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Summary

A new method to solve multi-phase fluid flow problems is depetbat TNO and presented in [A. R. J. Arendsen,
A. |. van Berkel, A. B. M. Heesink, and G. F. Versteeg. Dynamigdelling of thermal processes with phase
transitions by means of a density-enthalpy phase diagrém@rld Congress of Chem. Eng., Glasgow, 2005]
for spatially homogeneous systems. In the current paperppdy this method for up to 2 fluid systems
by using finite elements for spatial discretization. Thegitgrenthalpy method eliminates the requirement of
separate sets of equations for various phases and netessfitaer parametric assumptions.
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1. Introduction

In this paper, a new method for modeling multi-phase flowprésented for 0-, 1- and 2-dimensional fluid sys-
tems. We will call this methothe density-enthalpy method because a density-enthalpy phase diagram (hence-
forth p-h diagram) plays an important role in it. Physical models fatirphase fluid systems in porous media
have applications in industrial processes such as drytegys production, and freezing. These models are
meant to simulate the processes and to enhance the quajitpadcts. Food items, in general, can be con-
sidered as porous medium (bread, potato etc). In the coofexie density-enthalpy method, Arendsen has
presented many applications in his work [1, 2, 3] (a boilestesn, potato drying etc). The so called Stefan
problems are typically solved by methods such as the letelsoving-grid, and the phase-field model. For the
description, application, and the comparison of these tspdee [6, 7, 8] and the references therein. Level-set
and moving-grid models use a sharp interface between adjpbases. In contrast, the phase-field model al-
lows a diffuse region where, for example, the mass densiiyd®n the two coexisting phases varies smoothly
from one phase to the other [7]. Advantages and disadvast@iggommon approaches for modeling thermal
processes with phase change are compared with the den#ighgy method in [1, 2]. It is common practice to
solve the heat or mass balance equations alone or to assumstartoboiling pressure and temperature. Arend-
sen also explained that only taking heat or mass balancéidsfeaa limited range and that their physical basis
is incomplete. Furthermore, the assumption of constaniemhpressure and a fixed phase-change temperature
profile cannot always be justified [1, 4]. Another drawbackhaf aforementioned approaches is that they keep
track of the phase change, which might take place only for allsime interval as compared to the whole
process. Then these methods switch to another set of egsiatibh a change in phase, which might cause
numerical instabilities.

In this paper we use the mass and energy balances togethasauignsity and enthalpy as our state vari-
ables. These coupled partial differential equations dkeddoy using finite elements, with a Streamline Upwind
Petrov-Galerkin approach for the convective partp-A diagram is then used to determine temperature, pres-
sure and mass fractions [1]. The obtained results are equajualitatively on the basis of physical laws. This
method does not require a constant ambient pressure or taobpbase change temperature. In our view, the
density-enthalpy method is potentially a better approaahadel multi-phase fluid systems.
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2. Problem Definition

We consider the flow of propan€'; Hg) in a unit square and theh diagrams used are therefore only for this
substance. The mathematical model for the two-dimensiysiém is given by the following partial differential
equations.

% +V - (pT) =0, z€Q, t>1t, (mass conservation) (1)
h
a(gt ) +7- (phv') = v (A?T) +q, z€Q, t>t, (energy conservation), )
K
v = —Z€P, (Darcy Law), (3)

where the permeability<, dynamic viscosityu, and heat diffusivity are assumed to be constants gnid

a heat source. We neglected gravitational effects. Defigityand enthalpy(h) are taken as state variables.
All other variables, temperatu(d’), pressurd P), and gas mass fractiqiX;) are computed by using theh
diagram [1]. Along with initial conditions, we use Robin baary conditions. The external mass transfer is
proportional to the difference in the internal dengity and the ambient density, ),

pV T = kn(p— pa), t>to, zET,
where k,,, is a mass transfer coefficient. The heat transport acrosbdhedaries takes place if there is a

difference in temperature or a difference in density, actmsindaries, i.e.,

h|rk —pa)y, ifp—ps>00nT, .
(ph)?.ﬁ:{ [k (p = pa) P Pa (heat transport, convective part),

hakm(p — pa), ifp—pa <OonT,
AVT. 7R = kn(T —T,), t>tg, z €', (heattransport, diffusive part),

where 7’ is a unit vector normal to the boundaryandk;, is a heat transfer coefficient. For the one-dimensional
case, we assume that there is no mass and heat gradieaha:-directions.

3. Method Description

In the domairg?, the density is approximated by,
N
plz,t) = pi(t)o;(z),
j=1

where¢;(x) is a piecewise linear basis function apg¢) is the nodal density. We take= ph and discretize
all variables in a similar way. For the computation of the snamtrix //(1), the stiffness matrix(!) and the
vector (1), we refer to [5]. The semi-discrete, weak form correspogdinequation (1) is given by,

dp

MO E g, p1)
i SWp+ F
Following similar arguments, the weak form resulted fromadgpn (2) is given by,
W% _ 5@ 4 FO).
; s+ 1L

The velocity v is determined as a post processing step. For the time disatien of the given matrix equations,
we use a semi-implicit scheme.

Once the system given by equations (1)-(3) is solvedifand p, the p-h diagram is used to finé®, T', and
Xa.



4. Numerical Results

In our numerical experiments, we used various boundary mitidliconditions to simulate several thermody-
namic systems. This included, for example, an isolatedesygor mass and hedk,, = 0, k, = 0), open
system for masék,,, # 0), open system for hedt;, # 0), and open system for mass and heat etc. Simulation
results for one of the experiments are given in Figure 1. $hgem is open to mass, that is, mass can flow
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Figure 1: Plots of simulation results from a one-dimendieyatem open to mass, (a) density=af, 0.5, 5 sec,
(b) total enthalpy, (c) temperature, (d) pressure, (e) gassrfraction, and (f) total mass flown out of the system.

into the system or out of the system. In this experiment wecosstant initial conditions, as shown in Figure
1(a)-(e). Since the density inside the system is higher tharambient density, mass flows out. A decrease in
density results in a decrease in total enthalpy) as well as in temperatur@’) and pressuréP), as shown

in Figure 1(b)-(d). An increase in the gas mass fractidh;) is the result of a decrease in the dengity.

In Figure 1(f) a graph for the total mass transfer across yls&es boundaries is given. The time instant at
which system’s internal density becomes equal to the arhidiemsity, mass transfer across boundaries stops.
For the simulation of the two-dimensional fluid system, jadlyt shown in Figure 2, we use the same initial and
boundary conditions as we use for the one-dimensional amafign. In this figure, we have given graphs for
p andh at various time instances (with a coarser grid). We do no¢ifesa significant relative error when the
numerical results obtained by using one-dimensional maaetompared with the two-dimensional model.

As far as we know, an analytical solution of this system is anailable. Numerical results, in general,
are interpreted qualitatively on the basis of physical laimg[1] a zero-dimensional system is compared with
experimental data with a good matching. We also compareadhsdimensional system with the one- and
two-dimensional configurations (not shown in this absjract

5. Conclusions and further work

It is concluded that the density-enthalpy method can ssbas be applied, at least qualitatively, for multi-
phase fluid systems where we have certain spatial profilesylstem variables. At this moment, the time
discretization step\t is too small, even with a coarse grid. An option is to use aptde At and an adaptive
mesh. This is planned for future studies.
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Figure 2: Plots of results from two-dimensional simulasidor (up) the density at various instances, (down)
total enthalpy.
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