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STABILITY ANALYSIS OF THE NUMERICAL
DENSITY-ENTHALPY MODEL

IBRAHIM!, F. J. VERMOLEN, AND C. VUIK

ABSTRACT. In [5], we numerically solved a fluid system by using the numerical
density-enthalpy model which consists of mass and energy conservation laws,
Darcy’s Law and other thermodynamics relations. In the current report, the
convergence behavior of this model is investigated. We transform the original
model to two-equation system. Which is further approximated by a linear
model. The eigenvalues of the linear model are used to estimate convergence
of the original model.

1. INTRODUCTION

In the density-enthalpy model, we solve a thermodynamic multi-phase flow sys-
tem by considering density and enthalpy as state variables and compute rest of
the system variables as a post processing step. We refer to [1,2,3,4], for more de-
tail about the usage of numerical density-enthalpy phase diagrams (in short, p-h
diagrams) and merits of this approach. Here, enthalpy h is actually the specific
enthalpy with units [J/ky]. However, we will use p and s as our state variables
in this report, where s represents the total enthalpy with units [J/m?]. In Figure

550
500
450
400
350
Q. 300
250

Q. 300

200
150
100

50

FiGURE 1. Partially negative total-enthalpy values corresponding
to (left) pressure and (right) temperature.

1, two (p, s) phase diagrams are shown for P and T. However, we observe that
these values are valid for a certain temperature values. To make this point clear,
s is plotted as a function of T at constant X in Figure 2. From this graph (and
other experiments), we conclude that currently available (p, s) or equivalently (p, h)
diagrams are valid approximately for 275 < T < 360.

IThe author is indebted to HEC, Pakistan and NUFFIC, The Netherlands for their financial
and logistic support.



x10" s(T)
10 . . ,

i i i i i
260 280 300 320 340 360 380
T

F1cURE 2. A plot of total enthalpy s as a function of T at constant X¢.
2. TwWo EQUATIONS APPROACH

In [25], we numerically solved a fluid flow system in a porous medium. The math-
ematical model for the one-dimensional system is given by the following equations.

0 0
a—f g);) =0, z€Q,t>0, (mass conservation), (1)
0 0 0T
8—? + E;;) - )\@ =q, x€Q,t>0, (energy conservation), (2)
K oP
v+ ——=—=0, z€Q, t>0, (Darcy’s law), 3

w oz (

T=T(p,h), z€Q,t>0, (thermodynamical relation),

P =P(p,h), x € Q, t > 0, (thermodynamical relation),
s=ph, x€Q, t>0, (total enthalpy),

Xe = Xa(p, h), x € Q, t >0, (thermodynamical relation), (7

where the permeability K, dynamic viscosity p, and heat diffusivity A\ are assumed

to be constants and ¢ is a heat source. The initial and boundary conditions are
given as follows

T(x,0) = To(x), x €,
Xa(z,0) = Xgo(z), x €,
pv =0, x €T, t>0  (zero mass flux) , (8)
T
f)\g— +sv =0, xel, t>0 (zero energy flux) . (9)
x

This system is solved and discussed in [25]. We give the numerical solution results
for this system in Figure 3 (with a reduced resolution for fast printing). Later
on this figure is used for comparison with other simulation results. We transform
the model to two equations in a specific format. This approach helps in analyzing
system stability.

2.1. Transformation to two equations. Consider the mass equation and sub-
stitute v by its value as given by the Darcy’s law, we obtain

o 9 [ K op
ot Ox upax
2



() Xg

@p (c) lterations
3
2
1
. 2 . 2 0
x[m 00 t[sec] x[ml 0 0 t[sec] 0 200 400
1
i @s @7 cif 0P

292
291

290 L
1

. 2 . 2 - 2
xm 0 0  t[sec] X[m0 0  t[sec] x[m] 0 0 t[sec]

FI1GURE 3. The original model. At = 0.01, Az = 0.01. The plots
of (a) p, (b) X¢, (c¢) Newton iterations/timestep (d) s, (e) T, and
(f) P.

