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A Minimal Residual Method for

Shifted Skew-Symmetric Systems

R. Idema and C. Vuik∗

Abstract

We describe the MRS3 solver, a Minimal Residual method based on the Lanczos al-
gorithm that solves problems from the important class of linear systems with a shifted
skew-symmetric coefficient matrix using short vector recurrences. The MRS3 solver is
theoretically compared with other Krylov solvers and illustrated by some numerical ex-
periments.
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1 Introduction

In this paper we explore Krylov subspace methods that can solve systems of linear equations
of the form

Ax = b (1)

where A ∈ R
n×n is a shifted skew-symmetric matrix, i.e.

A = αI + N , α ∈ R , NT = −N. (2)

Throughout this paper we will use I for the identity matrix of appropriate size, M for sym-
metric matrices, and N for skew-symmetric matrices as above. Further we will use the
abbreviation SSS for shifted skew-symmetric.

Shifted skew-symmetric systems arise in many scientific and engineering applications. Two
important examples are Computational Fluid Dynamics and Linear Programming. In Com-
putational Fluid Dynamics, SSS systems arise when dealing with Navier-Stokes equations
with a large [8] or a small [9] Reynolds number (see also [1]). To illustrate the usefulness of
having a fast solver for SSS systems, below we will treat an application in CFD and one in
LP.

∗Delft University of Technology, J.M. Burgerscentrum, Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, The Netherlands,
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For an application in CFD we consider B to be a large non-singular matrix, which is a discrete
version of an advection-diffusion problem. The Hermitian splitting can be used to decompose
B in its symmetric part M and its skew-symmetric part N :

B = M + N, where M =
B + BT

2
and N =

B − BT

2
.

If the diffusion is important, i.e., if the Reynolds number is small, and if the symmetric part
M of B is nonsingular, M−1 can be used as a preconditioner to solve a system Bx = b. Note
that to compute v = M−1w efficiently, multigrid can be used. The preconditioning can be
done as follows:

M− 1

2 BM− 1

2y = M− 1

2b , where x = M− 1

2 y. (3)

This equation can be rewritten as:

(I + M− 1

2 NM− 1

2 )y = M− 1

2 b ,

which is an SSS system (compare [9]).

On the other hand if advection is dominant, i.e., if the Reynolds number is large,
(

I − (αI + N)−1(M − αI)
)

(αI + N)−1

can be used as a preconditioner (see [8] eq. (1.7) and (3.1)). Applying this preconditioner to
a vector w implies that SSS systems of the form (αI + N)v = w have to be solved.

For an application in Linear Programming consider interior point methods, a popular way of
solving LP problems. When solving a Linear Program with such a method, using a self-dual
embedding of the problem takes slightly more computational time per iteration but has several
important advantages such as having a centered starting point and detecting infeasibility by
convergence, as described in [16]. Therefore, most modern solvers use such an embedding.

Interior point methods are iterative schemes that search for an optimal solution from within
the strictly feasible set. In each iteration a step ∆xi to add to the current solution is generated.
To calculate this step, a large sparse system of the following form needs to be solved:

(Di + N)∆xi = bi (4)

where N is a skew-symmetric matrix and Di is a diagonal matrix with strictly positive entries
on the diagonal.

Using the same preconditioning as in equation (3) we can rewrite system (4) into:

(I + D
− 1

2

i ND
− 1

2

i )yi = D
− 1

2

i bi , where yi = D
1

2

i ∆xi . (5)

This again is an SSS system. Note that the preconditioning in this case is in fact diagonal
scaling.

In the next section we will overview some existing algorithms that can be used to solve SSS
systems. We discuss some of their advantages, disadvantages and limitations when solving
these systems. In Section 3 we will present a general Lanczos based SSS solver, followed in
Section 4 by a comparison of the treated solvers. In Section 5 we treat the results of our
numerical experiments, and finally in Section 6 we present our conclusions with respect to
solving SSS systems.
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2 Overview of existing methods

In this section we will give an overview of some existing Krylov subspace methods that can be
used to solve shifted skew-symmetric systems. Krylov subspace methods are iterative solvers
for systems of linear equations. In iteration j a Krylov subspace method approximates the
solution with xj , where

xj ∈ x0 + Kj(A, r0).

Here x0 is the initial solution, A is the coefficient matrix of the system, r0 = b − Ax0 is the
initial residual and Kj(A, r0) is the Krylov subspace:

Kj(A, r0) = span{r0, Ar0, . . . , A
j−1r0}.

Since in every iteration the Krylov subspace is expanded, a new approximation within the
larger subspace can be generated that is never worse than the previous one.

Two important properties we aspire in Krylov subspace methods are optimality and short
recurrences. An algorithm has the optimality property if the generated approximation for the
solution is, measured in some norm, the best within the current Krylov subspace. The short
recurrences property is satisfied if the algorithm can generate the next approximation using
only data from the last few iterations.

For general coefficient matrices the above properties cannot be satisfied simultaneously. How-
ever methods satisfying both properties do exist for matrices of the form

A = eiθ(σI + T ) , where θ ∈ R, σ ∈ C, TH = T.

