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NUMERICAL METHODS FOR INDUSTRIAL PROBLEMS WITH

PHASE CHANGES

IBRAHIM1, F. J. VERMOLEN, C. VUIK, AND D. HEGEN

Abstract. In this report, we present mathematical modeling and numerical
solution of a porous media flow system. Propane (C3H8) is taken as the fluid
through a porous medium with a phase change between liquid and gas. The
mass balance and the energy balance (along with Darcy’s law) are the basic
ingredients of the mathematical model. We have used the numerical density-
enthalpy method to solve the system by taking density and enthalpy as state
variables whereas pressure, temperature, and gas mass fraction are computed
by using density-enthalpy phase diagrams. This approach of solving a multi-
phase fluid system eliminates the requirement of separate sets of equations for
various phases and necessitates fewer parametric assumptions.

1. Introduction

In a previous report [6] we described several numerical methods for solving simple
fluid systems by using finite elements (standard Galerkin approach and streamline
upwind Petrov-Galerkin method). In that report we gave some details about basis
functions and building (assembling) of global matrices from their element matri-
ces. We also applied and compared explicit, semi-explicit and fully implicit time
integration schemes. In the current report, we will give a mathematical model and
numerical solution of a multiphase porous fluid system. A new method called the

numerical density-enthalpy method is used to solve the system instead of a tradi-
tional method (level set, moving grid, or phase field method). The new approach
is more physical, it uses only one set of model equations for each phase, and re-
quires fewer parametric and environmental assumptions. For a detailed discussion
of these potential advantages of the new approach over traditional methods, we
refer to [1, 2, 5].
Before describing the actual problem, we provide some explanation of density-

enthalpy phase diagrams [1,2,5] which have an important role in our solution strat-
egy. Furthermore, it is also relevant to explain characteristics of hyperbolic partial
differential equations because such PDEs are part of the mathematical modeling
presented in this report.

1.1. Density-enthalpy phase diagrams. In this report we are using the mass
and the energy balances to model a fluid system. This mathematical model is
discretized and solved numerically for variables such as density ρ, temperature T ,
pressure P , enthalpy h, gas mass fraction XG, etc. We have taken the density (ρ)
and the enthalpy (h) as state variables which means that temperature, pressure and
mass fractions for various phases can be computed (directly from ρ and h), once
ρ and h are determined. The transformation from (ρ,h) to (T ,P ,XG) is achieved
through ρ-h phase diagrams. In Figure 1, three such diagrams are shown for Propane
(C3H8). In Figure 1(c), liquid and gas phases are labeled as ’L’ and ’G’ respectively.

1The author is indebted to HEC, Pakistan and NUFFIC, The Netherlands for their financial
and logistic support.
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Figure 1. (a) Plots of isotherms, (b) isobars, and (c) constant gas
mass fraction curves.

The transitional zone (between liquid and gas phases) is marked with ’L+G’ which
is noticeably larger than the ’L’ and ’G’ zones.

1.2. Characteristics of a hyperbolic partial differential equation. In the
next section, a hyperbolic differential equation appears in our mathematical model.
The mass conservation law as given in the following equation (along with initial and
boundary conditions) can be used to determine a one dimensional mass flow within
the fluid system and across the boundaries.

∂ρ

∂t
+

∂(ρv)

∂x
= 0, x ∈ [0, L], t > 0. (1)

In Figure 2, three sets of characteristics are shown using various velocity profiles.
Characteristics shown in Figure 2(b) corresponds to the velocity given in 2(a).
Therefore the information (e.g., about ρ(x, t)) flows from the left boundary into
the system. Hence we are required to specify a boundary condition for ρ at the
left boundary. The information is going out of the system from the right boundary
which implies that we do not have to impose a boundary condition for this boundary.
Similarly we specify a boundary condition for ρ at the right boundary for a case

(a) v > 0 (c) v < 0 (e) -v0 < v < v0  

0 0 0

(b) (d) (f)

x x x

t t t

v0

-v0 -v0

v0

x x x

0 L 0 L 0 L

0 L 0 L 0 L

Figure 2. Plots of ρ characteristics using various velocity pro-
files, (d) information flowing towards right, (e) information flowing
towards left, and (f) information is flowing outward from both ends.

as given in Figure 2(c) and (d). In Figure 2(e) and (f), the system is acting as a
source, for example due to initial conditions, and the information is going out of
the system from both ends. Hence no boundary condition can be imposed in this
case.
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2. One-dimensional fluid system

Let us consider a one-dimensional fluid (Propane) through a porous medium
which experiences phase change. The fluid can appear as a pure liquid or as a pure
gas, or as liquid and gas in thermodynamic equilibrium. The domain of computation
is a straight line of length L along the x-axis.

2.1. Mathematical modeling. The mathematical model considered is given as

∂ρ

∂t
+

∂(ρv)

∂x
= 0, x ∈ [0, L], t > 0, (2)

∂(ρh)

∂t
+

∂(ρhv)

∂x
−

∂

∂x

(

λ
∂T

∂x

)

= q, x ∈ [0, L], t > 0, (3)

v = −
K

µ

∂P

∂x
, x ∈ [0, L], t > 0. (4)

Equation (2) represents mass conservation, (3) energy conservation, and (4) is
Darcy’s law. We have neglected the gravitational effect because it is not impor-
tant in our Case Study (potato chips). This negligence can also be justified for
advection flow (shallow underground flow etc). For convenience, we name equation
(2) the mass equation and equation (3) the energy equation. The permeability K,
dynamic viscosity µ, and heat diffusivity λ are assumed to be constants and q is
a known heat source. Density (ρ) and enthalpy (h) are taken as state variables.
Other variables like temperature (T ), pressure (P ), and gas mass fraction (XG) are
computed by using the ρ-h diagram [1]. For a complete list of symbols and their
definitions, see Table 3.
Initial conditions are given by

ρ(x, 0) = ρ0(x), x ∈ [0, L],

h(x, 0) = h0(x), x ∈ [0, L]. (5)

For the mass equation, the mass flux across the boundary is proportional to the
difference in densities provided that ǫv < 0.

ρv = ǫkm(ρ − ρa), t > 0, x ∈ {0, L}, (6)

ǫ =

{

1, if x = L,

−1, if x = 0,

where km is a mass transfer coefficient and ρa is the ambient density. If ǫv ≥ 0, no
boundary condition is applicable for equation (2) as explained in Section 1.2. For the

energy equation, the boundary condition corresponds to the energy transportation
due to convection and diffusion and it is given by

−λ
∂T

∂x
+ (ρh)v = ǫkh(T − Ta) + ǫhakm(ρ − ρa), t > 0, x ∈ {0, L}, (7)

where kh is a heat transfer coefficient, ha is the ambient enthalpy, and Ta is the
ambient temperature. The mass equation is hyperbolic in ρ. Therefore the corre-
sponding boundary condition is used only if the velocity is inwards (i.e., mass flows
into the system). In the case when velocity is outwards, we do not use boundary
conditions for a hyperbolic differential equation.

3. Numerical Method

To solve this fluid system we have used the Streamline Upwind Petrov-Galerkin
method but we will start with the Standard Galerkin algorithm.
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3.1. Standard Galerkin algorithm for the mass equation . We discretize the

mass equation temporally and obtain the weak formulation by multiplying it by a
test function η(x) and integrate over the domain Ω.
∫ L

0

ρτ (x) − ρτ−1(x)

∆t
η(x)dx = −

∫ L

0

∂(ρτ (x)vτ−1(x))

∂x
η(x)dx, 1 ≤ τ ≤ τmax, (8)

where τ is a time index and τmax = tmax/∆t and tmax is the total simulation time
[seconds] and the time step ∆t is explained later. Applying integration by parts to
the integral on the right-hand side, we have

∫ L

0

ρτ (x) − ρτ−1(x)

∆t
η(x)dx = ρτ (0) vτ−1(0) η(0)

︸ ︷︷ ︸

A1

− ρτ (L) vτ−1(L) η(L)
︸ ︷︷ ︸

B1

+

∫ L

0

ρτ (x)vτ−1(x)
dη

dx
dx, (9)

where A1 and B1 terms take care of the mass flow across boundaries. Now the
density ρτ (x) is approximated by the following scheme.