Now, using the value of , Le.,

OP 9P dp N JP 0s
dxr  0pox  0s Ox’

into the above equation, we realize

op K 0 OP dp OP 0Os
o A = 1
ot uax{ <8p8x+888x)} 0 (10)
By making similar substitutions of v, 81; , and 2 m, the energy equation can be
written as
Js K 0 OP 0p OP 0s 0 [0T dp 0T 0Os
= i =\ =o. 11
ot ,u@x{ <8p8m+5)88x)} Oz [8p8x+0sam} 0 (11)

Hence the many-equation system given by equations (1) to (6) is written in the
following two-equation format

Op

0 dp s
ot~ ox [D“a +D128x}’ (12)
Jds 0 ap Jds
= — |Doy1y— + D 1
o oz [ 2oz 22ax} (13)
where D;; are given by
K oP K 0P aT
Dy = — 2= Doy = 290 L\ 9
11 T 21 u58p+ op’
K oP K 0P aT
Dys = ;ng Doy = ﬁs% /\E
The boundary conditions are given by
K [(0OPdp OP ds
o=+ ) =0 14
© <8p8m+858x> ’ (14)
K (0OP0p OPO0s T dp 0T 0s\
m (apaﬁasax) (apaﬂasax) =0 (15)
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3. NUMERICAL SOLUTION ALGORITHM

To verify that the two approaches (many-equations versus two-equations model)
are indeed equivalent, we solve the system given by equation (12) and (13) by
Standard Galerkin Algorithm, as follows.

3.1. The mass equation. We start the solution algorithm by considering the
transformed mass equation (i.e., equation (10)) and write down its linearized weak

form
OP 0p OP Os B
‘bdQ_/az[ <3p3x+838 )}qﬁdg_o‘

Apply the product rule to the second integral

K (0Pop 0P8s\ ]' K OPdp 9P s\ dp
/ F { (3 833+(')s ax) ] / <8p8x ds 833) X =0

The boundary term vanishes (see equation (14)). By using Euler Backward time
integration, the above equation is written as
1 K [ 0P opTds K / _OPT 9s™ do
_ d el
At/(p r” )¢x+u Qp dp Oz dx ds Oz dx

For brevity, we use a different convention for
the following

—dz = 0.

or or 9T
Op’ Os’ Op?

and %—Z terms such as
O o 21,01,
oPF 9P .
9p  9p
opP} OP -k +k
dp dp e

The convention used for 2 85 , gf, and % is analogous. The linearization about p*

and s* is given by the following equation where we omit the index 7 for brevity,

except for explicit terms and use the notation 6p = p**1 — p* and ds = s+ — s*.
1 k 7—1

— — dp)opdx

A7 / (p" —p" " +op)o

+5 |:pkapk(9pk+5 dP* 9p* N k(aPkH apk>apk+pkapka®p)] d¢
w Jo Jp Ox Op Oz Jdp dp ) Oz Op Ox | dx

N K [ k@P’“@ n p@@i & (GP"'Jrl aPk> as* pkﬁP’“ 8(65)} qb
I 0s Ox Js Oz 0s 0 Ox Js Oz

=0. (16)

We use central difference approximations for the density and enthalpy derivatives,
given by the following expressions.

ok _ 0P ,

1
5y = oD = 5 (Pt cpsh) = P(oE — epo6h))

0

o’pPF 1
26—2[P(pf+e,sf)—2P(p“ z)+P( —6,8?)],

)

dp?
02 pF
0pds - de e

*P(,Df 6[’751+€)+P(p§7€pasi‘€7€s)}7

4
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where €, and €, are suitable small numbers (in our case, €, = 0.1 and €, = 100).

