−→∇ .

(
D
−→∇hp+1

)
, (125)

ρp+1 − ρp

∆t
− λρp+1−→∇ .

−→∇hp − λ
−→∇hp.

−→∇ρp+1 = 0. (126)

We have used Standard Galerkin Approximation for both equations. The element
stiffness matrix for equation (125) is computed as follows (the diffusion part SD

he
is

calculated in a previous section),

Shei,j
= −λ

∫

em

3∑

k=1

ρp
kφk

3∑

l=1

hp
l

−→∇φl.
(−→∇φj

)
φidΩ + SD

hei,j
, m = 1, 2..., n,

Shei,j
= −λ

∫

em

3∑

k=1

ρp
kφk

3∑

l=1

hp
l (bjbl + cjcl)φidΩ + SD

hei,j
.

Shei,j
= −λ

|∆|
6

ρp
i

3∑

l=1

hp
l (bjbl + cjcl) + SD

hei,j
.

The element mass matrix is given by,

Mhei,j
=

∫

em

3∑

k=1

ρp
kφkφjφidΩ =

|∆|
6

ρp
i δij . (127)

Similarly element matrices for equation (126) are given by,

Sρei,j
= −λ

|∆|
6

3∑

l=1

hp
l (bjbl + cjcl) , (128)

Mρei,j
=
|∆|
6

δij . (129)

The computation of b is explained in the section for the diffusion problem and the
matrix equations have the same notation as given for one-dimensional case, i.e.,

hp+1 = (Mp
h + ∆tSp

h)−1 (Mhhp + ∆tbp
h) ,

ρp+1 =
(
Mρ + ∆tSp

ρ

)−1 (
Mρρ

p + ∆tbp
ρ

)
.

The numerical solution of h and ρ is given in Figure 18. In Figure 19 the function ρ
is given at different iterations. We observe that it reaches a steady-state. This was
expected because the boundary values are independent of t. The matrix equations
for the fully implicit scheme are given by,

(
hp+1

)
new

=
((

Mp+1
h

)
old

+ ∆t
(
Sp+1

h

)
old

)−1 ((
Mp+1

h

)
old

hp + ∆t
(
bp+1
h

)
old

)
,

(
ρp+1

)
new

=
(
(Mρ + ∆t

(
Sp+1

ρ

)
old

)−1 (
Mρρ

p + ∆t
(
bp+1
ρ

)
old

)
.

The numerical result in this case is given in Figure 20.
26

0

0.5

1 0
0.5

1

0

0.2

0.4

0.6

0.8

1

y

h

x

0

0.5

1

00.20.40.60.81
0

0.5

1

1.5

x

ρ

y

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=100

Figure 18. The Numerical Solution of h and ρ with Semi-Implicit
Scheme, D = 1, ∆t = 0.01, p = 100.

0
0.5

1
0

0.5

1
0

0.5

1

x

ρ

y
0

0.5
1

0

0.5

1
0

0.5

1

x

ρ

y

0
0.5

1
0

0.5

1
0.5

1

1.5

x

ρ

y
0

0.5
1

0

0.5

1
0.5

1

1.5

x

ρ

y

p=10 p=50

p=100 p=1000

Figure 19. The Numerical Solution of ρ (with Semi-Implicit
Scheme) at different iterations p.

0

0.5

1

0

0.5

1
0

0.5

1

x

h

y
0

0.5

1

0

0.5

1
0.4

0.6

0.8

1

1.2

1.4

x

ρ

y 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1p=100

Figure 20. The Numerical Solution of h and ρ with Fully Implicit
Scheme, D = 1, ∆t = 0.01, p = 100.

7. Conclusions

In this report we computed numerical solutions starting with steady-state linear
problem in one dimension and ending with a system of coupled non-linear equations

27

in two dimensions. We observed a good agreement in numerical and analytical re-
sults where the comparison was possible to make. Initial and boundary conditions
effect the accuracy and stability of the solution, especially when they are discontin-
uous or the gradient is large. For non-linear problems, the Picard method worked
reasonably well. For further work, few of the equations in the system we treated,
should be replaced with more realistic modeling. The non-trivial problem domains
should also be considered. The accuracy and the stability issues are also there for
the said system. Furthermore, the said system should be discretized in conservative
form so that numerical results should reflect the physical laws, realistically.

References

[1] Klaus A. Hoffmann, ”Computational Fluid Dynamics, Vol I”, 4e, EES, Wichita, USA, 2000
[2] J. van Kan, A Segal, F. Vermolen, ”Numerical Methods in Scientific Computing”, VSSD,

2004
[3] Randall J. Leveque, “Finite Volume Methods for Hyperbolic Problems”, Cambridge Univer-

sity Press, USA, 2002.
[4] J.N. Reddy, “An Introduction to the Finite Element Method”, 2e, McGraw-Hill, 1993.

28