ρτ (x) ≈

N∑

j=0

ρτ
j φj(x), (10)

where N is a number related to number of node points. We have N + 1 nodes and
N elements as a result of the spatial domain discretization. The piecewise linear
function φi is defined as

φi(x) =







x−xi−1

xi−xi−1
, for x ∈ [xi−1, xi],

x−xi+1

xi−xi+1
, for x ∈ [xi, xi+1],

0, for x 6∈ [xi−1, xi+1],

(11)

φ0(x) =

{
x−x1

x0−x1
, for x ∈ [x0, x1],

0, for x 6∈ [x0, x1],

φN (x) =

{
x−xN−1

xN−xN−1
, for x ∈ [xN−1, xN ],

0, for x 6∈ [xN−1, xN ].

We discretize all unknown variables by the same way as given in equation (10) and
substitute value of ρ into equation (9) along with η(x) = φi, 0 ≤ i ≤ N .

N∑

j=0

(
∫ L

0

φi(x)φj(x)dx

)

ρτ
j − ρτ−1

j

∆t
=

N∑

j=0

(
∫ L

0

vτ−1 dφi

dx
φjdx

)

ρτ
j + Â1 + B̂1,

(12)

where

Â1 =

{

ρτ
0 vτ−1

0 φi(0), if vτ−1
0 ≤ 0,

−km(ρτ
0 − ρa)φi(0), if vτ−1

0 > 0,
(13)

and

B̂1 =

{

−ρτ
N vτ−1

N φi(L), if vτ−1
N ≥ 0,

−km(ρτ
N − ρa)φi(L), if vτ−1

N < 0.
(14)

We have taken ρ and h as implicit (i.e., at current time iteration τ) but other
variables like velocity and temperature are taken at the previous time iteration
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τ − 1. Equation (12) actually represents a system of difference equations which can
be written in a matrix form:

M1
ρτ − ρτ−1

∆t
= Sτ−1

1 ρτ + fτ−1
1 , 1 ≤ τ ≤ τmax. (15)

where ρτ denotes the density solution vector at time step τ . The superscripts of the
stiffness matrix Sτ−1

1 and the vector fτ−1
1 indicate that their computation is based on

variables taken at the previous time step. For each element (xi−1, xi), 1 ≤ x ≤ N,
we compute element matrices M1e

and S1e
and the element vector F1e

and assemble
from them their respective global matrices M1 and S1 and the global vector F1.
They are given as

M1e =
∆x

2

[
1 0
0 1

]

, (16)

S1
τ−1
e =

1

2

[
−vτ−1

i−1 −vτ−1
i

vτ−1
i−1 vτ−1

i

]

. (17)

We use Newton-Cotes as numerical integration (
∫ b

a
f(x)dx = b−a

2 (f(b) + f(a)))
because it is accurate enough, since we use piecewise linear basis functions with a
second order accuracy. For i = 0 and i = N , we also take care of expressions given
in (13) and (14) for the boundary nodes. Let Sτ−1 be the matrix assembled from
the stiffness element matrix S1

τ−1
e , then Sτ−1

1 is determined in the following way,

Sτ−1
1 = Sτ−1 + θ, (18)

where θ = [θij ](N+1)×(N+1) , 0 ≤ i, j ≤ N is given as,

θ00 =

{

vτ−1
0 , if vτ−1

0 ≤ 0,

−km, if vτ−1
0 > 0,

(19)

θNN =

{

−vτ−1
N , if vτ−1

N ≥ 0,

−km, if vτ−1
N < 0.

(20)

All other θij are zero. The vector fτ−1
1 is defined in the following way,

fτ−1
1 =







f0, for i = 0,

0, for 1 ≤ i ≤ N − 1,

fN , for i = N,

(21)

f0 =

{

0, if vτ−1
0 ≤ 0,

kmρa, if vτ−1
0 > 0,

(22)

fN =

{

0, if vτ−1
N ≥ 0,

kmρa, if vτ−1
N < 0.

(23)

For the ith element, 1 ≤ i ≤ N , global matrices and the global vector are updated
as

M1i+j−2,i+k−2
= M1i+j−2,i+k−2

+ M1ej,k
, j, k = {1, 2}, (24)

S1i+j−2,i+k−2
= S1i+j−2,i+k−2

+ S1ej,k
, j, k = {1, 2}, (25)

f1i+j−2,1
= f1i+j−2,1

+ f1ej
, j = {1, 2}. (26)
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3.2. Standard Galerkin Algorithm for the energy equation . The time dis-
cretized energy equation (by using equation (2)) is given by

sτ − sτ−1

∆t
+

∂(sτvτ−1)

∂x
−

∂

∂x

(

λ
∂T τ−1

∂x

)

= qτ , (27)

where sτ = ρτhτ . Although the energy equation (as given by equation 3) is not
a hyperbolic PDE but now that we have discretized it temporally and T is taken
at the previous time step, we will treat it as a hyperbolic differential equation.
Therefore we use a boundary condition only if the velocity is inward (i.e., the mass
is flowing into the system). We multiply the time discretized energy equation by
the test function η(x) and integrate over Ω

∫ L

0

sτ − sτ−1

∆t
η(x)dx = −

∫ L

0

∂(sτvτ−1)

∂x
η(x)dx +

∫ L

0

∂

∂x

(

λ
∂T τ−1

∂x

)

η(x)dx

+

∫ L

0

qτη(x)dx. (28)

Applying integration by parts, we have the following weak formulation

∫ L

0

sτ − sτ−1

∆t
η(x)dx = (sτ (0)vτ−1(0) − λ

∂T τ−1

∂x
|x=0)η(0)

︸ ︷︷ ︸

A2

+ (−sτ (L)vτ−1(L) + λ
∂T τ−1

∂x
|x=L)η(L)

︸ ︷︷ ︸

B2

+

∫ L

0

(sτvτ−1)
dη

dx
dx −

∫ L

0

λ
∂T τ−1

∂x

dη

dx
dx +

∫ L

0

qτη dx,

(29)

By using the same discretization scheme as we used for the mass equation, we have

N∑

j=0

(
∫ L

0

φi(x)φj(x)dx

)

sτ
j − sτ−1

j

∆t
=

N∑

j=0

(
∫ L

0

vτ−1 dφi

dx
φjdx

)

sτ
j

−

∫ L

0

λ
∂T τ−1

∂x

dφi

dx
dx +

∫ L

0

qφidx + Â2 + B̂2. (30)

where,

Â2 =

{

sτ
0 vτ−1

0 φi(0) − kh(T τ−1
0 − Ta)φi(0), if vτ−1

0 ≤ 0,

−ha km(ρτ
0 − ρa)φi(0) − kh(T τ−1

0 − Ta), if vτ−1
0 > 0,

(31)

B̂2 =

{

−sτ
N vτ−1

N φi(L) − kh(T τ−1
N − Ta)φi(L), if vτ−1

N ≥ 0,

−ha km(ρτ
N − ρa)φi(L) − kh(T τ−1

N − Ta)φi(L), if vτ−1
L < 0.

(32)

The matrix form of equation (30) is given by the following equation.