Th imations for 22 and 22 I Th imation for 22
e approximations for - an d 55+ are analogous. The approximation for 5
from Taylor series expansion about (p*, s*) leads to

opttt Pk ki1 O°PF i1 ey O°PF

ap ap

. K1 R . . . :
The expression (37;)8 - 66%) is defined in a similar way. Using these values in

equation (16), we get

1 T—1

At/(p —p" 7 +op)pdx

LK [ [Pt ortap
©Jo P dp Or dp Or

op* 9> Pk 9> Pk OP* (s
+pkﬂ<5 N >+k(p)}d¢

oz \"P Op? 658p88 dp Ox x
K[ [p0rtos | optor
JT ds Ox 9s oz "

k 2 pk 2 pk k
k08" <6 o*pP o*pP >+ k@Pa(Js)} dcf)d

tr ox + s 0s Ox

=0.

p@pas 0s? T

Now, we rearrange these terms into explicit and implicit parts

1 K OP* 9pk ap* 0% pP* aP* 9(dp)
— [ dppdx + — —— 4 A 5 k
/ p¢$+u/§2(8p x pEe Ox  Op? Pt dp Oz

95 0z P TP 0z 9p0s ") ax ™

k 92 pk k 92 pk k
K pkaiap 5s pkaiap 5s pkap 9(ds) dd)
o Jo Ox Opds Ox 0s? ds Oz dm

1 OPk 9pF L OPF 0sk ¢
At/(p - )¢dm+/( 9p Ox 4 Bs 333) v=0

We apply the Standard Galerkin discretization by using approximations, §p =~
N N .
D=1 0P, 68~ D75 ds;d; and choosing ¢ ~ ¢;

N N
1 K OPk 9k r apk 92 pP* L OPF de;
At,z(spj/@qudx—i_u;épj/(@ 81:¢] ox 82¢'+p dp dv

8P’“855 , 0" 92 PF >d¢

_|_

X

aP* 9sk L 0sk 02 PF do;
S ¢ tr bj
s Oz Dz Dpds dz

K apk 02 p* kask 02 pP* k@Pk do; dqﬁl
+u;553‘/ﬂ (p oz 0p0s %1 TP o a2 TP g dx) da

1 L 0P 9pF Pk 9sk dZ
t A (" —p"" ¢zda:+/< e O 8) e x = 0.

op O P os or

The equivalent matrix form of the above equation is given by

S11 0p+ S12 s+ f1 =0. (17)
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The element matrices are defined as

Pk aPk
S - 1 Az 1 0 K apk _Tpl - 8;;
e At 2 [0 1 2 Ox; oP{, apf
dop op
2Pk 92 pk
+ Eapk pic 1 ag _p;‘e szb + K ,0 aPk +pk af)lk—l 1
241 O k ks 2p Az \"" 0 o -1
H OT; oy 1 Bp Pi 5,3 H P P
k 2 pk
k opPl | apPF k 8°Pf _ kO°R
588 — R ~ s Eas pz 179p Os P; Op Os
2u ox; b, opf 2u ox; N | O°Pf ’
Os ds Pi— 1 9p 0s piapas
apk Py —pE_y gsk __ s; -5ty
Where Tml = "QAz and Tibl = Az
92pk 22 pF 52 pk 2 pk
ke i1 k k k i—1 kO~ P
S, = KON oty el | KOS gl Tt ot
© 2u Ox; k i1 kO™ P; 2u Ox; k i1 EO°P/
H ! Pi—1 dp Os Pi dp 83 H ¢ Pi—1"9s2 Pi g2

T K , OPF Lk oPl, 1 -1
2u Az Pi s T P17 g -1 1

;1 k. K w OPF 0pF opk 65 do;
fl—E/(P P)@di’?‘f'ﬂ/(z(Papax‘f‘P B dr dz,
O T g U S .ty (L Y

At 2 | pF—pl 2u | Oz; op

88k k@Pik k apzlil -1

+8$i <ﬂi Ds Pi—1 D5 [ 1 } .

3.2. The energy equation. As a next step, we treat the transformed energy equa-
tion (equation (11)) and write down its weak formulation

OPOp OP 0Os
¢¢_/6m[ <8p8x 8881‘>:|¢dﬂ

orodp 0T 0s
7>\/ Ox [ap 6$+688] ¢df = 0.

