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Abstract—The Newton-Raphson method is widely used to solve requires 10 times that amount of runs, on a 10 times bigger
load flow problems. Traditionally a direct solver is used to slve problem, meaning a hundred times the computational work.
the linear systems within this method. In this paper we explce Furthermore, in a larger power system it is much more likely

the use of an iterative method to solve the linear systems,dding to h ltiole fail t th . Theref 9
to an inexact Newton-Krylov method. The main parameters of 0 have multipie Tailures at the same time. eretore

this method are the preconditioner and the forcing terms. Seeral ~ S€CUrity analysis is already being done regularly, takingen
candidate choices for these parameters are discussed andtied. amounts of computational effort.

With the proper preconditioner, and forcing terms, the inexact ~ Another important development in power systems is the
Newton-Krylov method is shown to greatly improve on using & jncorporation of renewable energy sources, such as wind
direct solver. and solar energy. Traditional generators are connected to
Index Terms—load flow analysis, Newton-Raphson method  the transmission network. This is referred to as centrdlize
power generation. Renewable energy generation is usually
. INTRODUCTION decentralized, i.e., connected to the distribution netwalr

HE load flow, or power flow, computation is the mosgonsumer level. Also, renewable sources are mostly natural
T important network computation in power systems. Rnd often have an uncontrollable power output.
calculates the voltage magnitude and angle in each bus off he incorporation of renewable energy sources, with fluc-
a power system, under specified system operation conditiofting power output, adds a stochastic component to the
Other quantities, such as current values, power values, diiwork computations. This can be dealt with by running a
power losses, can be calculated easily when the bus voltatfgge amount of load flow computations in a Monte Carlo
are known. simulation. Traditionally load flow calculations are dometbe
Load flow computations bring insight in the steady-stafé@nsmission network, and the distribution network is aggr
behavior of a power system. This is needed in many conti@ited at busses in the power system model. The decentralized
and planning applications. For example, whenever pow@gture of the renewable energy generation, however, may in
system components have to be taken out of service, §g'9e call for load flow calculations to also incorporate the
for maintenance purposes, it is crucial to know whether tl‘%gtrlbutlon network. This would result in load flow prOblem
power system will still function within system limits, orah Of sheer massive size.
additional measures have to be taken. Moreover, a poweMotivated by the above described developments, we explore
system has to be at least— 1 secure. This means that if anymathematical techniques for load flow problems, that are
one component fails, the power system still functions prigpe Particularly well equipped to deal with very large problem
These are typical problems that can be solved by doing logiges. For more details on power systems we refer to [1].
flow computations on the power system network. Over the years, a lot of effort has been put into solving load
The consumption of electricity keeps on rising every yedfow problems efficiently. For a concise overview of earlier
As a result, power systems grow larger and larger to suppliethods see [2]. In modern applications, the most widely
all consumers with their needs. And with the privatizatioHsed techniques are the Newton-Raphson method with a direct
of the electricity market, power systems are operated clod@ear solver [3], [4], and the Fast Decoupled Load Flow
and closer to their limits for economic reasons. More arfDLF) method [5], [6], [7]. For an overview of the derivatio
more nation wide power systems are being connected @bthe load flow problem formulation used in this paper, and
each other, to be able to exchange cheap excess power. figsapplication of the two above mentioned solution methods
results in huge connected power systems, with many tim@8 this problem formulation, we also refer to [8].
the busses and transmission lines of the classical systems. The Newton-Raphson method is a very powerful tool. There
small set of simultaneous failures could propagate thrahgh are multiple techniques available to assure global corsrere,
entire system, causing a massive blackout. Thereforegiiryi While local convergence is quadratic, see for example [Bf T
security against overloading is more important than ever. FDLF method is a very fast load flow method, but lacks some
With ever-growing problem sizes, more and more load flo@f the convergence properties of the Newton process. When
computations will have to be run. For a 1000 componeapplied to critical systems, or systems with strongly vagyi
system, a naive full, — 1 security analysis would require 2/ X ratios, the FDLF method may well fail to converge [7].
1000 runs of a 1000 component load flow problem. But In this paper we focus on the Newton-Raphson method.