M2
sτ − sτ−1

∆t
= Sτ−1

2 sτ + fτ−1
2 , 1 ≤ τ ≤ τmax. (33)

The mass matrix M2 is the same as M1 while the stiffness matrix Sτ−1
2 is computed

as follows

Sτ−1
2 = Sτ−1 + γ, (34)
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where Sτ−1 is the same matrix as explained in the previous section and used in
equation (18) whereas γ = [γij ](N+1)×(N+1), and it is defined as

γ00 =

{

vτ−1
0 , if vτ−1

0 ≤ 0,

0, if vτ−1
0 > 0,

(35)

γ0j = 0, for 1 ≤ j ≤ N,

γij = 0, for 1 ≤ i, j ≤ N − 1,

γiN = 0, for 0 ≤ i ≤ N − 1,

γNN =

{

−vτ−1
N , if vτ−1

N ≥ 0,

0, if vτ−1
N < 0,

(36)

For the ith element (xi−1, xi), 0 ≤ i ≤ N , the element vector f2
τ−1
e is used to

assemble the global vector fτ−1
2 and it is given by

f2
τ−1
e = λ

T τ−1
i − T τ−1

i−1

∆x

[
1
−1

]

+
q

2∆x

[
1
1

]

. (37)

We have taken q as constant. Let fτ−1 be the global vector assembled from the
element vector f2

τ−1
e , then fτ−1

2 is determined as follows

fτ−1
2 = fτ−1 + g, (38)

where g is defined as

g0 =

{

−kh(T τ−1
0 − Ta), if vτ−1

0 ≤ 0,

−hakm(ρτ
0 − ρa) − kh(T τ−1

0 − Ta), if vτ−1
0 > 0,

(39)

gi = 0, for 1 ≤ i ≤ N − 1, (40)

gN =

{

−kh(T τ−1
N − Ta), if vτ−1

N ≥ 0,

−hakm(ρτ
N − ρa) − kh(T τ−1

N − Ta), if vτ−1
N < 0.

(41)

For g0 and gN expressions we have approximated ∂T τ−1

∂x
by −kh(T τ−1

0 − Ta), and

−kh(T τ−1
N − Ta), for x = 0 and for x = L, respectively.

3.3. Streamline Upwind Petrov-Galerkin method for mass and energy

equations. Convection dominant problems solved with SGA (Standard Galerkin
Algorithm) exhibit undesirable numerical oscillations. A common approach to sup-
press these oscillations is the use of the SUPG (Streamline Upwind Petrov-Galerkin)
method, although some accuracy is lost during the process. The mass equation, in
our case, is a convection equation and the energy equation could be convection
dominant in a case when ∂T

∂x
is small and a heat source (q) equal to zero. To apply

the SUPG method, we split η(x) into two parts η(x) = w(x) + p(x), where w(x) is
the classical test function and p(x) denotes a correction in order to take care of the
upwind behavior [12]. We obtain
∫ L

0

ρτ − ρτ−1

∆t
w(x)dx+

∫ L

0

∂ρτ

∂t
p(x)dx =

−

∫ L

0

∂(ρτvτ−1)

∂x
w(x)dx −

∫ L

0

∂(ρτvτ−1)

∂x
p(x)dx, (42)

or
∫ L

0

ρτ − ρτ−1

∆t
w(x)dx +

∫ L

0

ρτ − ρτ−1

∂t
p(x)dx =

−

∫ L

0

∂(ρτvτ−1)

∂x
w(x)dx −

∫ L

0

{ρτ ∂vτ−1

∂x
+ vτ−1 ∂ρτ

∂x
}p(x)dx. (43)
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We neglect the term ρτ ∂vτ−1

∂x
because the contribution of this term is not significant

[5]. By using p(x) = ∆x
2 ξ dφi

dx
and taking ξ = sign(v) which corresponds to the

classical upwind scheme, the element mass matrix M3e is given by

M3
τ−1
e = M1e +

∆x

4

[
−sign(vτ−1

i−1 ) −sign(vτ−1
i )

sign(vτ−1
i−1 ) sign(vτ−1

i )

]

, (44)

where M1e is given in equation (16). The element stiffness matrix is given by,

S3
τ−1
e = S1

τ−1
e +

1

4

(
vτ−1

i−1 sign(vτ−1
i−1 ) + vτ−1

i sign(vτ−1
i )

)
[

−1 1
1 −1

]

, (45)

where S1
τ−1
e is given in equation (17). The element matrices for the energy equation

are the same as given earlier i.e., M4e = M3e and S4e = S3e. The contribution of
the boundary terms is exactly the same as explained in previous sections. The
element vector for the energy equation is slightly modified and it is given as,

f4e = f2e + q
∆x

4

(
sign(vτ−1

i−1 ) + sign(vτ−1
i )

)
[

−1
1

]

. (46)

Finally we have the following system of equations (in matrix form) to be solved,

(M τ−1
3 − ∆tS3)ρ

τ = M τ−1
3 ρτ−1 + ∆tfτ−1

3 , (47)

(M τ−1
4 − ∆tS4)s

τ = M τ−1
4 sτ−1 + ∆tfτ−1

4 , (48)

and we have implemented this set of equations in MATLAB. For each iteration ’τ ’,
we obtain solution vectors ρ and h. Other solution vectors T, P, XG, and v are
obtained by using certain library functions (coded in FORTRAN) containing the
density-enthalpy phase diagram calculations.

4. Two dimensional fluid system

4.1. Mathematical modeling for the two-dimensional fluid system. The
domain Ω in this case is taken as a unit square and all gradients of system variables
are at most two dimensional. Dynamics of the system is given in the following mass
and energy balances.

∂ρ

∂t
+ ∇ · (ρv) = 0, x ∈ Ω, t > 0, (mass conservation), (49)

∂(ρh)

∂t
+ ∇ · (ρhv) = ∇ · (λ∇T ) + q, x ∈ Ω, t > 0, (energy conservation), (50)

v = −
K

µ
∇P, (Darcy Law). (51)

The initial conditions are given by

ρ(x, 0) = ρ0, x ∈ Ω, (52)

h(x, 0) = h0, x ∈ Ω. (53)

The following boundary conditions apply to the mass equation if mass flows into
the system (i.e., v · n ≤ 0)

ρv · n = km(ρ − ρa), t > 0, x ∈ Γ, (54)

where n is a unit outward pointing normal vector at the boundary. The boundary
condition for the energy equation is given as

−λ∇T · n + (ρh)v · n = kh(T − Ta) + hakm(ρ − ρa), t > 0, x ∈ Γ. (55)
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4.2. Isoparametric transformation. The domain of computation Ω is shown in
Figure 3. The interior is marked with Ω and the four boundaries are labeled with
Γi, i = 1, 2, 3, 4. At present our numerical computation is limited to a rectangular
grid and rectangular elements. In principle we can take any number of nodes along
the x- and the y-axis. There is no compulsion to take equal number of nodes along
both axes. In general we have used a 41×41 nodes grid, i.e., the number of nodes
along the x-axis Nx is 41 and the same number Ny is true for the y-axis. Even
with 41×41 resolution, simulation of 1 second of actual process takes 24 hours of
computational time (by using a 2.5 GHz Intel PC, Windows XP, and Matlab).
For interior rectangular elements, the number of nodes per element (n) is 4 and a
lookup table EL keeps record of it. For example, the kth row of (EL)N×n provides
information about labels of all 4 nodes of the kth element, where the total number
of elements (N) equals (Nx − 1)(Ny − 1). Each boundary element eΓ consists of 2
nodes and its length is denoted by L

L =

{

∆x for eΓ ∈ Γ1 ∪ Γ3,

∆y for eΓ ∈ Γ2 ∪ Γ4.