Applying the product rule to second and third integral in the above equation, we
have

ds OPdp 0P 95\ do ordp 0T 0s) do
/Qatd’d‘ZS /[(8/}836 asamﬂ Q+A/Q[a 8x+838x} dsy
K[((“)P@p 8P88>¢] A{@Tap 8T88]

0

TP\ 8por T Bs on Bpor " 9s 0z,

The boundary terms vanish by applying the boundary conditions (equation (15)).
For the time integration, we use Euler Backward formula

1 g1y K L OPT 9p” d¢ 5/ L OPT 0s™ d¢

At Q(S J¢dz + / dp Ox dl‘der I s 0s Ox da:dx
oT™ dp™ qu i oT™ Os™ d(;S

Q Op Ox dx o Os Ox dx

x = 0.

+ A




Using linearization about p* and s*.

i /Q (Sk + s — 57_1) odx

k k 2 pk 2 pk k k

+5 o y OP* 9p* s oP 8L+ 5p6 P +588 P 6‘L+Sk8P (dp) @d
ol 0p Ox Op Oz Op> Opds ) Oz Op Or |dx
K [[L0PRost  oPRost (o PPR L PR\ ost 0Pk (s)] do

T Q[ s x5 o T° (5”apas+5sasz)az s ow | do”

k gk 27k 2k k k

[ [ (2T O O O )] e,

Ql Op Oz dp Opds ) Ox dp O dz ™

aT* 9s* 021" 0*T\ 0sk  oT* 9(8s)] do

A/ {88:}5 (‘%pa ”Sasz»)ax E ]d:cd =0

Rearranging this equation so that the terms containing dp come first, then the terms
having ds, and lastly the explicit terms.
K 2 pk 5k k 2 pk
7/ sképap 8L+ y OP" 8(6p)+868P ds* qb
0p? Oz dp Oz 6‘p83 ox
9*T* op* 9*T* 9 aT* 9(p)\ d
+)\/ 5 TR 00" | 5 OPT" 05" | 0T D(0p)\ do
op? Ox Opds Ox Op Oz da:

k 2 pk
+1/5s¢dx+§/(5sap 8p —I—sdap 5‘p

dxr

dp O 0pds O
OPF 9sk 82Pk Os* L OPF 0(8s) d(b
+6835 %—FS 0s2 Or 5 Os 5‘z>dx

0%T* 9p*  9*T* 9s* de oT* o(s )dgzb
JrA/(@p@sax+ 0s? 833)6 dmd +>\/ 0s Ox %
1 & Pkap aPkas d)
+E/(S - (bda:—&——/ <8p 53: ds Oz
oT* 9pF  oT* 0s*\ do
“/(apaﬁ 75 az> ar =0

Applying the approximation for §p and ds as defined in the case of mass equation,
we have

N
K L, 02 Pk 9pk apka i 0% Pk 9s* d iy
j=1

op? Ox Op Ox dpds Oz

N N
0*Tk 9pk 92Tk 9s do; oT* de; do;
+)\Zapj/<3p2 %—F@pas 8x)¢Jd d +/\j§6pj dp dx dxdx

oP* 9p* w 02 PF 9pF
At253]/¢¢7dx+ 25 /( oy 0% T Bpos ox

OP*9st L 9°PFost L OP%0g; ) do;

0s %qﬁj e 0s? 67% s O0s Ox
N .
9*Th 9pk  9*TF sk do OT* do; dg,
+A;<ssj/<+ )@d d:c—i—)\Z(S —Ldx

Opds Ox 0s% Oz Os dx dx

1 i L OPF 8p kapk os* dngZ
+E/(S - ¢de+/< p 8x ds Ox

oT* dp oT* 9s*\ do;
“/ (apax +asax) g =0
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The equivalent matrix form is given by