for a 10000 Component System the same ana]ysis a|re§j.jl where traditionally a direct linear solver is used inleac
Newton iteration, we use iterative linear solution methods
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problems. For an overview of iterative solvers for spansedr [1l. PRECONDITIONEDGMRES

systems see [13]. We show that for larger load flow problemsThe Generalized Minimal Residual method (GMRES) [14]
a Newton method with an iterative linear solver, also calledis prohably the most widely used iterative solver for gehera
Newton-Krylov method, offers a huge improvement over usinghear systems. It is a minimal residual method, meaning tha
a direct solver, and that even for small load flow problemsii§ each iteration the residual error is minimized within the
can outperform Newton with a direct solver. Krylov subspace. In other words, in each iteration the saiut

In Section Il we define the linear system that has to kg 5¢ good as it can get with a Krylov method.
solved in each Newton iteration. Then in Section Ill We The drawback of GMRES is that it does not have short
motivate a choice of iterative linear solver and precondi#f, recyrrences. In each iteration the amount of vectors that ha
while in Section IV we discuss the accuracy to which to SOMg pe stored in memory increases, as does the number of vector
the linear system in each iteration. In Section V we constdd operations that has to be performed. As a result, GMRES
our work into numerical experiments, and compare the resuffecomes very slow when a lot of iterations are needed.
with the traditional methods. Finally, in Section VI we peas Preconditioning is an essential tool to bring down the
our conclusions. number of iterations needed by iterative linear solverstelad

Numerical experiments are performed inAMAB, USING ot the original linear system (6), a preconditioned system
MATPOWER' complemented with our own code. Our main

case is a power system network that is derived from the UCTE M; ' Jisi = —M;'F; (7)

Winter_2008 study model, and consists Of_ 4253 busses g d'solved, whereV/; is called the preconditioner. The idea is
7191 lines. All load flow solves are done with a flat start, a

£0-* chooseM; such that it is easy to solve systems of the form
up to an accuracy o ) M;y = b, while M; resembles/; in such a way thanlJi
Il. PROBLEM FORMULATION is well-conditioned. For details on preconditioning teicjues

LetY = G+ jB denote the network admittance matrix of & aga|n_[:_L3]. . : .
dThe efficiency of any iterative method generally relies

power system. Then the load flow problem can be formUIatﬁeavily on a good preconditioner. The preconditioners teat

as the nc;vnhnear system of equations consider are based on the Jacobian itself, and on the FDLF
Yot Vil V| (Gir cos i + Bir sind;,) = P; (1)  matrix

Sy Vil Vil (Gigsin di — By cos i) = Qi,  (2) b= [ B 0 ] ®)

1
where|V;] is the voltage magnitude;, is the voltage angle, 0 B
with §,; = 6;—4d;, P; is the active power, an@; is the reactive according to the BX scheme advocated in [6]. Note that
power at bus. For details see for example [1], [8]. we did also try other FDLF schemes, but they yield worse
We define the power mismatch function as results. The FDLF matrix can be seen as an approximate Schur
N ) complement of the initial Jacobian matrix [7]. As sudhcan
F (x)= b= Zl§v:1 Vil [Vi| (G cos dik + Bik sin 6y ) be expected to be a good preconditioner, with only half the
Qi = 2= [Vil [Viel (Gir sindis, — Bik cos di) non-zeros of the Jacobian matrix. The use of the FDLF matrix
) as preconditioner was also noted in [10].
wherez is the vector of voltage angles and magnitudes. ThenAs mentioned, we need to be able to solve systems of
we can reformulate the load flow problem (1), (2), as findindie form My = b efficiently. To this end we factorize the
x such that preconditioner, and pass the factors to the GMRES method.
The factorization used is the LU decomposition, a factaidzra
F(x)=0. 4 . . . A
into a lower triangular matrix L, and an upper triangular ma-
The Newton-Raphson method is an iterative method thatix U, see for example [15]. We also tried the incomplete LU
given an estimate solutior;, calculates a new estimate(ILU) decomposition, with varying drop tolerances. Howeve
xi+1 = x; + s;, where the update; is an approximation we found that, for currently available problem sizes, thia ga
of the vectors; for which sparsity with the ILU factorization did not nearly outweitite
F(z; +3)=0. (5) loss in quality of the preconditioner. Note that for verygar
problems, say over 100,000 busses depending on the hardware
This updates; is calculated by solving the first order Taylorgoing a complete LU factorization may become problematic.
approximation of equation (5), i.e., In this case ILU factorizations offer a useful alternative.