The node labels for boundary elements for Γi, i = 1, 2, 3, 4, are kept in lookup
tables, EΓi

, i = 1, 2, 3, 4. These lookup tables are also used when we assemble
global matrices from their respective element matrices. For example let Se be the
element matrix for the kth element, k = 1, 2, .., N , then the corresponding stiffness
matrix S is updated by the following step

Sα,β = Sα,β + Seij
, i, j = 1, .., n, (56)

where α = Ek,i and β = Ek,j We cannot give a general shape for continuos (con-
forming) basis functions in case of rectangular elements. Therefore we have used
a technique called Isoparametric Transformation. Each rectangular element in x-
y-plane is transformed to a unit square reference element in the ξ-η-plane. Four
points x1, x2, x3, and x4 in each element are transformed to fixed points ξ1, ξ2, ξ3,
and ξ4, where xi = (xi, yi) and ξi = (ξi, ηi), i = 1, 2, 3, 4 with ξi are the vertices of
the reference element shown in Figure 4. The inverse transformation is given by

x =

4∑

i=1

xiφi(ξ, η), (57)
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(x,y)

(ξ,η)

(0,0)

(1,1)(0,1)

(1,0)

x

y

Transformation from (x,y) to (ξ,η) 

ξ2ξ1

ξ4 ξ3

x1 x2

x3x4

Figure 4. Isoparametric transformation from (x, y) plane to
(ξ, η) plane.

where

φ1 = (1 − ξ)(1 − η), φ2 = ξ(1 − η), φ3 = ξη, and φ4 = (1 − ξ)η. (58)

We need to compute ∇φi(x) and dx dy =
∣
∣
∣
∂(x,y)
∂(ξ,η)

∣
∣
∣ dξ dη, because they appear in

certain integral terms arise in computation of element matrices.

Let J =
∂(x, y)

∂(ξ, η)
=

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]

.

From equations (57) and (58), we have

x = x1 + (x2 − x1)ξ + (x4 − x1)η + Axξη,

y = y1 + (y2 − y1)ξ + (y4 − y1)η + Ayξη,

where, Ax = (x1 − x2 + x3 − x4) and Ay = (y1 − y2 + y3 − y4),

∂x

∂ξ
= x2 − x1 + Axη,

∂x

∂η
= x4 − x1 + Axξ,

∂y

∂ξ
= y2 − y1 + Ayη,

∂y

∂η
= y4 − y1 + Ayξ.

Let ∆J be the determinant of J ;

∆J = (x2 − x1 + Axη)(y4 − y1 + Ayξ) − (x4 − x1 + Axξ)(y2 − y1 + Ayη)

Thus we have determined d(x, y) = |∆J |d(ξ, η). For ∇φi, we have

∇φi =

〈
∂φi

∂x
,
∂φi

∂x

〉

,

where,

∂φi

∂x
=

∂φi

∂ξ

∂ξ

∂x
+

∂φi

∂η

∂η

∂x
, i = 1, 2, 3, 4. (59)

Now ∂φi

∂ξ
and ∂φi

∂η
are determined from equations (58) (see Table 1). For ∂ξ

∂x
and ∂η

∂x
,

i ∂φi

∂ξ
∂φi

∂η

1 −(1 − η) −(1 − ξ)
2 1 − η −ξ
3 η ξ
4 −η 1 − ξ

Table 1. Four basis functions for the standard element and its
partial derivatives.
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we proceed with the following steps,

J−1 =
1

∆J

[
∂y
∂η

−∂x
∂η

−∂y
∂ξ

∂x
∂ξ

]

. (60)

But J−1 is also given by the following expression [6],

J−1 =

[
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]

. (61)

Comparing equations (60) and (61), we have,

∂ξ

∂x
=

1

∆J

∂y

∂η
and

∂η

∂x
=

−1

∆J

∂y

∂ξ
,

where ∂y
∂η

and ∂y
∂ξ

are already computed. Similarly,

∂φi

∂y
=

∂φi

∂ξ

∂ξ

∂y
+

∂φi

∂η

∂η

∂y
, i = 1, 2, 3, 4, (62)

where ∂ξ
∂y

= −1
∆J

∂x
∂η

and ∂η
∂y

= 1
∆J

∂x
∂ξ

. Hence ∇φi is completely determined. We have

used these values to compute element matrices. It is also important to mention that
we are using the following Newton-Cotes quadrature rule (for a rectangle) in order
to determine 2D integrals appearing in proceeding subsections.

∫

exy

I(x, y)dxdy ≈
1

4

4∑

i=1

I(xi, yi). (63)

4.3. Discretization of the mass equation in 2D with standard Galerkin

approach. In order to get the weak formulation, we discretize equation (49) in
time (the Euler backward scheme), multiply it by a test function η(x), and integrate
over Ω

∫

Ω

ρτ − ρτ−1

∆t
ηdΩ = −

∫

Ω

∇ · (ρτvτ−1)ηdΩ, 1 ≤ τ ≤ τmax. (64)

Using

∇ · (ρvη) = η∇ · (ρv) + ρv · ∇η, (65)

and the divergence theorem
∫

Ω

∇ ·FdΩ =

∫

Γ

F · ndΓ, (66)

in equation (64) we have
∫

Ω

ρτ − ρτ−1

∆t
ηdΩ = −

∫

Γ

ρτηvτ−1 · ndΓ +

∫

Ω

ρτvτ−1 · ∇ηdΩ. (67)

We choose a set of basis functions {φi(x)}1≤i≤Nd
, where Nd is the number of mesh

nodes for unknowns. The solution is approximated by

ρτ (x) =

Nd∑

j=1

ρτ
j φj(x). (68)

After substitution in the weak form, and choosing η(x) = φi, for i = 1, ..., Nd, we
obtain

Nd∑

j=1

ρτ
j − ρτ−1

∆t

(∫

Ω

φiφjdΩ

)

= I1 +

Nd∑

j=1

(∫

Ω

φjv
τ−1 · ∇φidΩ

)

ρτ
j , (69)
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where

I1 =

{

−
∑Nd

j=1

(∫

Γ
kmφiφjdΓ

)
ρτ

j +
∫

Γ
kmφiρadΓ for inward velocity,

−
∑Nd

j=1

(∫

Γ
φiφjv

τ−1 · ndΓ
)
ρτ

j for outward or zero velocity.

(70)

The problem domain is discretized by using bilinear elements [subsection 4.2]. This
gives a system of difference equations of the form:

M5
ρτ − ρτ−1

∆t
= Sτ−1

5 ρτ + fτ−1
5 . (71)

where the mass matrix M5 = {M5ij
}, for i, j ∈ {1, ..., Nd}, is

M5ij
=

∫

Ω

φiφjdΩ, (72)

the stiffness matrix Sτ−1
5 = {Sτ−1

5ij
}, for i, j ∈ {1, ..., Nd}, is

Sτ−1
5ij

=

∫

Ω

φjv
τ−1 · ∇φidΩ + I2, (73)

where

I2 =

{

−
∫

Γ kmφiφjdΓ, for inward velocity,

−
∫

Γ
φiφjv

τ−1 · ndΓ, for outward or zero velocity,
(74)

and the vector fτ−1
5 = {fτ−1

5i
}, for i ∈ {1, ..., Nd}, is

fτ−1
5 =

{∫

Γ kmφiρadΓ, for inward velocity,

0, for outward or zero velocity.
(75)

Of course these global matrices and the vector are assembled from their respective
element matrices and the element vector, as explained in case of the one-dimensional
model.

Computation of element matrices. By using equation (72), we can determine
the element mass matrix for the kth element exy, k = 1, 2, .., N (N= number of
elements, whereas Nd is the number of node points)

M5eij
=

∫

exy

φiφjdxdy, i, j = 1, .., n,

=

∫

eξη

φiφj |∆J |dξdη,

or

M1eij
= δij

|∆Jj
|

n
n = 4, i, j = 1, .., n, (76)

where ∆Jj
is the determinant of the Jacobian matrix J computed at (xj , yj). The

element stiffness matrix corresponding to S2D is given by

S5eij
=

∫

exy

φjv
τ−1 · ∇φidxdy,

=

∫

eξη

φj |∆J |dξdη

= (∇jφi · v
τ−1
j )

|∆Jj
|

n
, (77)

and ∇j =< ∂
∂x

|x=xj
, ∂

∂y
|y=yj

>. Hence the S5eij
is given as

S5eij
=

(
∂φi

∂xj

vτ−1
xj

+
∂φi

∂yj

vτ−1
yj

)
|∆Jj

|

n
, (78)
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where vτ−1
xj

and vτ−1
yj

are x- and y-components of the velocity vτ−1
j . The compu-

tation of other components of equation (78) are given in the previous subsection
(equation (59) and (62)). The S2D matrix is assembled by using the element ma-
trix S5e

(for an update procedure, refer to equation (56)). Now the stiffness matrix
(S5 = {S5ij

}N×N) for the mass equation is given by

S5ij
= S2Dij

+ I3ij
, i, j = 1, 2, .., N. (79)

We compute I3 for all boundary elements at four boundary sections (Γ1, Γ2, Γ3, and Γ4).
At Γ1 (refer to Figure 3)

I3ij
=

{

δij
∆y
2 vτ−1

yi
if vτ−1

yi
≤ 0,

−δijkm
L
2 if vτ−1

yi
> 0,

(80)

where ∆y is the spatial step along y-axis and L is the length of the boundary
element. At Γ2

I3ij
=

{

−δij
∆x
2 vτ−1

xi
if vτ−1

xi
≥ 0,

−δijkm
L
2 if vτ−1

xi
< 0.