These results are due to Faber and Manteuffel [5], [6]. Taking θ = π/2, σ = −iα with α ∈ R

and T = −iN with NT = −N , we get a matrix as given in equation (2). This implies
that a Krylov subspace method for SSS systems exists that has both optimality and short
recurrences.

2.1 General methods

An SSS problem can be solved with any solver for general matrix equations. We will name a
few widely used methods that nicely illustrate the findings of Faber and Manteuffel mentioned
above.

GMRES [18] generates optimal approximations to the solution, but needs vectors from all the
previous iterations to do so. The same holds for the GCR method [22].

Bi-CGSTAB [20] uses short recurrences but does not have the optimality property. Usually
it converges fast but it is not robust.

Finally, CGNR [15] solves the normal equations AT Ax = AT b with the CG method. This
solver achieves both optimality and short recurrences, but uses a different Krylov subspace.
Since the condition number is squared when working with AT A, convergence can be very
slow. This method is used for solving SSS systems by Golub and Vanderstraeten in their
treatment of the preconditioning of matrices with a large skew-symmetric part [7].
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2.2 Generalized Conjugate Gradient method

The Generalized Conjugate Gradient method, proposed by Concus and Golub [2] and Widlund
[24], is an iterative Lanczos method for solving systems Ax = b where A has a positive definite
symmetric part M . The SSS matrix (2) satisfies this requirement if α > 0, and for α < 0
we can easily meet it by solving −Ax = −b. Thus we can use this method to solve any SSS
system with α 6= 0.

Algorithm 2.1 (Generalized Conjugate Gradient)

Let x−1 = x0 = 0 , j = 0

While not converged do

Solve Mvj = b− Axj

ρj = (Mvj,vj)

If j = 0

ωj = 1

Else

ωj = (1 + (ρj/ρj−1)/ωj−1)
−1

Endif

xj+1 = xj−1 + ωj(vj + xj − xj−1)

j = j + 1

End while

The Generalized Conjugate Gradient method does not have the optimality property. However,
it has been proved that the iterates are optimal in some affine subspace other than the Krylov
subspace [4].

In practice this method is rarely used, as it has been superseded by the CGW method by the
same authors. Therefore we will not go into any further details on this method in this paper.

2.3 CGW method

Related to the Generalized Conjugate Gradient method presented above is the algorithm that
Saad describes under the name CGW in Section 9.6 of his book [17]. This method also solves
systems of linear equations with a coefficient matrix with positive definite symmetric part.
But it does so using a two-term recursion, as opposed to the three-term recursion used by the
Generalized Conjugate Gradient method.

Below we present the CGW algorithm. Therein M is again the symmetric part of A. Note
that this algorithm is identical to the preconditioned CG method, except for the minus sign
used in the calculation of βj (see [17], Section 9.2). Further note that when M = I we have
zj = rj , which considerably simplifies the algorithm.
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Algorithm 2.2 (CGW)

Let x0 be given, r0 = b− Ax0, j = 0
Solve Mz0 = r0, p0 = z0

While not converged do

αj = (rj, zj)/(Apj, zj)

xj+1 = xj + αjpj

rj+1 = rj − αjApj

Solve Mzj+1 = rj+1

βj = −(zj+1, rj+1)/(zj , rj)

pj+1 = zj+1 + βjpj

j = j + 1

End while

The CGW method can be used to solve an SSS system (1,2) with α 6= 0. For such a system
we can force M = I to simplify the algorithm. This is easily done by solving one of the
following systems that are equivalent to the SSS system (1,2) when α 6= 0:

(I + N/α)x = b/α or (I + N/α)(αx) = b.

The CGW algorithm uses short recurrences, but as it is a Galerkin method (see [11] p. 13) it
does not have the optimality property.

2.4 Huang, Wathen, Li method

Huang, Wathen and Li [12] described a method to solve the SSS system (1,2) with α = 0. We
will denote this method by HWL, after the names of the authors. The HWL algorithm actually
generates the same approximations to the solution as the CGNR method, as we will prove here.
As the CGNR method solves AT Ax = ATb, both methods satisfy the optimality property in
Kj(A

T A,AT r0) but generally not in Kj(A, r0), and are more susceptible to rounding errors
when dealing with ill-conditioned systems.

Below the CGNR algorithm 2.3 and the HWL algorithm 2.4 are given.
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Algorithm 2.3 (Conjugate Gradient on the Normal Equations)

Let x0 be given, j = 0
r0 = ATb− AT Ax0, p0 = r0

While not converged do

αj = (rj, rj)/(A
T Apj,pj) = (rj , rj)/(Apj , Apj)

xj+1 = xj + αjpj

rj+1 = rj − αjA
T Apj

βj = (rj+1, rj+1)/(rj, rj)

pj+1 = rj+1 + βjpj

j = j + 1

End while

Algorithm 2.4 (Huang, Wathen, Li)

Let x̃0 be given, j = 0
r̃0 = b− Ax̃0, p̃0 = Ar̃0

While not converged do

α̃j = (̃rj, Ap̃j)/(Ap̃j, Ap̃j)

x̃j+1 = x̃j + α̃jp̃j

r̃j+1 = b − Ax̃j+1

β̃j = (A2p̃j , Ar̃j+1)/(Ap̃j, Ap̃j)

p̃j+1 = Ar̃j+1 + β̃jp̃j

j = j + 1

End while

Starting with identical initial solutions we have for j = 0:

xj = x̃j (6)

rj = AT r̃j = − Ar̃j (7)

pj = −p̃j (8)
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We will prove by induction that these equalities hold for all j. For this we will need the
following equations from [12]:

(̃rj , Ap̃i) = 0 , i ≤ j (9)

(Ar̃i, Ar̃j) = 0 , i 6= j (10)

We also use the fact that for SSS system (1,2) with α = 0 we have AT = −A.