Sa1 (Sp“‘SQQ 5S—|-f2 =0. (18)
The element matrices are defined as
gis K 82Pk 8,0 ¢ kE)Pk 09, k82Pk dsk LAy dcﬁl
2y p? / dp Ox dpds Oz "’ dx
a / 02Tk % N 0%T* 9sk 4, d@ A OT* d; do; "
dp® Oz ' 9pds oz )’ 9p dr dx
or
2Pk 2 pk
o - K (& orF | kap L1 K opf sk aéz 1 gi?aap2
21e AT L i—1 ap 2] 8[) —1 1 2/1“ or S].C 1326}37;2_1 ké‘;if
i—1"9p i 9p
2P 9% pF Tk 92Tk
588? S’ILC 1 apasl _Sf Opds + éapf - 6[@)2 : op?
2u Ox sk Pl ok 9*pf 2 Oz o°T; | 92Tk
i—1 9pds i 9pds op? 0p?
s TL 82T7:k k
é (95? - 28&651 " 9pds A aT’ifl a,Ivvk 1 -1 )
2 Ox 8,9Té 1 gzgf 2Axz \ Op dp -1 1
pOs p0s
Similarly, the element matrix for Soo is computed as
| K OPk 9pF 0% PF 9pF
S = — [ ¢pip;da + — / 4§
22 At/¢¢] x+u (8;) 8x¢+8 0pds 8x¢]
oPk 83k¢ n 02 PF 0sk kaPk 09; d@
el ST bl
ds Ox '’ 0s2 Oz 7 ds Oz
02T  9pF  9*T* 0s do; Tk do; do;
A — *d A L g
/<8p65 0x+ 0s? 8x>¢ dx v /88 do dz "
or
g, - tAzf1 0] K [, OPf, | 4 OPf 1 -1
2T At 2 |01 2Az p \ 7 9s % Hs -1 1
w [ _oPE,  opk g| _92-stPt, po*pf
Eui o T R K
2u Ox OP op; 2u Ox 87si_1 P k0P,
ap ap Op0s 5 0pds
apPf. apPF ] Pl o°pf
58785 [ _BPQS s 81;9’ ‘| 5?{;5 [ _3571823 2 to— i';zé)s:
2u Ox i1 oF; 2 Oz sk i1 sk 9L
ds s i—1 952 i 9s?
Tk | 92Tk k o°Tr | 82Tk
+ é 6pz - 28pk83 0p0s é 881- - ) 852 952
2 Ox "1, Ty 2 Ox T, o°Tf
dpds 0pds 0s2 ds2
LA Ty, oTk 1 -1
2Azx 0s Os -1 1 |
The element vector, containing the explicit terms, is given by
o1 K  OPF 9pk oPk 9s*\ d
fi= gy [ = oo+ /( e ax) %
aT* dp oT* 0s*\ do;
A —_— dx =0,
+/(3,03x+358:v g



or

1 Ag | S sin K pk Pk OPF\ [ —1
fa. = vl N [1}

At 2 P 21 Ox Fi-1 ap %i ap

Kosk (, oPF, L oPF -1 NopF (OTF, oTF -1
+ - Si—li + 57; + a - a +

2u Ox 0s 0s 1 2 Ox dp Op 1
LA osk (0T}, N oTF\ [ —1

2 Oz Os 0Os 1

3.3. Comparison of numerical results from two approaches. Equations (17)
and (18) can be written in the following matrix form

S11 Si2 op fi
E— . 19
{521 522}{53] [fz (19)
or
Gl =GF - J'F, (20)
where J is the Jacobian matrix. Furthermore
S11 Si2 fi k Pk
{521 522}7 [fz]’ {Sk

Equation (20) is solved by a direct method (Gaussian elimination). Here, we give a
comparison between the two-equation approach and the original 6-equation system.
In Figure 4, the relative difference of density, total enthalpy, and temperature are
provided. The number of Newton iteration per time step is also presented. From
these results, we conclude that the two-equation model is an equivalent representa-
tion of the system given by equations (1) to (6).

4. APPROXIMATION BY A LINEAR SYSTEM

We approximate the two-equation model by a linear system in the following way.
As a first step, the constants a, b, ¢, and d are computed from {(T', X)|280 < T <
360, 0 < X¢ < 1}. Their value is given by

a b Dy Do *pa Kp%i
A = = = Ly S
[ c d} |:D21 Doy } [ }: af—l—)\f ;s%—k)\%—f

These constants are used in the approximate system, given as

Op 0 8p b @
ot ox 836 ox

0Os o (0
%~ oz ( s d?) :
We compute the eigenvalues of A to determine the stability of this linear system.
Let A be an eigenvalue of A, then it is computed as
|A— | =0,
where [ is a unity matrix of 2 x 2. Hence, we solve
(a=X)(d—=X)—bc=0,
N —(a+d)A+ad —be = 0.