(81)

At Γ3

I3ij
=

{

−δij
∆y
2 vτ−1

yi
if vτ−1

yi
≥ 0,

−δijkm
L
2 if vτ−1

yi
< 0.

(82)

At Γ4

I3ij
=

{

δij
∆x
2 vτ−1

xi
if vτ−1

xi
≤ 0,

−δijkm
L
2 if vτ−1

xi
> 0.

(83)

We use equation (75) to obtain the element vector fτ−1
5e

. At Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4

f5ei
=

{

0 if v · n ≥ 0,

kmρa
L
2 if v · n < 0.

(84)

The global vector f5 is updated after computation of the element vector f5ei
at

every boundary element.

4.4. Discretization of the energy equation in 2D with standard Galerkin

approach. Taking s = ρh and proceeding with the same steps, as mentioned for the
mass equation, in order to obtain the weak formulation for the 2D energy equation
(equation (50)) we have

sτ − sτ−1

∆t
= ∇ · (sτvτ−1) + ∇ · (λ∇T τ−1) + qτ . (85)

The weak form is given by
∫

Ω

sτ − sτ−1

∆t
ηdΩ = −

∫

Ω

∇ · (sτvτ−1)ηdΩ +

∫

Ω

∇ · (λ∇T τ−1)ηdΩ

+

∫

Ω

qτηdη. (86)

Substituting
∫

Ω

∇ · (sv)ηdΩ = −

∫

Γ

sηv · ndΓ +

∫

Ω

sv · ∇ηdΩ, (87)

and
∫

Ω

∇ · (λ∇T )ηdΩ =

∫

Γ

λ
∂T

∂n
ηdΓ −

∫

Ω

λ∇T · ∇ηdΩ, (88)
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into equation (86) we get
∫

Ω

sτ − sτ−1

∆t
ηdΩ = −

∫

Γ

sτηvτ−1 · ndΓ +

∫

Ω

sτvτ−1 · ∇ηdΩ+

∫

Γ

λ
∂T τ−1

∂n
ηdΓ −

∫

Ω

λ∇T τ−1 · ∇ηdΩ +

∫

Ω

qτηdΩ. (89)

Again, the velocity direction has to be taken care of when we solve this equation
numerically. For an inward velocity (v ·n < 0), boundary integrals in equation (89)
are written as

−

∫

Γ

sτηvτ−1 · ndΓ +

∫

Γ

λ
∂T τ−1

∂n
ηdΓ = −

∫

Γ

hakm(ρτ − ρa)dΓ

−

∫

Γ

kh(T τ−1 − Ta)dΓ, (90)

where we have used equation (54). For an outward velocity (v · n > 0), equation
(54) is not considered instead the heat flux is used

−

∫

Γ

sτηvτ−1 · ndΓ +

∫

Γ

λ
∂T τ−1

∂n
ηdΓ = −

∫

Γ

sτηvτ−1 · ndΓ

−

∫

Γ

kh(T τ−1 − Ta)dΓ, (91)

The system of difference equations corresponding to equation (89) is given as

M6
sτ
6 − sτ−1

∆t
= Sτ−1

6 sτ + fτ−1
6 , (92)

where M6 = M5 and the stiffness matrix Sτ−1
6 for i, j ∈ {1, ..., N} is

S6ij
= S2D + I4ij

, (93)

and I4ij
is computed for all boundary elements. At Γ1

I4ij
=

{

δij
∆y
2 vτ−1

yi
if vτ−1

yi
≤ 0,

0 if vτ−1
yi

> 0.
(94)

At Γ2

I4ij
=

{

−δij
∆x
2 vτ−1

xi
if vτ−1

xi
≥ 0,

0 if vτ−1
xi

< 0.
(95)

At Γ3

I4ij
=

{

−δij
∆y
2 vτ−1

yi
if vτ−1

yi
≥ 0,

0 if vτ−1
yi

< 0.
(96)

At Γ4

I4ij
=

{

δij
∆x
2 vτ−1

xi
if vτ−1

xi
≤ 0,

0 if vτ−1
xi

> 0.
(97)

The right-hand side vector fτ−1
6 , for i ∈ {1, ..., N}, is

fτ−1
6i

= −

∫

Γ

kh(T τ−1 − Ta)φidΓ −

∫

Ω

λ∇T τ−1 · ∇φidΩ +

∫

Ω

qτφidΩ + I5, (98)

I5 =

{

0, if vτ−1 · n ≥ 0,

−
∫

Γ
kmha (ρτ − ρa) φidΓ, if vτ−1 · n < 0.

(99)

We split the vector fτ−1
6 into two parts

fτ−1
6 = f2D + g2D, (100)
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where f2D takes care of the inner elements while g2D corresponds to boundary
elements. The element vector pertaining to f2D is given as

f6ei
= −

∫

exy

λ∇T τ−1 · ∇φidxdy +

∫

exy

qτφidxdy, (101)

= −

n∑

j=1

n∑

k=1

λ

n
T τ−1

k

(
∂φi

∂xj

∂φk

∂xj

+
∂φi

∂yj

∂φk

∂yj

)

|∆Jj
| +

1

n

n∑

j=1

qτ
j |∆Jj

|. (102)

The vector g2D = {g2Di
}2Nx+2Ny

is determined at boundary nodes. At Γ

g2Di
=







Ie if vτ−1 · n ≥ 0,

−kmkh
∆x
2 (ρτ

i − ρa) + Ie if vτ−1 · n < 0, (x, y) ∈ Γ1 ∪ Γ3,

−kmkh
∆y
2 (ρτ

i − ρa) + Ie if vτ−1 · n < 0, (x, y) ∈ Γ2 ∪ Γ4,

(103)

where Ie comes from the first integral on RHS of equation (98) and it is given by

Ie = −

∫

eΓ

kh(T τ−1 − Ta)φidΓ

=

{

−kh
∆x
2 (T τ−1

i − Ta), for Γ1 ∪ Γ3,

−kh
∆y
2 (T τ−1

i − Ta), for Γ2 ∪ Γ4.
(104)

4.5. The mass equation with SUPG method. Let us consider equation (64)
with η(x) split into two parts w and p where w is the classical test function which
ensures the consistency of the scheme and P denotes a correction term in order to
take care of the upwind behavior. We obtain

∫

Ω

ρτ − ρτ−1

∆t
wdΩ +

∫

Ω

ρτ − ρτ−1

∆t
pdΩ = −

∫

Ω

∇ · (ρτvτ−1)wdΩ

−

∫

Ω

∇ · (ρτvτ−1)pdΩ, (105)

or
∫

Ω

ρτ − ρτ−1

∆t
wdΩ +

∫

Ω

ρτ − ρτ−1

∆t
pdΩ = −

∫

Ω

∇ · (ρτvτ−1)wdΩ

−

∫

Ω

{
ρτ∇ · vτ−1 + vτ−1 · ∇ρ

}
pdΩ. (106)

The first integral on the right-hand side can be written as

−

∫

Ω

∇ · (ρτvτ−1)wdΩ = −

∫

Γ

ρτvτ−1 · nwdΓ +

∫

Ω

ρτvτ−1 · ∇wdΩ. (107)

We neglect the term ρτ∇·vτ−1 because it has no significant effect on the numerical
results [5]. Now equation (106) can be written as
∫

Ω

ρτ − ρτ−1

∆t
wdΩ +

∫

Ω

ρτ − ρτ−1

∆t
pdΩ = −

∫

Γ

ρτvτ · nwdΓ +

∫

Ω

ρτvτ−1 · ∇wdΩ

−

∫

Ω

(
vτ−1 · ∇ρτ

)
pdΩ. (108)

Following the same steps as in SGA method we choose

p =
~

2

v · ∇φi

‖v‖
, ‖v‖ > 0.