Jis; = —F;, (6) To test the preconditioners, we solve the initial Jacobian
systemJysy = —Fy for the UCTE test network described at
the end of Section I. The system is solved with preconditione
GMRES, up to an accuracy @0 2. Table | shows the number
1See http:/www.pserc.cornell.edu/matpower/ of GMRES iterations, the time used by GMRES, and the time
2UCTE is a former association of transmission system operatoEurope.  Sspent on the factorization, for the suggested preconditgn

As of July 2009, the European Network of Transmission Sys@perators It appears that the Jacobian is the ideal preconditioner, as
for Electricity (ENTSO-E), a newly formed association of #Z50s from

34 countries in Europe, has taken over all operational taskse existing |t CONVErges in one iteration. However, if we ChOQS?aS a
European TSO associations, including UCTE. See http:/ewtsoe.eu/ preconditioner in each iteratian we are actually solving the

where F; = F (x;), and J; = J (x;) is the Jacobian matrix
of F in x;. For details see for example [9].



PRECONDITIONER FACTORIZATION TIME ANDGMRESCONVERGENCE

TABLE |

preconditioner| GMRES (it) | GMRES (s) | factorization (s)
none 1886 388 0
LU(Jo) 1 0.004 0.083
LU(®) 19 0.072 0.058

linear systems with a direct solver. All the computatiorféde

As such there is no reason to give up the minimal residual
property of GMRES, for a short recurrence method.

To further illustrate the quality of the preconditioners,
Fig. 1-3 show the eigenvalues of the coefficient matrix of the
linear system in the final Newton iteration, without preciend
tioning, with the initial Jacobian preconditioner, andtwthe
FDLF preconditioner, respectively.

Without preconditioner there are a lot of eigenvalues close

is diverted from the GMRES method to the factorization$o 0, as well as very large eigenvalues with real and imaginar
Instead we will choose the preconditioner at the startpfame parts of orderl0*. This makes the system hard to solve for
it once, and use these factors throughout all Newton itamati Krylov methods. Both preconditionerd,, and ®, manage

In other words, in each Newton iteration we solve

to cluster the eigenvalues nicely around 1, resulting inl-wel
conditioned coefficient matrices.

MﬁlJiSi = —Mile} (9)

where M is a preconditioner chosen and factored at the start.
In load flow computations, the initial iterate, is generally
reasonably close to the solution, even at a flat start. Theis th
iteratesx; will be relatively close together, and the Jacobian
matrices/; should not vary too much. As such is expected
to be a good preconditioner for al}. Obviously, for the FDLF
preconditioner® we had no other choice to begin with than
to keep it constant through all Newton iterations, as there i
only one such matrix available.
Using this strategy, the factorization becomes a sort of
preprocessing step outside of the Newton iteration looglewh
the factors serve to reduce the computational time of each

Newton iteration. The price one pays is in the quality ofig. 1.

the preconditioner. Wherd) is in a way the best possible
preconditioner for the first iteration, it will not be as gofmt
the Jacobian system of later iterations.

Table Il shows the number of GMRES iterations needed in
each Newton iteration for both preconditioners. Each GMRES
solve is again done up to an accuracyl6f 8. This nicely
illustrates that botk/; and® remain very good preconditioners
throughout the Newton process. The FDLF preconditicher
requires almost double the GMRES iterations total, congpare
to Jp. However, recall that it also has about half the non-
zeros, and thus each GMRES iteration will be faster. Both
preconditioners will therefore be considered in our nuoari
experiments in Section V.

TABLE I
PRECONDITIONEDGMRESITERATIONS
preconditioner| 1 2 3 4 5 6 | total
LU(Jo) 1 16 | 11| 10| 11 | 10 59
LU(®) 19| 25| 19| 18 | 17 | 18 | 116

Methods like Bi-CGSTAB [16], and IDR) [17] use short
recurrences at the loss of the minimal residual property. In
other words, they only need constant work per iteration,rerhe
GMRES needs more work in each subsequent iteration, but
they generally need more iterations to converge. Note that
Bi-CGSTAB was proposed as method of choice in [11].