Assume equation (6)–(8) hold for certain j. Then:

α̃j = (̃rj, Ap̃j)/(Ap̃j, Ap̃j) and

αj = (rj, rj)/(Apj, Apj) = (Ar̃j , Ar̃j)/(Ap̃j, Ap̃j) .

If we define β̃−1 = 0 and p̃−1 = 0 we can write using (9):

(̃rj, Ap̃j) = (̃rj , A(Ar̃j + β̃j−1p̃j−1)) = (̃rj, AAr̃j) = −(Ar̃j, Ar̃j)

Thus we have αj = −α̃j, and with pj = −p̃j this gives us xj+1 = x̃j+1. Writing

r̃j+1 = b− Ax̃j+1 = b − A(x̃j + α̃jp̃j) = r̃j − α̃jAp̃j

it also easily follows that:

rj+1 = rj − αjA
T Apj = −(Ar̃j − Aα̃jAp̃j) = −Ar̃j+1 .

It only remains to prove that given equation (6)–(8) we have pj+1 = −p̃j+1. Is it easy to see

that for this to hold we need to have βj = β̃j .

Using equation (10) we write:

(rj+1, rj+1) = (rj − αjA
T Apj,−Ar̃j+1)

= (−Ar̃j − α̃jA
T Ap̃j,−Ar̃j+1)

= (Ar̃j − α̃jA
2p̃j , Ar̃j+1) = − α̃j(A

2p̃j , Ar̃j+1).

And using equation (9) we find:

(rj, rj) = (Ar̃j, Ar̃j) = (p̃j − β̃j−1p̃j−1, Ar̃j)

= (−Ap̃j + β̃j−1Ap̃j−1, r̃j) = (−Ap̃j , r̃j)

= (−Ap̃j, r̃j+1 + α̃jAp̃j) = − α̃j(Ap̃j, Ap̃j)

Thus

βj =
(rj+1, rj+1)

(rj, rj)
=

−α̃j(A
2p̃j , Ar̃j+1)

−α̃j(Ap̃j , Ap̃j)
= β̃j ,

which concludes the proof that the HWL algorithm generates the same approximations as
the CGNR method. The practical validity of this property is easily confirmed by numerical
experiments.
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3 MRS3 solver

In the previous section we described various existing methods to solve SSS systems (1,2).
These methods all have their own drawback. The general methods do not achieve both short
recurrences and optimality, and the specialized methods only work for either α = 0 or α 6= 0.

In this section we will present a solver for SSS systems that satisfies both the short recurrences
and the optimality property, and can be used for all values of α ∈ R. This Minimal Residual
method for Shifted Skew-Symmetric systems, or MRS3, is a Krylov subspace method that is
based on the Lanczos algorithm [13].

3.1 Non-symmetric Lanczos algorithm

We start the derivation of our algorithm with the Lanczos algorithm for non-symmetric ma-
trices A.

Algorithm 3.1 (Non-symmetric Lanczos algorithm)

Let q0 = q̂0 = 0 , j = 0
Choose p1, p̂1 with p̂T

1 p1 6= 0

While p̂T
j+1pj+1 6= 0 do

j = j + 1

αj = q̂T
j Aqj

Choose βj and γj such that βjγj = p̂T
j pj

qj = pj/γj

q̂j = p̂j/βj

pj+1 = Aqj − αjqj − βjqj−1

p̂j+1 = AT q̂j − αj q̂j − γjq̂j−1

End while

The algorithm is such that the following orthogonality relations hold:

q̂T
i qj = δij =

{

1 , i = j
0 , i 6= j

(11)

Thus if we define Qj =
[

q1 · · · qj

]

and Q̂j =
[

q̂1 · · · q̂j

]

we have

Q̂T
j Qj = I .
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From the coefficients calculated in the Lanczos algorithm we build the following tridiagonal
matrix, that is called the Ritz matrix:

Tj =



















α1 β2 0 · · · 0

γ2 α2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βj

0 · · · 0 γj αj



















(12)

Now we can write the recurrences of the Lanczos method in matrix form:

AQj = QjTj + pj+1e
T
j

AT Q̂j = Q̂jT
T
j + p̂j+1e

T
j

(13)

An important property of the non-symmetric Lanczos algorithm is that the vectors q1, . . . ,qj

form a basis for the Krylov subspace Kj(A,q1) and the vectors q̂1, . . . , q̂j form one for the

Krylov subspace Kj(A
T , q̂1). Because of this the algorithm can be used to solve systems of

linear equation.