We do not have to use SUPG in case of ‖v‖ = 0. The value of ~ depends on the
direction of the velocity and element dimensions as shown in Figure 5. Its minimum
possible value is the length of a side (∆x or ∆y) and the maximum value can be the
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diagonal of the rectangular element (
√

(∆x)2 + (∆y)2). Using p we get a system of
difference equations of the form

M τ−1
7

ρτ − ρτ−1

∆t
= Sτ−1

7 ρτ + fτ−1
7 , (109)

where the mass matrix M τ−1
7 , for i, j ∈ {1, ..., N}, is

M τ−1
7ij

= M τ−1
5ij

+

∫

exy

(
~

2

vτ−1 · ∇φi

‖vτ−1‖

)

dxdy,

= M τ−1
5ij

+
~

2n|vτ−1
xj |

(
∂φi

∂xj

vτ−1
j +

∂φi

∂yj

vτ−1
yj

)

|∆Jj
|. (110)

The stiffness matrix Sτ−1
7 , for i, j ∈ {1, ..., N}, is

Sτ−1
7ij

= Sτ−1
5ij

−

∫

exy

(
vτ−1 · ∇φj

)
(

~

2

vτ−1 · ∇φi

‖vτ−1‖

)

dxdy, (111)

= Sτ−1
5ij

−

n∑

k=1

~

2n

(
∂φj

∂xk

vτ−1
xk

+
∂φj

∂yk

vτ−1
yk

)(
∂φi

∂xk

vτ−1
xk

+
∂φi

∂yk

vτ−1
yk

)
|∆Jj

|

|vτ−1
k |

.

(112)

and the vector fτ−1
7 = fτ−1

5 .

∆y
h

v

∆x

Figure 5. The value of ~ depends on the direction of the velocity
and element dimensions

4.6. The energy equation with SUPG method. For the energy equation, we
get another system of difference equations of the form

M τ−1
8

sτ − sτ−1

∆t
= Sτ−1

8 sτ + fτ−1
8 , (113)

where M τ−1
8 = M τ−1

7 and

Sτ−1
8ij

= Sτ−1
6ij

−

∫

exy

(
vτ−1 · ∇φj

)
(

~

2

vτ−1 · ∇φi

‖vτ−1‖

)

dxdy, (114)

= Sτ−1
6ij

−

n∑

k=1

~

2n

(
∂φj

∂xk

vτ−1
xk

+
∂φj

∂yk

vτ−1
yk

)(
∂φi

∂xk

vτ−1
xk

+
∂φi

∂yk

vτ−1
yk

)
|∆Jj

|

|vτ−1
k |

,

(115)

and the vector fτ−1
8 , for i ∈ {1, ..., N}, is

fτ−1
8i

= fτ−1
6i

+

∫

exy

qτ

(
~

2

vτ−1 · ∇φi

‖vτ−1‖

)

dxdy, (116)

= fτ−1
6i

+
~

2n

j=1
∑

n

qτ
j

(
∂φi

∂xj

vτ−1
xj

+
∂φi

∂yj

vτ−1
yj

)
|∆Jj

|

|vτ−1
j |

(117)
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5. Numerical Experiments

In the following subsections, four different examples (Case Studies) are given.

• Case Study 1: Inwardly insulated system with a positive initial velocity.

• Case Study 2: Inwardly insulated system with an inward initial velocity.

• Case Study 3: Open system, mass and energy flowing into the system.

• Case Study 4: Open system, mass and energy flowing out of the system.

The study of each case consists of 1D numerical results and their explanations. We
have compared one of the state variables (i.e., density) for several grid densities at
various time instances in order to check for convergence. Finally, the 2D counterpart
for each case is also provided. The 2D model is simulated with quadrilateral bilinear
elements 4.2. For all numerical experiments, we use the values given in Table
2, for several parameters. Remaining parametric values are given in individual
experiments.
Initial Conditions: In practice, it is a better choice to mention initial conditions

Symbol value comments/units
K 10−10 [m2]
N 40 (for 1D, in general)

40×40 (for 2D, in general)
q 0 [W/m3]
ha 3.5 × 104 (in general)[J/Kg]
∆x 0.025 (in general)[m]
∆y 0.025 (for 2D system)[m]
∆t 1/16000 (with dx =0.025)[s]
µ 5 × 10−5 Pa.s
λ 0.05 [W/m/K]

Table 2. Parametric values.

(in our case) in terms of (T , XG), rather than (ρ, h) because the initial setting of T
and XG is easier. Phase diagrams are also available for a transformation from (T ,
XG) to (P , ρ, h). Therefore we specify (throughout this report) initial values for
T and XG so that initial values for other variables are obtained from them. With
a constant XG, a linear T (0, x) with a positive slope results in a nearly linear P
profile with the same slope sign, assuming that difference between minimum and
maximum temperature is small (in our numerical experiments, an initial ∆T is not
greater than 2 [K]). The fluid flows from a higher pressure point to a lower pressure
point, therefore we have a negative velocity (from right to left). In Section 5, a
desired initial velocity is constructed by choosing a suitable temperature profile.
For a positive initial velocity from both boundaries, one option is to set an initial
temperature profile as shown in Figure 6(a). Then the resulting initial pressure
pattern is depicted in 6(b). Such a pressure profile (a lower pressure at the central
part and the higher pressure at and near boundaries) forces an inward initial velocity
from both boundaries (see Figure 6(c)).

5.1. Inwardly insulated system with a positive initial velocity. We call it an
inwardly insulated system because the mass and energy can not enter the system but
they can flow out of the system in this numerical experiment. We set km = kh = 0
so that no mass or heat is allowed to enter the system. But the mass (and therefore
energy) can flow out of the system due to an initial outward velocity at the right
boundary (v(0, x) > 0). The ambient density and temperature (ρa and Ta) do not
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Figure 6. (a) Temperature profile for a desired initial condition,
(b) the resulting pressure pattern, and (c) an inward velocity re-
sulted from a suitable pressure (indirectly the temperature) profile.

contribute in this example. As can be seen in Figure 7(f), we set an initial positive
velocity, from left to right. A desired initial velocity is obtained by setting a suitable
initial temperature as explained in Subsection 1.1. Initial conditions are given by

T (0, x) = 291 − x, 0 ≤ x ≤ 1,

XG(0, x) = 0.1, 0 ≤ x ≤ 1.