With the low GMRES iteration count needed with the
proposed preconditioners, the long recurrences of GMRES do
not pose a problem, especially after application of theifayc
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Fig. 2. Spectrum of\ —1Jg, with M = Jy
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term strategies that we present in Section IV. We can use. 3. Spectrum of\/ ~1Jg, with M = &

GMRES without restarting it, as was also concluded in [12].



IV. INEXACT NEWTON METHOD The convergence is approximately linear. It only takes 1

A direct solver always solves the linear system up tgeration to antiSfy equation (10) fof; = 10:41* 2 iterations
machine precision. By contrast, an iterative solver calms for 7: = 107, an_oLS iterations for; = 107" To solve up
a solution that gets better in each iteration. With an iteeat @1 accuracy ofil0™" already takes 10 iterations. This nicely
method, therefore, a rough approximation of the solutiémsa illustrates the computatlonal_tlme that can be saved byirsplv
less time to calculate than a very good approximation. TH @ lower accuracy. Especially because GMRES uses more
fact inspires the use of an inexact Newton method, time and memory per iteration in later iterations.

An inexact Newton method, is a Newton process where Note that GMRES generally converges superlinearly [19].

in each iteration the Jacobian system (6) is solved up toH@Wever, in our case the eigenvalues of the preconditioned
precision matrix are clustered tightly around as shown in Fig. 2. This
leads to very fast, albeit approximately linear, conveogen
| Jisi + Fy|| < mil[Fl, (10)  From Table Il we know that fom; = 10~%, a total of
. . .59 GMRES iterations is needed, over 6 Newton iterations.
where; is called the forcing term. As long as the forcmq o . : :
; f we setn; to minimize the amount of GMRES iterations in
terms are chosen such thgt — 0 for ¢ — oo, the . . . R
. . ch Newton iteration, while maintaining the same Newton
inexact Newton method has superlinear convergence near ?ﬁ‘e full | | .
solution [18]. convergence as full accuracy solves, only 16 GMRES itera-

) ; o . tions are needed, over the same 6 Newton iterations. However
The idea is that the Newton stepis in itself an approxima- W

. . : L : . in practice it is generally not possible to know such ideal
tion, given by the linearization of the power mismatch fumct , : . .
. . tolerance settings without solving the complete problest.fir
F around the current iterate;. In other words, lets; be the . .
ideal step. such that % is the exact solution to the Through the years, a lot of effort has been invested in
P, Ti T Si N finding good strategies to choose the forcing terms in a Newto
load flow problem, then there is some step eifey — &;]|. : :
) . : . process. Here we consider a few of these strategies. The
Note that this step error is equal to the error in the solution__." " . . .
. application of these strategies on our test problem, with th
after taking the step;, because

Jo preconditioner, are shown in Table IlI.

si— & =(x;i+8;)— (x; +8;) =x;11 — . 11
i i = (xi+8;) — (Ti + 8i) i+l (11) TABLE Il
Solving system (6) to such a high accuracy that the error in GMRESITERATIONS - FORCING TERM STRATEGIES
s is much smaller than the step ertjps; — 3] is thus a waste 1121314151 6171819110! total
of computational time, since it will not significantly redec ~#n, =10"% [ 1 [16[11] 10| 11| 10 59
the error inz; ;. As the Newton-Raphson method converges 77;‘ - 10711 i g g g g g g 212]2 ig
. . strategy

guadratically near the s_olut|0_n, we can expect the st_ep €m0 girateqy2 |1 3| 1|3| 3|67 24
to reduce faster in later iterations. We can start with atikeda  strategy3 |1 | 2 | 2| 3| 5| 9 22
large forcing termy;, without losing the fast convergence of _ideal 1]1]1]2]4]7 16

the Newton process, as long as we sufficiently redgce

each iteration A very simple strategy is to use constant low accuracy
Fig. 4 shows a typical convergence plot of GMRES, precofolves. Such a strategy can lead to a great reduction in the

ditioned with the initial Jacobian, in one of the later Newtonumber of total GMRES iterations. However this generally

iterations. The relative residual error that is set out ath comes at the cost of doing quite a few more Newton iterations,