A drawback of the non-symmetric Lanczos algorithm is that it can suffer from breakdown.
The algorithm stops if p̂T

j+1pj+1 = 0. If pj+1 = 0 the vectors q1, . . . ,qj span an A-invariant

subspace, and if p̂j+1 = 0 the vectors q̂1, . . . , q̂j span an AT -invariant subspace. In either
case we say the termination of the algorithm is regular. However if pj+1 6= 0 and p̂j+1 6= 0
at termination, we have a serious breakdown. In this case the algorithm can not be used to
generate a full basis for the Krylov subspace.

3.2 Shifted skew-symmetric Lanczos algorithm

The original Lanczos algorithm [13] was for symmetric matrices and has some important
advantages over the non-symmetric variant presented above. For shifted skew-symmetric
matrices a similar advantageous form exists, which we will derive here.

We start from Algorithm 3.1 with q̂0 = q0 = 0, p1 arbitrary and p̂1 = −p1. Further we
choose β1 = −γ1 = ||p1||2. We then have q̂1 = q1, and using equation (11) we find:

α1 = q̂T
1 Aq1 = αq̂T

1 q1 + q̂T
1 Nq1 = αq̂T

1 q1 + qT
1 Nq1 = α . 1

Assuming that q̂j = qj, q̂j−1 = qj−1, αj = α and βj = −γj we have

pj+1 = (αI + N)qj − αqj − βjqj−1 = Nqj − βjqj−1 ,

and thus the generated vectors satisfy the following relation:

p̂j+1 = (αI + N)T q̂j − αq̂j − γj q̂j−1 = −Nqj + βjqj−1 = −pj+1

1For skew-symmetric N we have x
T
Nx = (xT

Nx)T = x
T
N

T
x = −x

T
Nx and since a = −a ⇔ a = 0 we

find x
T
Nx = 0 for all vectors x.
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Thus we can take βj+1 = −γj+1 = ||pj+1||2 which gives us that q̂j+1 = qj+1 and αj+1 = α.
By the induction principle we conclude that, with the above used starting vectors, the choice
βj = −γj = ||pj ||2 is valid for all j and results in q̂j = qj for all j.

With these results we can justify the following adaptation of the Lanczos algorithm for SSS
matrices A = αI + N .

Algorithm 3.2 (Shifted skew-symmetric Lanczos algorithm)

Let q0 = 0 , j = 0
Choose p1 with p1 6= 0 and let β1 = ||p1||2

While βj+1 > 0 do

j = j + 1

qj = −pj/βj

pj+1 = Nqj − βjqj−1

βj+1 = ||pj+1||2

End while

Besides the obvious fact that the computation work is greatly reduced with respect to the
non-symmetric Lanczos algorithm, the SSS Lanczos algorithm also has the nice property that
serious breakdown will (in exact arithmetic) not occur, as βj = ||pj+1||2 = 0 ⇔ pj+1 = 0.

Since q̂j = qj it follows directly from equation (11) that Qj is orthogonal. Also, the Lanczos
recurrences (13) are reduced to the one equation

AQj = QjTj + pj+1e
T
j , (14)

where Tj is the tridiagonal shifted skew-symmetric Ritz matrix given by:

Tj =



















α β2 0 · · · 0

−β2 α β3
. . .

...

0 −β3
. . .

. . . 0
...

. . .
. . .

. . . βj

0 · · · 0 −βj α



















Using the fact that pj+1 = −βj+1qj+1 we can also write the recurrence relation (14) in the
following form:

AQj = Qj+1T
+
j , (15)
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where the (j+1)×j extended Ritz matrix T+
j is defined as:

T+
j =

[

Tj

0 · · · 0 −βj+1

]

=























α β2 0 · · · 0

−β2 α β3
. . .

...

0 −β3
. . .

. . . 0
...

. . .
. . .

. . . βj

0 · · · 0 −βj α
0 · · · · · · 0 −βj+1























.

3.3 Solving shifted skew-symmetric systems

Krylov subspace methods can be categorized by the way the approximation xj = x0+sj of the
solution x is calculated. Minimal residual methods choose sj such that the residual ||rj ||2 is
minimized. Orthogonal residual (or Galerkin) methods calculate sj such that QT

j rj = 0. We
will follow the minimal residual path, because it satisfies the optimality property described
in Section 2.

We start the solver with an initial guess x0. Then in each iteration j we will calculate
sj ∈ Kj(A, r0) such that xj = x0 + sj is a good approximation of x. As a measure for the
error in xj we use ||rj||2. The vectors generated by the above derived shifted skew-symmetric
Lanczos algorithm 3.2 will be used to rewrite the error ||rj||2 to such a form that we can
calculate sj from it.

We start Algorithm 3.2 with p1 = r0 = b−Ax0. Then, since the columns of Qj form a basis
for Kj(A,q1) and

q1 = −p1/||p1||2 = −r0/||r0||2 (16)

the columns of Qj also form a basis for the Krylov subspace Kj(A, r0). Therefore for all
sj ∈ Kj(A, r0) a ξj ∈ R

j exists such that

sj = Qjξj . (17)

Thus we can write:

||rj ||2 = ||b − Axj ||2 = ||b − Ax0 − Asj||2 = ||r0 − AQjξj ||2 .