A linear temperature results in a linear P , ρ, and h. A higher pressure value in the
left part of the domain, as compared to the right part (Figure 7(d)), forces a positive
velocity (Figure 7(f)). The mass cannot enter from the left boundary (km = 0),
therefore, the velocity at the left boundary node goes to zero in a very short time
interval. As determined in our numerical experiment, this interval is 1.56 × 10−5

seconds but ideally it should take one iteration (i.e., no time). A positive velocity
means that the density in the left side decreases with time (Figure 7(a)). It also
means that the mass and the energy are flowing out from the right boundary (refer
to equation (20) and 36). A decreasing density in the left side implies that the gas
content is increasing as compared to the liquid phase (Figure 7(e)). Figure 8(a)

shows that the total mass in the fluid system (
∫

Ω
ρdx ≈

∑N−1
i=2 ρτ

i ∆x + 1
2 (ρτ

1∆x +
ρτ

N∆)) decreases with time before reaching to a steady-state value. The total energy

(
∫

Ω
ρhdx ≈

∑N−1
i=2 ρτ

i hτ
i ∆x + 1

2 (ρτ
1hτ

1∆x + ρτ
Nhτ

N∆x)) is also shown in Figure 8(b).
The total energy decreases because of the outward mass transportation.
The mass and energy flow rates are given by [5]

mass flow rate =

N+1∑

i=1

(
Sτ−1

3i
ρτ
i + fτ−1

3i

)
, (118)

energy flow rate =

N+1∑

i=1

(
Sτ−1

4i
sτ
i + fτ−1

4i

)
, (119)

where Sτ−1
3i

is the ith column of the stiffness matrix Sτ−1
3 defined in Subsection

3.3. These flow rates (as given in Figure 8(c) and 8(d)) are also used to check for
the mass and energy conservation conditions. In accordance with Fourier’s law,
the temperature (and pressure) decreases in the left part and with the passage of
time the temperature (and pressure) gradient decreases (Figure 7(c) and 7(d)). A
decreasing pressure gradient lowers the magnitude of the velocity. Both, the mass
and heat, flow from left to right, therefore, the total enthalpy also decreases in the
left part and increases, relatively, in the right side as shown in Figure 7(b). Apart
from the comparison of ρ, h, T , and P values in left and right sides, they always
decrease in absolute terms due to the mass outflow. The transport of mass and
energy continues until the temperature (and pressure) gradient becomes zero. It is
obvious that the temperature and pressure are the main drivers for all transport.
Other variables (ρ, h, XG, and v) depend on T and P whereas T and P tend to
become constant. The transfer of mass and heat stops as soon the system reaches
its steady state value (thermal equilibrium). In Figure 9, a comparison of density
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Figure 7. Case 1. Inwardly insulated system, km = 0, kh = 0,
(a) density, (b) total enthalpy, (c) temperature (d) pressure, (e)
gas mass fraction, and (f) velocity.
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Figure 8. Case 1. (a) total mass, (b) total energy, (c) mass flow
rate, and (d) engergy flow rate.

graphs is given with two grid resolutions (21 and 41 nodes, in other words ∆x =0.05
and 0.025). We observe no significant relative difference. The relative difference
vector ∆rel = (∆i)rel, 1 ≤ i ≤ 21, is given by

(∆i)rel =
(ρτ

i )41 − (ρτ
i )21

(ρτ
i )41

, (ρτ
i )41 > 0. (120)

where (ρτ )41 is a density vector determined for a 41 nodes grid, interpolated to a
21 elements vector, so that it could be compared with (ρτ )21, which is the density
vector computed for a 21 nodes grid.
In Figure 10 to 12, we have given simulation results for the 2D model with the same
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Figure 9. Case 1. Inwardly insulated system (km = 0, kh = 0),
density plots with two grid resolutions (N = 21 and 41). (top row)

actual values, (last row) relative difference
(ρτ

i )
41

−(ρτ
i )

21

(ρτ
i )41

, 1 ≤ i ≤

21.

boundary conditions along the x-axis, as we used for the 1D model. i.e.,

T (0, x, y) = 291 − x, 0 ≤ x, y ≤ 1,

XG(0, x, y) = 0.1, 0 ≤ x, y ≤ 1. (121)

With these initial conditions, the velocity magnitude along y-axis should be zero
throughout the process. But there is a small error as shown in Figure 12, which
decreases if we choose higher discretization resolution, spatially and temporally. A
comparison for density graphs are given in Figure 13, where cross-sections of 2D
density graphs (along the x-axis) are provided along with 1D graphs for given time

instances. There is no significant relative difference (
(ρτ

i )
2D

−(ρτ
i )

1D

(ρτ
i )2D

, 1 ≤ i ≤ 41)

between the two models for this example.

5.2. Inwardly insulated system with an inward initial velocity. In this nu-
merical experiment, again km = kh = 0, so that ρa and Ta have no effect on
simulation results. Initial conditions are given by

T (0, x) =

{

291 − x, for 0 ≤ x ≤ 0.5,

291 + x − 1, for 0.5 < x ≤ 1,

XG(0, x) = 0.1, 0 ≤ x ≤ 1.

By using such a temperature profile, one obtains an inward initial velocity as ex-
plained in Subsection 1.1. A piecewise linear T results in a piecewise linear ρ, P ,
and h as shown in Figure 14. Since there is no mass flow across boundaries, the
velocity values immediately drop to zero at both boundary nodes (Figure 14(f)). A
velocity (i.e., the mass flow) directed from sides to the central part increases the
density in the central part (Figure 14(a)). A decrease in the density at both sides
means that the gas mass fraction increases there (Figure 14(e)). The temperature
(and pressure) also lowers at both sides near boundaries and increases at the central
part as depicted in Figure 14(c) and 14(d). These trends in the mass and heat flow
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Figure 10. Case 1. Inwardly insulated system (km = 0, kh = 0),
1D conditions, (top row) density [kg/m3] at various time instances
(middle row) total enthalpy [J/m3], and (last row) temperature
[K].

0
0.5

1

0
0.5

1
7.5

8

8.5

x 10
5

x

P at t=0.0 [s]

y 0
0.5

1
0

0.5
1

7.6

7.8

8

x 10
5

x

P at t=0.3 [s]

y 0
0.5

1
0

0.5
1

7.705

7.71

7.715

x 10
5

x

P at t=3 [s]

y

0
0.5

1
0

0.5
1
0

0.1

0.2

xy

X
G

 at t=0.0 [s]

0
0.5

1

0
0.5

1
0.1

0.105

0.11

x

X
G

 t=0.3 [s]

y 0
0.5

1
0

0.5
1

0.1

0.11

0.12

x

X
G

 at t=3[s]

y

0
0.5

1
0

0.5
1

0.08

0.085

0.09

x

v
x
 at t=0.0 [s]

y 0
0.5

1
0

0.5
1
0

0.05

0.1

x

v
x
 at t=0.3 [s]

y 0
0.5

1
0

0.5
1
0

1

2

x 10
−3

x

v
x
 at t=3[s]

y

7.7

7.8

7.9

8

8.1
x 10

5

7.75

7.8

7.85

7.9

x 10
5

7.71

7.711

7.712

x 10
5

0.102

0.104

0.106

0.102
0.104
0.106
0.108
0.11
0.112

0.084

0.085

0.086

0

0.02

0.04

0.06

2
4
6
8
10

x 10
−4

Figure 11. Case 1. 1D conditions (top row) pressure [Pa]
at various time instances (middle row) gas mass fraction
[kg(gas)/kg(gas + liquid)], and (last row) velocity [m/s] in x-
direction.

shape the total enthalpy graphs as given in Figure 14(b). Again all the transporta-
tion stops when the temperature and the pressure gradients become zero. In this
case, we observe that the steady-state condition is attained in a relatively short time
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section of 2D plots. (Top row) actual density values and (last row)

the relative difference
(ρτ

i )
2D

−(ρτ
i )

1D

(ρτ
i )2D

, 1 ≤ i ≤ 41
.

(approx. 0.75 sec). Since there is no mass and the heat transfer across boundaries,
the total mass and the total energy of the system should be unchanged with time.
But we observe small variations (errors) in the numerical results as shown in Figure
Figure 15(a) and 15(b). The dynamic behavior of all variables is similar to 1D case,
therefore they have a similar explanation.

In Figure 16, the relative difference is given for two grid resolutions (
(ρτ

i )
41

−(ρτ
i )

21

(ρτ
i )41

, 1 ≤

i ≤ 21). In Figure 17 to 19, simulation results for the 2D counterpart of this exam-
ple are provided.
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Figure 14. Case 2. Inwardly insulated system with an initial
inward velocity, km = 0, kh = 0, (a) density, (b) total enthalpy, (c)
temperature (d) pressure, (e) gas mass fraction, and (f) velocity.
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Figure 15. Case 2. (a) total mass and (b) total energy in the system.