axis |s% This is exactly the target value to get belovas the superlinear convergence of the Newton process is lost
the forcing termn; in equation (10). For example, choosing; = 101, as was used in [10], leads
to 10 Newton iterations. As the overhead on extra Newton
10° ‘ ‘ : : : : : : : iterations is quite high, we do not further consider such a
. strategy.
il ; Strategy 1 is to choose
10° 4 1
, =i { 32, |71} 12)
S 10°F ] 2i
g 107l ] This allows for superlinear convergence when the power mis-
3 match is still large, while switching to quadratic convarge
£ W't E when nearing the solution. A similar strategy was used if.[20
T el b Strategy 2, as proposed in [21], sets far 0
o'l ] _|Fl = [1Fi—1 + Jic1si—|| 13
1 TF W
while safeguarding from oversolving by adding the rule
10° : : : : : : : ‘ :
T Tk T TR 00 s L neny = max {192} (1)

Fig. 4. Convergence preconditioned GMRES To start the process we usg = 0.1.



Strategy 3, finally, is to choose Newton iterations will be needed. But even then it could stil
€; very well result in a gain in overall speed.
1+e; (15) Table IV shows the results of running our test network on
a desktop computer. The methods used are FDLF, Newton
with a direct solver (N-D), and Newton-Krylov (N-K) using
£ = B min {1, h;}, (16) GMRES with different combinations of preconditioners and
2 forcing term strategies. The forcing term strategies 1+8, a
with as described in the previous section. Strategy 0 means that
2— i=0 the linear system was solved to an accuracy®@f® in each
h; = { Lo pe o 07 (17) iteration.
2(1—ei-1) il ' Table columns 4 and 5 hold the number of iterations, and
This is the affine contravariant strategy derived in [22Jvéts total time, needed by the nonlinear solver. Note that the
also applied to load flow problems in [11]. For our experinseniteration count of 31 for FDLF means that there were 16
we usedS = 1. Note that the forcing terms of strategy 3P-iterations, and 15 Q-iterations. Column 6 shows the time
unlike the other strategies, do not depend on the problem.spent on building, and factorizing, the preconditionerjlevh
From Table Il it is clear that strategies 1-3 perforngolumns 7 and 8 hold the data on the linear solver. The final
very well. For this particular problem, strategy 1 redudss t column shows the time spent on calculating Jacobian matrice
GMRES iterations the most, though at the cost of an extfdl times are measured in seconds.
Newton iteration. Strategy 3 sets the forcing terms a little
sharper, resulting in more GMRES iterations, but no extra
Newton iteration.

i =

where

@

—
+
R

TABLE IV
TEST CASE4253BUSSES 7191LINES

Which strategy is the best will generally depend on the prob- ‘nonlinear  preco| linear jacob

H H H H : preco n iter time time iter time time

lem. Larger forcm_g terms will result in less GMRES |_teram_;o FBF a1 7a 3T T o= a1 wa e A
per Newton iteration, but may result in extra Newton itevas. ND na Thwall 6 10821 na | na 050 0.18
The perfect balance depends not only on the problem, but als&-K Jo 0 6 | 064 0.08 | 59 | 0.21 | 0.18
i i i i Jo 1 7 | 052| 008 | 18 | 0.06 | 0.22

on the computatlonal co_st of extra Newton iterations in the X > 7 1ozl 0os | 24 | 008! 022
used solver implementation. Jo 3 6 | 050! 008 | 22 | 008 | 018
N-K 3 0 6 | 0.88| 0.14 | 116 | 0.43 | 0.18

P 1 7 | 061] 014 | 38 | 0.10| 0.22

V. NUMERICAL EXPERIMENTS > > 7 1072 014 | 52 | 019 | 022

The theory and results of the previous sections can he @ 3 || 6 |[064] 014 | 46 | 0.17| 0.18

summarized as Algorithm 1. The main ideas are the choice of
the preconditioner, and the complete LU factorization a6 th \When comparing the total solve times from column 5, we

preconditioner, at the start, and the solution of the Jaobisee that the Newton-Krylov methods are a nice improvement
system by means of preconditioned GMRES, up to a varialyff Newton with a direct solver. The best results are offered