The solution is given by

A= %(a—kdﬂ:\/ 4(ad—bc)).




x[m] 00 t [sec] x[m 00 t [sec]

%107 () AT , (d) Iterations
l"ln. : ‘ » 2
1
xm 00 t [sec] % 20 40 60

FiGURE 4. Comparison of two-equation model with the original

system. The solution plots are (a) 22 (_15)1 , for 1 < j <100 and
e

J
@ W) _ (2
0 <t<2[sed, (b) % (jj , (c) Mt
S

J

presmang and (d) Newton itera-
}

tions/timestep

We show that ad = bc in the following expressions. Here we make use of the fact

— 3 oP __ 9P 9T oP __ 9P 9T
that P = .P(/I’)7 l1.e., Bp — 9T op and s — OT 0s *

MZK;W<KﬁP+;W)
w Op \u Os Os )’
K2 9POP K OPOT
~ w2 0s 0 p os
K2 9POP K OPOT OT
~ 2" 0s T ulaT 0p 05
Similarly

be

~ues \We e

K2 0OPOP K OPOT

~ w2 0 T s op
K% QPP K OPOT oT
= ﬁpsaa—p +)\;pa—T%8—p.

K 9P <K oP AaT)

Comparing expressions (21) and (22), we have

ad = be.

10



Therefore, the eigen values of A are given by {0, %p%—lg + %s%—f + )\%—Z} or equiv-

alently

{0, a+d} fora+d=#0.

It is difficult to find a + d analytically. We numerically computed this value for the
entire (p, s)-diagram, and it is given by 0.073 < a +d < 2.344 for 0 < X < 1
and 280 < T < 360. Hence, the original system is unconditionally stable because
A = {0, a positive value}.

A_{{0, 0} for a +d =0,

4.1. Possibility of one state variable. One of the two eigenvalues is zero for the
entire phase diagram, hence the approximated linear system can be reformulated
such that only one variable is sufficient to describe system dynamics. This can be
achieved by diagonalization of A. Such conclusion can only be drawn for a linear
system. However, we checked the possibility of one state variable, experimentally.
Using the following initial conditions

290 for 2 € [0,0.05),
T(x,0) = 4290+ 2z - for = €]0.05,0.95],
292 for x €]0.95, 1],
Xa(z,0)=0.2,
At =1/100 [s] (time step),
N =100 (mesh size),
Az =1/(N—-1) (spatial step),
e =107° (error tolerance on p and h),

K =5x10"" [m?],
pw=>5x10"° [P, s,
A =0.05 [W/m/K],
tmaz = 3.0 [8] (process time).

Figure 5 shows the relative difference between the initial and steady state value of

x107 Relative difference of h(x,0) and h(x,2)
T T T T

FI1GURE 5. Relative difference between initial and steady-state h
for original system.

h, when the above initial conditions are used by the original (6-equation) model.
We do not observe a significant relative difference between the two values.
11



In an another experiment, we take only one equation i.e., the mass equation and
ignore the energy equation. In other words, the original system is approximated by
one equation only. The simulation results are comparable to the original model and
they are given in Figure 6.

x10° Original vs one-equation model, AT x10* Original vs one-equation model, AX

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

F1GURE 6. Comparison of variables from the original system and
one-equation model at steady-state. (left) Relative difference in T
and (right) relative difference in X¢.

4.2. Gibbs Phase Rule. Gibbs Phase Rule is given by the following relation
F=C+d -2,
where

F = number of degrees of freedom,
C = number of component (or substances),

® = number of phases in thermodynamic equilibrium with each other.

For our system, C = 1 because the only substance here is Propane, ® = 2, for a
two phase flow. Therefore, the results we obtained are consistent with Gibbs Phase
Rule i.e., one equation is sufficient to solve the system for a two phase flow.

5. CONCLUSIONS

The original system can be transformed to two-equation model. Which can
further be approximated by a linear two-equation system. The eigenvalues of the
linear system suggest that the original nonlinear system is stable for the given range
of T and Xg. We also conclude that the system obeys Gibbs Phase Rule, at least
for a two-phase flow.
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