5.3. Open System, mass and energy flowing into the system. In this exam-
ple, the following initial and environmental data is used

T (0, x) = 291, 0 ≤ x ≤ 1,

XG(0, x) = 0.1,

ρa = 200,

Ta = 293.

An inflow is triggered by the conductive heat exchange boundary condition given in
equations (39) and (41). Hence the mass and the energy flow into the system from
both boundaries. The temperature increases with time and attains a steady-state
value equal to the ambient temperature Ta. The density graphs given in Figure
20(a) reveal that, with an inflow mass, the density increases everywhere within
the system. An increase in mass and temperature values results in an increase in
the total enthalpy in the system (Figure 20(b)). As soon as the temperature (and
pressure) becomes constant and the density value at the boundary equals ρa, the
system reaches a steady-state value. To investigate the ρ values given in Figure
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Figure 17. Case 2. One-sided insulated system with an initial
outwards velocity, km = 0, kh = 0 (top row) density [kg/m3] at
various time instances, (middle row) total enthalpy [J/m3], and
(last row) temperature [k].

20(a) we consider the mass equation

∂ρ

∂t
+

∂(ρv)

∂x
= 0, x ∈ [0, L], t > 0, (122)
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Figure 18. Case 2. (top row) pressure [Pa], (middle row) gas
mass fraction [kg(gas)/kg(gas + liquid)], (last row) velocity [m/s]
in x-direction.
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Figure 19. Case 2. Velocity [m/s] in y-direction.

or

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (123)

Taking x = x(t) for ρ characteristics, we have

∂ρ

∂t

dt

dt
+

∂ρ

∂x

dx

dt
= −

∂v

∂x
ρ. (124)

From the numerical solution, we know that ∂v
∂x

is negative mostly except that it is
zero for t = 0 and for a steady state system. Equation (124) can be written as

dρ

dt
= α2ρ, (125)

where α2 = − ∂v
∂x

and the solution for the density is given by,

ρ(t) = ρ0e
∫

t

0
α2dt. (126)

Which indicates that we can expect exponentially increasing behavior in our nu-
merical results. By looking at Figure 20(e) we can also argue that peaks in density
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graphs are possibly a result of phase change. But a complete information of density-
enthalpy phase diagram’s inner mechanism (i.e., relation among variables) is not
available. The density graphs comparison with respect to two grid resolutions is
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Figure 20. Case 3. Open system, mass and energy are flowing
into the system km = 1.5, kh = 105, ρa = 200, Ta = 293 (a)
density, (b) total enthalpy, (c) temperature, (d) pressure, (e) gas
mass fraction, and (f) velocity.

0 5 10 15 20
120

140

160

180
(a) Total Mass [Kg]

t [secs]
0 5 10 15 20

0.9

1

1.1

1.2

1.3
x 10

7 (b) Total Energy [J]

t [secs]

0 5 10 15 20
0

5

10

15

20
(c) Mass Flowing In [Kg/m2/sec]

t [secs]
0 5 10 15 20

0

2

4

6

8

10

12
x 10

5
(d) Energy Flowing In [J/m2/sec]

t [secs]

Figure 21. Case 3. (a) total mass, (b) total energy, (c) mass
flowing into the system, and (d) energy flowing into the system.

given in Figure 22. In this case we observe small differences between these results
near boundaries.
The 2D counterpart of this experiment is given in Figure 23 to 25. The explanation
for their dynamic behavior is same as given for 1D case.
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Figure 23. Case 3. Open system, mass and heat flowing into the
system km = 1.5, kh = 105,ρa = 200, Ta = 293, (top row) den-
sity [kg/m3] at various time instances, (middle row) total enthalpy
[J/m3], (last row) temperature [K].

5.4. Open system, mass and energy flowing out of the system. In this case
we set initial conditions for the mass and the energy outflow

T (0, x) = 291, 0 ≤ x ≤ 1,

XG(0, x) = 0.1,

ρa = 200,

Ta = 290.
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Figure 24. Case 3. (top row) pressure [Pa], (middle row) gas mass
fraction [Kg of gas/Kg of gas+liquid], (last row) velocity [m/s] in
x-direction.
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Figure 25. Case 3. Velocity [m/s] in y-direction.

The initial velocity is zero and the flow is triggered by the conductive heat exchange
boundary condition given in equations (39) and (41). The mass and the energy is
flowing out of the system, therefore density and temperature go down and hence
the gas mass fraction increases. For an outward velocity, ρa plays no part. These
results are given in Figure 26 and 27. A ’notching effect’ can be observed in Figure
26 for density, enthalpy, and gas mass fraction plots, near boundaries. They are
not physical and can be minimized by taking higher grid resolutions (as explained
later).
In Figure 28 and 29, we have shown a switching effect between different boundary
conditions. We know that the system model allows different flow mechanism be-
tween velocity conditions ǫv ≥ 0 and ǫv < 0 as given in discretization sections. If
the value of v is close to zero then a rounding error can cause an undue switching
between flow schemes.
The density graphs comparison with respect to several grid resolutions is given in
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Figure 26. Case 4. Open system, mass and energy flowing out of
the system, km = 1.5, kh = 105, ρa = 100, Ta = 290 (a) density, (b)
total enthalpy, (c) temperature (d) pressure, (e) gas mass fraction,
and (f) velocity.
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Figure 27. Case 4. (a) total mass, (b) total energy, (c) mass
flowing into the system, and (d) energy flowing into the system.

Figure 30 which clearly shows a convergence behavior. The density values attain
an almost constant steady state condition with 81 nodes. Several plots in Figure 30
show a convergence behavior as we proceed from a low grid (11 nodes) resolution
to a higher resolution (81 nodes). We conclude that ’notches’ appearing in Figure
26 are not real and they can be avoided by higher resolution grids (or a local grid
refinement).
The 2D counterpart of this example is provided in Figure 10 to 33 with a grid reso-
lution 41×41. As seen from Figure 30, we know that this resolution (i.e., 41 nodes)
is not enough for accurate results for the current example. Unfortunately it is not
possible to obtain higher resolution 2D simulation results at this moment.
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Figure 28. Case 4. Open system, mass and energy flowing out
of the system, a switching effect due to rounding errors, km = 1.5,
kh = 105, ρa = 100, Ta = 290 (a) density, (b) total enthalpy, (c)
temperature (d) pressure, (e) gas mass fraction, and (f) velocity.
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Figure 29. Case 4. A switching effect due to rounding errors (a)
total mass, (b) total energy, (c) mass flowing into the system, and
(d) energy flowing into the system.

6. Conclusions and further work

It is concluded that the density-enthalpy method can successfully be applied,
at least qualitatively, for multi-phase fluid systems where we have certain spatial
profiles for system variables.

• 1d and 2d models leads to comparable results for problems with a 1d solu-
tion profile.
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Figure 30. Case 4. Open system, mass and heat out of the
system, density plots with various grid resolutions, km = 1.5,
kh = 105, ρa = 100, Ta = 290.
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Figure 31. Case 4. Open system, mass and heat flowing out of
the system km = 1.5, kh = 105, ρa = 100, Ta = 290 (top row)
density at various time instances (middle row) total enthalpy, (last
row) temperature.

• For outflow conditions, we do not have a mass transfer coefficient, therefore
the mass outflow can not be controlled. Although it also depends on Ta

and kh, but in case kh = 0, the mass flow depends entirely on the velocity
value at the boundary.

• At boundaries, the mass and the heat computations depend on the velocity
direction. Rounding error may cause switching between positive and neg-
ative velocities and therefore serving as an error source because our model
uses different computation schemes for different velocity directions.
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Figure 32. Case 4. (top row) pressure, (middle row) gas mass
fraction, (last row) velocity in x-direction.
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Figure 33. Case 4. velocity in y-direction.

At this moment, the maximum time discretization step ∆t is too small, even for a
coarse grid. This is a reason for our excessive simulation times and more research
needs to be carried out on this topic. An option is to use an adaptive ∆t and an
adaptive spatial mesh. This is planned for future studies.
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