tolerancer);, in each Newton iteration. by using theJ, preconditioner, with forcing term strategies 1
and 3. To truly appreciate the gain, we examine the linear
Algorithm 1 Inexact Newton-Krylov Load Flow solver solve times in column 8. At the cost of 0.08s to build a
13i=0 preconditioner, the total linear solve time is reduced from
2: choose initial solutione 0.50s for direct solves, to a mere 0.06s when using forcing
3: calculate power mismatch'y term strategy 1.
4: choose preconditione¥/ € {.Jo, ®} It is also interesting to note the effect of the stricter fogc
5: factorize preconditionetU = M terms of strategy 3, compared to strategy 1, for this pdsticu
6: while not convergedio load flow problem. For both preconditioners, strategy 3 seed
7. calculate Jacobiad; one Newton iteration less than strategy 1, at the cost of some
8. solveJ;s; = —F; with LU-preconditioned GMRES  extra GMRES iterations. In the case of thig preconditioner
up to a relative residual error tolerancespf this leads to a slightly reduced solve time overall, whefeas
9. updatexr;;; =x; +s; the ® preconditioner the extra GMRES iterations dominate,
10:  calculate power mismatch'; 1 making strategy 3 slightly slower than strategy 1.
11 i=i+1 Although both preconditioners perform very well, usifg
12: end while as a preconditioner for GMRES clearly outperforms using

Itis a better quality preconditioner, and leads to abouit tha!
Itis important to realize that the choice of the precondiéio number of iterations that are needed withRecall thatd has
has no influence on the number of Newton iterations needexly half the non-zero entries of. This does speed up each
to solve the problem, but only on the number of GMRE&MRES iteration slightly, but not by such an amount that it
iterations. Likewise, the forcing term; only influences the rivals the performance of thé, preconditioner. Using an in-
number of GMRES iterations needed, as long as it is chosexact Newton-Krylov method with thé, preconditioner, and
small enough in each iteration. If it is chosen too big, extqaroperly chosen forcing terms, comes a lot closer to thedspee



of FDLF than Newton with a direct solver, while retaining the The treated method offers a significant improvement on
advantageous convergence properties of the Newton proceldewton load flow with a direct solver. With the proper choice
Due to the local quadratic convergence of the Newtasf forcing terms, the convergence properties of the Newton
method, the iterates in the last few iterations are veryeclomethod are preserved, while the time spent on linear sodves i
together. As such, the Jacobians of these iterations alsityhagreatly reduced. The larger the power system network is, the
vary. This could inspire the idea to choose a new precogreater the reduction is expected to be.
ditioner J;, and factorize it, halfway the Newton process. The proposed method comes a lot closer to FDLF than
However, note that with the, preconditioner, and a propertraditional Newton load flow, in terms of computational tintte
forcing term strategy, the total linear solve time is adjual provides a fast alternative in cases where FDLF convergence
lower than that of a single factorization. An extra factatian can not be guaranteed beforehand. Note that solving a load
can thus only lead to increased computational time overallflow problem to low accuracy can favor FDLF, because
Also note the computational time spent on calculatinghe Newton method may not reach the stage of quadratic
Jacobian matrices. For thg preconditioned Newton-Krylov convergence. On the other hand, solving from a good starting
methods, with forcing term strategy 1-3, the cost of theselution favors the inexact Newton-Krylov method. Not only
Jacobians is higher than that of building the preconditiongan quadratic convergence be reached early, also.Jthe
and doing all linear solves, together. We feel that this isige preconditioner will remain of better quality throughout al
part due to the MTLAB implementation, because elemeniterations.
operations are slow in MrLAB, while the preferred matrix-
vector operations are not ideal for this particular problém
implementation in a low level language, such as C or Fortran,
should reduce the cost of calculating the Jacobian matrice
It is well-known that iterative linear solvers generally
perform better for large sparse systems than direct solve
The larger the power system network is, the larger the gajn
we can expect from Newton-Krylov methods, over Newto
methods with a direct solver. To illustrate that the use of
Newton-Krylov methods is not restricted to large systems,
we also tested our solver on the IEEE 300 bus test casp]
The results are shown in Table V. Even for such a small
e . 2]
network, proper preconditioning and forcing terms lead 0
reduced computational time. [3]
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