Now we use equations (15) and (16) to get:

||rj ||2 = ||r0 − Qj+1T
+
j ξj ||2 = ||Qj+1(−||r0||2e1 − T+

j ξj)||2 .

The matrix Qj+1 is orthogonal and the 2-norm is invariant with respect to orthogonal trans-
formations, thus we have

||rj||2 = || (||r0||2e1 + T+
j ξj) ||2 . (18)

A minimal residual is therefore obtained by choosing ξj = ξ̂j where

ξ̂j = arg min
ξj∈Rj

|| (||r0||2e1 + T+
j ξj) ||2 , (19)
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i.e., ξ̂j is the least-squares solution of the linear system

T+
j ξj = −||r0||2e1 . (20)

This least-squares solution can be found with the help of Givens rotations. We will show that
it is not necessary to apply rotations to the entire matrix Tj in each iteration. We can store
the rotated matrix instead of Tj , and update it every iteration.

A Givens rotation of a vector is the multiplication with a square orthogonal matrix of the
form

Gy (k, l) =





































1 0 0 · · · · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . . c

. . .
. . . s

. . .
...

...
. . .

. . . 1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1
. . .

. . .
...

...
. . . −s

. . .
. . . c

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0 · · · · · · · · · . . .
. . . 0 1





































row k

row l

where c =
yk

√

y2
k + y2

l

and s =
yl

√

y2
k + y2

l

.

The composition of this matrix is such that if ỹ = Gy (k, l)y, then ỹi = yi for all i 6∈ {k, l}
and ỹl = 0.

We define the following shorthand notation for the Givens rotations we are going to use:

Gi
j = Gτi

j
(i, i + 1) , i = 1, . . . , j

where the transformation vector τ i
j is given by

τ 1
j = t1

j

τ i
j =

(

Gi−1
j · · ·G1

j

)

ti
j , i = 2, . . . , j .

Here ti
j denotes column i of the extended Ritz matrix T+

j .

Using these rotations we define the transformed matrix

Ũj =
(

Gj
j · G

j−1
j · · ·G2

j · G1
j

)

T+
j . (21)

Since all entries of ti
j are 0, except those at index i + 1, i and i − 1, we have

ũi
j =

(

Gj
j · G

j−1
j · · ·G2

j · G1
j

)

ti
j =

(

Gi
j · Gi−1

j · Gi−2
j

)

ti
j , (22)

where ũi
j is column i of the matrix Ũj . Due to the special structure of ti

j and the rotations,

all entries of ũi
j are 0, except those at index i, i − 1 and i − 2, therefore

ũi
j+k =

[

ũi
j

0k

]

, k ≥ 0 , (23)
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where 0k is the k-dimensional 0-vector. Note that the vectors have dimension dim ũi
j =

dim ti
j = j + 1, and that the last entry of each vector ũi

j is 0, i.e., ũi
j(j + 1) = 0.

From an algorithmic point of view, equation (23) means that in iteration j > 1 we can
construct ũi

j for i < j directly from ũi
j−1, without having to apply Givens rotations. The

only vector that has to be calculated using these rotations is ũj
j. And equation (22) shows

that we only need three rotations for this.

From the above results it follows that the matrix Ũj is of the form

Ũj =

[

Uj

0 · · · 0

]

.

The matrix Uj can be iteratively constructed using

Uj =

[

Uj−1

0 · · · 0 uj
j

]

, (24)

where the vector uj
j is implicitly defined by

ũj
j =

[

uj
j

0

]

.

The matrix Uj is a j × j matrix with the following sparsity structure:

Uj =

















∗ 0 ∗
∗ 0 ∗

∗ 0 ∗
∗ 0 ∗

∗ 0
∗

















.

For proof of this structure, and the precise form of the non-zero elements, see Appendix A.

Now define the transformed vector

ṽj = −
(

Gj
j · G

j−1
j · · ·G2

j · G1
j

)

||r0||2e1 . (25)

Note that if we define ṽ0 = ||r0||2 we can write

ṽj = Gj
j

[

ṽj−1

0

]

, j > 0 .

Writing ṽj = [vj εj ]
T we can construct the vector ṽj using

ṽj = Gj
j





vj−1

εj−1

0



 =





vj−1

µj

εj



 ,
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where the values of µj and εj are determined by the Givens rotation Gj
j . Thus the vector vj

can be iteratively constructed using

vj =

[

vj−1

µj

]

. (26)

Since a Givens rotation is an orthogonal transformation, using equation (18) and defini-
tions (21) and (25) we find

||rj ||2 = || (T+
j ξj + ||r0||2e1) ||2 = || Ũjξj − ṽj ||2 .

Thus the solution ξ̂j of equation (19) is equal to the least-squares solution of the system

Ũjξj = ṽj ⇒
[

Uj

0 · · · 0

]

ξj =

[

vj

εj

]

.

From this result it is trivial that ξ̂j is equal to the solution of the system

Ujξj = vj , (27)

and that the residual error is given by

||rj||2 = εj . (28)

To determine the minimal residual approximation xj we need to calculate sj from equa-
tion (17). If we calculate ξ̂j as the solution of system (27) and then multiply with Qj directly,
we would need to store the entire matrix Qj in memory. Thus the algorithm would not yield
the short recurrences property described in Section 2.

To overcome this problem we can use the technique that is also applied in the MINRES
algorithm (see [14]). We define the matrix Wj = QjU

−1
j , then:

WjUj = Qj (29)

and
sj = QjU

−1
j vj = Wjvj . (30)

Further we introduce the following notation:

Wj =
[

w1
j · · ·wj

j

]

and W i
j =

[

w1
j · · ·wi

j

]

.

For j = 1 equation (29) has a unique solution that is easily determined:

w1
1u1,1 = q1 ⇒ w1

1 =
1

u1,1
q1 .

Now suppose that j = i with i > 1, and that we have a unique solution of equation (29) for
j = i − 1, then the equation is

[

W i−1
i wi

i

]

[

Ui−1

0 · · · 0 ui
i

]

= [ Qi−1 qi ]

16



which can be split in the equations

W i−1
i Ui−1 = Qi−1 (31)

Wiu
i
i = qi . (32)

Due to our assumption equation (31) has the unique solution

W i−1
i = Wi−1 ,

and due to the special structure of ui
i equation (32) is uniquely solved by

w2
2 =

1

u2,2
q2

wi
i =

1

ui,i

(

qi − ui−2,iw
i−2
i

)

, i > 2 .

Thus it is proved by induction that we can unambiguously define wi = wi
j, and that equa-

tion (29) is uniquely solved by the matrix Wj with columns

wi =











1

ui,i

qi , i ∈ {1, 2}
1

ui,i

(qi − ui−2,iwi−2) , i ∈ {2, j}
(33)

This solution uses only short recurrences, as required.

The final step is to find the approximating solution xj . Using equations (26) and (30) we can
write

sj = Wjvj = Wj−1vj−1 + µjwj = sj−1 + µjwj .

Thus the approximation of the solution in iteration j is given by

xj = x0 + sj = xj−1 + µjwj . (34)

Combining all the above results, we now present the MRS3 solver Algorithm 3.3. To make
the algorithm easier to read we have used the following simplified notations: uj for ũj , vj for

ṽj and Gj for Gj
j .

Note that in this version of the algorithm we use Givens rotations to calculate the vectors uj .
Another option would be to use the knowledge of these vectors derived in Appendix A.

17



Algorithm 3.3 (MRS3)

Choose x0 and set the residual error tolerance τ
Let r0 = b− Ax0, N = A − αI
Let j = 0, q0 = 0, p1 = r0, β1 = ||p1||2, ε = β1

While βj+1 > 0 and ε > τ do

j = j + 1

qj = −pj/βj

pj+1 = Nqj − βjqj−1

βj+1 = ||pj+1||2

If j = 1

uj = [α − βj+1 ]T

vj = [−||r0|| 0 ]T

Gj = GivensRotation(uj , j, j + 1)

uj = Gjuj

vj = Gjvj

wj = qj/uj(j)

Elseif j = 2

uj = [βj α − βj+1 ]T

vj = [vj−1 0 ]T

Gj = GivensRotation(uj , j, j + 1)

uj = GjGj−1uj

vj = Gjvj

w = qj/uj(j)

Else

uj = [0j−2 βj α − βj+1 ]T

vj = [vj−1 0 ]T

Gj = GivensRotation(uj , j, j + 1)

uj = GjGj−1Gj−2uj

vj = Gjvj

wj = (qj − uj(j − 2)wj−2)/uj(j)

Endif

xj = xj−1 + vj(j)wj

ε = vj(j + 1)

End while

18



4 Comparison of MRS3 with existing methods

Like GMRES, the MRS3 method computes the minimal residual using the Krylov subspace
Kj(A, r0). Assuming that A is non-singular, this implies that in exact arithmetic both meth-
ods generate the same approximation to the solution in each iteration, i.e.,

xMRS3

j = xGMRES
j .

As MRS3 uses short recurrences, it is more efficient in finding this solution than GMRES.

The relation between the residual of a minimal residual method MR and that of a Galerkin
method G, is known from (2.29) of [10]. If the minimal residual method does not stagnate,
i.e., if

c =
‖rMR

j ‖2

‖rMR
j−1‖2

< 1 ,

then the norm of the residuals satisfy the identity

‖rMR
j ‖2 =

√

1 − c2‖rG
j ‖2 . (35)

It follows directly that, if the MRS3 method does not stagnate, the calculated residuals are
always smaller than those of Galerkin methods like CGW, so

‖rMRS3

j ‖2 < ‖rCGW
j ‖2 .

Furthermore, relation (35) can be used to understand the so-called peak-plateau connection
[3, 21, 23]. The peak-plateau connection is the phenomenon that a peak in the residual norm
history of a Galerkin method is accompanied by a plateau, i.e., the norm nearly stagnating,
in the residual norm history of a minimal residual method.

In Table 1 we have set out some important properties of the computational load, as well as a
couple general properties of MRS3 and other algorithms treated in the previous chapters.

matvec inner vector vector

products products updates memory α optimality

MRS3 1 1 3 6 all yes

CGW 1 4 3 4 6= 0 no

GMRES 1 k+1
2

k+1
2 k+3 all yes

Bi-CGSTAB 2 3 3 7 all no

CGNR 2 2 2 4 all no

Table 1: Important properties of MRS3 and other solvers

Note that these numbers can differ with the exact implementation of the algorithm. For the
CGW method we based the numbers on an implementation that solves (I + N/α)x = (b/α),
as this is a lot more efficient. Further note that with optimality we mean that the method
satisfies the optimality property within the Krylov subspace Kj(A, r0).
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5 Numerical results

In this section we will compare the MRS3 algorithm numerically with the CGW, GMRES,
Bi-CGSTAB and CGNR methods. Also we will numerically verify the theoretical results from
Section 4 for MRS3 versus the CGW algorithm.

As we mentioned in the introduction of this paper, SSS systems frequently occur in the
solution of advection-diffusion problems. Therefore we will use matrices of a form found in
this field of expertise to numerically explore the MRS3 method. The matrices we will consider
are of the form

A = αI + N ,

where A ∈ R
n×n, n = n1 · n2, h1 = 1

n1
, h2 = 1

n2
, and with the matrix N a skew-symmetric

block tridiagonal matrix of which the nonzero blocks are given by

Sii =
1

2h1
tridiag(−1, 0, 1), for i = 1, . . . , n2 ,

and

Si,i+1 =
1

2h2
diag(γ), for i = 1, . . . , n2 − 1 ,

for varying values of γ.
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Figure 1: Convergence of MRS3 and CGW with α = 5, and γ = 1
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5.1 Numerical comparison of MRS3 and CGW

As noted in Section 2.3, the CGW method can only be used if α 6= 0. We choose n1 = n2 = 20,
α = 5, and γ = 1 and compare the norm of the residuals of the MRS3 and CGW methods.
Furthermore we check the identity of equation (35) by plotting the expected residual norm
for CGW based on the computed residual norm for MRS3, and comparing it to the computed

residual norm for the CGW algorithm. The methods are stopped when
‖rj‖2

‖r0‖2
< 5 · 10−5.

The results are given in Figure 1. Note that the theoretical prediction for the norm of the
CGW residual is correct. Further note that this figure nicely illustrated the peak-plateau
connection mentioned in Section 4.

5.2 Numerical comparison of MRS3, GMRES and Bi-CGSTAB

In this section we compare the MRS3 algorithm with the general Krylov methods GMRES
and Bi-CGSTAB. In order to make the memory and work requirements comparable we use
GMRES(3), which means that GMRES is restarted every 3 iterations. In our experiments
we have also checked that full GMRES indeed leads to the same results as MRS3.

The results of our experiments are given in Figure 2, 3, and 4. It appears that all methods
converge well if α is large. However for small α, or α = 0, only the MRS3 method leads
to acceptable results. With respect to Bi-CGSTAB, we should note that for these problems
Bi − CGSTAB(l) [19] may be a better alternative.
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Figure 2: Convergence of MRS3, GMRES and Bi-CGSTAB with α = 500, and γ = 100
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Figure 3: Convergence of MRS3, GMRES and Bi-CGSTAB with α = 250, and γ = 100
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Figure 4: Convergence of MRS3, GMRES and Bi-CGSTAB with α = 0, and γ = 100
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5.3 Numerical comparison of MRS3 and CGNR

Finally, we compare the MRS3 and CGNR methods. The CGNR method is used in [8] to solve
SSS systems. It appears, that if the system is well conditioned the required number of matrix
vector products of both methods are comparable, however if the system is ill conditioned the
CGNR method breaks down. This is illustrated by the results given in Table 2, where γ = 1.

condition matrix vector products
α number MRS3 CGNR

1 3.9 · 10 226 245
10−4 3.9 · 105 312 337
10−8 3.9 · 109 328 521
10−12 3.9 · 1013 655 n.c.

Table 2: Numerical results for MRS3 and CGNR

6 Conclusions

This paper is started by showing the importance of a fast solver for shifted skew-symmetric
matrix systems. Theory by Faber and Manteuffel [5], [6] demonstrates that an algorithm that
is optimal and uses short recurrences should exist, however such an algorithm was not yet
available. In Section 3 we have presented such an algorithm, the MRS3 (Minimal Residual
Method for Shifted Skew-Symmetric Systems) solver.

By theory and numerical experiments in Section 4 and 5, we have shown that the MRS3

method generally outperforms its common alternatives. As a minimal residual method it
converges faster than Galerkin methods, like the CGW algorithm, that do not satisfy the
optimality property, while at the same time also allowing α = 0 where CGW does not work.
Full GMRES converges as fast as MRS3 but is not a valid option due to its complexity,
whereas restarted GMRES variants have a good complexity but cannot maintain the fast
convergence. For the specific problem of SSS (Shifted Skew-Symmetric) systems Bi-CGSTAB
seems to have convergence problems, especially for small α, while the complexity is also worse
than that of MRS3. And though the performance of the CGNR method is comparable to
that of MRS3 for many problems, it breaks down for small α.

We conclude that the proposed MRS3 solver performs very well for the important class of
shifted skew-symmetric matrix systems A = αI +N . The complexity of the algorithm is very
good, in generally it converges very fast, and it can be used for all values of α. Especially for
small α, or α = 0, MRS3 seems to perform much better than the well known alternatives.
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A Structure of the rotated Ritz matrix

In this appendix we will look in-depth at the rotated Ritz matrix Uj defined in Section 3.3.
To this end we define

Z1 = α2 ,

Z2 = Z1 + β2
2 ,

Z3 = Z2 + β2
3 ,

Zi = Z1Z3···Zi−1

Z2Z4···Zi−2
+ β2

i , i > 3 , i even ,

Zi = Z2Z4···Zi−1

Z3Z5···Zi−2
+ β2

i , i > 3 , i odd .

Let, as in Section 3.3,
Gi

j = Gτi
j
(i, i + 1) , j ≥ i

denote Givens rotation i at iteration j, and let

ci =
τi

j(i)
q

τi
j(i)+τi

j(i+1)

si =
τi

j(i+1)
q

τi
j(i)+τi

j(i+1)

denote the coefficients of Gi
j . Note that for j ≥ i the values of ci and si are indeed independent

of j due to the special structure of τ i
j.

For j = 1 we have τ 1
1 = t11 and find

c1 =

√
Z1√
Z2

, s1 =
−β2√

Z2
,

u1
1 = G1

1τ
1
1 = G1

1t
1
1 =

[

αc1 − β2s1

−αs1 − β2c1

]

=

[ √
Z2

0

]

.

For j = 2 we have

τ 2
2 = G1

2t
2
2 =





β2c1 + αs1

−β2s1 + αc1

−β3



 =





0√
Z2

−β3



 .

Thus we find

c2 =

√
Z2√
Z3

, s2 =
−β3√

Z3
,

u2
2 = G2

2τ
2
2 =





0√
Z2c2 − β3s2

−
√

Z2s2 − β3c2



 =





0√
Z3

0



 .

Now assume that

ci =
√

Z2Z4···Zi

Z3Z5···Zi+1
, i > 2 , i even ,

ci =
√

Z1Z3···Zi

Z2Z4···Zi+1
, i > 2 , i odd ,

si = −βi+1√
Zi+1

.

(36)
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Obviously this is true for i = 1, 2. We will show by induction that it holds for all i > 0.

For j > 2 we have

τ
j
j = Gj−1

j Gj−2
j tjj = Gj−1

j













0j−3

βjsj−2

βjcj−2

α
−βj+1













=













0j−3

βjsj−2

βjcj−2cj−1 + αsj−1

−βjcj−2sj−1 + αcj−1

−βj+1













,

where 0i denotes the null vector with dimension i.

Suppose that j is even. Using (36) we then find

βjcj−2cj−1 + αsj−1 =

βj

√

Z2Z4···Zj−2

Z3Z5···Zj−1

√

Z1Z3···Zj−1

Z2Z4···Zj
+ α

−βj√
Zj

=

βj

√

Z1

Zj
+ α

−βj√
Zj

= 0 .

Further we can write

−βjcj−2sj−1 + αcj−1 =

−βj

√

Z2Z4···Zj−2

Z3Z5···Zj−1

−βj√
Zj

+ α
√

Z1Z3···Zj−1

Z2Z4···Zj
=

α
√

Z1Z3···Zj−1

Z2Z4···Zj
+

β2
j√
Zj

√

Z2Z4···Zj−2

Z3Z5···Zj−1
=

Z1√
Zj

√

Z3···Zj−1

Z2Z4···Zj−2 +
β2

j√
Zj

√

Z2Z4···Zj−2

Z3Z5···Zj−1
=

√

Z2Z4···Zj−2

Z3Z5···Zj−1

(

Z1Z3···Zj−1

Z2Z4···Zj−2√
Zj

+
β2

j√
Zj

)

=

√

Z2Z4···Zj−2

Z3Z5···Zj−1

√

Zj =
√

Z2Z4···Zj

Z3Z5···Zj−1
.

Therefore, assuming (36) for i = 1 . . . j − 1, for even j > 2 we have

τ
j
j =

















0j−3
−βj−1βj

Zj−1

0
√

Z2Z4···Zj

Z3Z5···Zj−1

−βj+1

















.

From this it easily follows that indeed for j, again assumption (36) holds, and that

uj
j = Gj

jτ
j
j =

















0j−3
−βj−1βj

Zj−1

0
√

Z2Z4···Zj

Z3Z5···Zj−1
cj − βj+1sj

0

















=















0j−3
−βj−1βj

Zj−1

0
√

Zj+1

0















.
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In the same way we can prove that for odd j > 2 we have

τ
j
j =

















0j−3
−βj−1βj

Zj−1

0
√

Z1Z3···Zj

Z2Z4···Zj−1

−βj+1

















,

that thus assumption (36) holds for all j > 0, and that for odd j > 2 again

uj
j =















0j−3
−βj−1βj

Zj−1

0
√

Zj+1

0















.
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