
1

Fast Newton Load Flow
Reijer Idema, Domenico Lahaye, Kees Vuik, and Lou van der Sluis, Senior Member, IEEE

Abstract—The Newton-Raphson method is widely used to solve
load flow problems. Traditionally a direct solver is used to solve
the linear systems within this method. In this paper we explore
the use of an iterative method to solve the linear systems, leading
to an inexact Newton-Krylov method. The main parameters of
this method are the preconditioner and the forcing terms. Several
candidate choices for these parameters are discussed and tested.
With the proper preconditioner, and forcing terms, the inexact
Newton-Krylov method is shown to greatly improve on using a
direct solver.

Index Terms—load flow analysis, Newton-Raphson method

I. I NTRODUCTION

T HE load flow, or power flow, computation is the most
important network computation in power systems. It

calculates the voltage magnitude and angle in each bus of
a power system, under specified system operation conditions.
Other quantities, such as current values, power values, and
power losses, can be calculated easily when the bus voltages
are known.

Load flow computations bring insight in the steady-state
behavior of a power system. This is needed in many control
and planning applications. For example, whenever power
system components have to be taken out of service, say
for maintenance purposes, it is crucial to know whether the
power system will still function within system limits, or that
additional measures have to be taken. Moreover, a power
system has to be at leastn− 1 secure. This means that if any
one component fails, the power system still functions properly.
These are typical problems that can be solved by doing load
flow computations on the power system network.

The consumption of electricity keeps on rising every year.
As a result, power systems grow larger and larger to supply
all consumers with their needs. And with the privatization
of the electricity market, power systems are operated closer
and closer to their limits for economic reasons. More and
more nation wide power systems are being connected to
each other, to be able to exchange cheap excess power. This
results in huge connected power systems, with many times
the busses and transmission lines of the classical systems.A
small set of simultaneous failures could propagate throughthe
entire system, causing a massive blackout. Therefore providing
security against overloading is more important than ever.

With ever-growing problem sizes, more and more load flow
computations will have to be run. For a 1000 component
system, a naive fulln − 1 security analysis would require
1000 runs of a 1000 component load flow problem. But
for a 10000 component system the same analysis already

R. Idema, D.J.P. Lahaye, and C. Vuik are with the Delft Institute of Applied
Mathematics, Delft University of Technology, The Netherlands.

L. van der Sluis is with the Power Systems Department, Delft University
of Technology, The Netherlands.

requires 10 times that amount of runs, on a 10 times bigger
problem, meaning a hundred times the computational work.
Furthermore, in a larger power system it is much more likely
to have multiple failures at the same time. Thereforen − 2
security analysis is already being done regularly, taking huge
amounts of computational effort.

Another important development in power systems is the
incorporation of renewable energy sources, such as wind
and solar energy. Traditional generators are connected to
the transmission network. This is referred to as centralized
power generation. Renewable energy generation is usually
decentralized, i.e., connected to the distribution network at
consumer level. Also, renewable sources are mostly natural
and often have an uncontrollable power output.

The incorporation of renewable energy sources, with fluc-
tuating power output, adds a stochastic component to the
network computations. This can be dealt with by running a
large amount of load flow computations in a Monte Carlo
simulation. Traditionally load flow calculations are done on the
transmission network, and the distribution network is aggre-
gated at busses in the power system model. The decentralized
nature of the renewable energy generation, however, may in
time call for load flow calculations to also incorporate the
distribution network. This would result in load flow problems
of sheer massive size.

Motivated by the above described developments, we explore
mathematical techniques for load flow problems, that are
particularly well equipped to deal with very large problem
sizes. For more details on power systems we refer to [1].

Over the years, a lot of effort has been put into solving load
flow problems efficiently. For a concise overview of earlier
methods see [2]. In modern applications, the most widely
used techniques are the Newton-Raphson method with a direct
linear solver [3], [4], and the Fast Decoupled Load Flow
(FDLF) method [5], [6], [7]. For an overview of the derivation
of the load flow problem formulation used in this paper, and
the application of the two above mentioned solution methods
on this problem formulation, we also refer to [8].

The Newton-Raphson method is a very powerful tool. There
are multiple techniques available to assure global convergence,
while local convergence is quadratic, see for example [9]. The
FDLF method is a very fast load flow method, but lacks some
of the convergence properties of the Newton process. When
applied to critical systems, or systems with strongly varying
R/X ratios, the FDLF method may well fail to converge [7].

In this paper we focus on the Newton-Raphson method.
But where traditionally a direct linear solver is used in each
Newton iteration, we use iterative linear solution methods.
Similar work was done in [10], [11], [12].

Iterative linear solvers, also referred to as Krylov methods,
are generally a lot faster than direct solvers for large sparse

2

problems. For an overview of iterative solvers for sparse linear
systems see [13]. We show that for larger load flow problems
a Newton method with an iterative linear solver, also calleda
Newton-Krylov method, offers a huge improvement over using
a direct solver, and that even for small load flow problems it
can outperform Newton with a direct solver.

In Section II we define the linear system that has to be
solved in each Newton iteration. Then in Section III we
motivate a choice of iterative linear solver and preconditioner,
while in Section IV we discuss the accuracy to which to solve
the linear system in each iteration. In Section V we consolidate
our work into numerical experiments, and compare the results
with the traditional methods. Finally, in Section VI we present
our conclusions.

Numerical experiments are performed in MATLAB , using
MATPOWER1 complemented with our own code. Our main
case is a power system network that is derived from the UCTE2

winter 2008 study model, and consists of 4253 busses and
7191 lines. All load flow solves are done with a flat start, and
up to an accuracy of10−8.

II. PROBLEM FORMULATION

Let Y = G+jB denote the network admittance matrix of a
power system. Then the load flow problem can be formulated
as the nonlinear system of equations

∑N
k=1 |Vi| |Vk| (Gik cos δik + Bik sin δik) = Pi, (1)

∑N
k=1 |Vi| |Vk| (Gik sin δik − Bik cos δik) = Qi, (2)

where |Vi| is the voltage magnitude,δi is the voltage angle,
with δij = δi−δj, Pi is the active power, andQi is the reactive
power at busi. For details see for example [1], [8].

We define the power mismatch function as

F (x) =

[

Pi −
∑N

k=1 |Vi| |Vk| (Gik cos δik + Bik sin δik)

Qi −
∑N

k=1 |Vi| |Vk| (Gik sin δik − Bik cos δik)

]

(3)

wherex is the vector of voltage angles and magnitudes. Then
we can reformulate the load flow problem (1), (2), as finding
x such that

F (x) = 0. (4)

The Newton-Raphson method is an iterative method that,
given an estimate solutionxi, calculates a new estimate
xi+1 = xi + si, where the updatesi is an approximation
of the vectors̃i for which

F (xi + s̃i) = 0. (5)

This updatesi is calculated by solving the first order Taylor
approximation of equation (5), i.e.,

Jisi = −F i, (6)

whereF i = F (xi), andJi = J (xi) is the Jacobian matrix
of F in xi. For details see for example [9].

1See http://www.pserc.cornell.edu/matpower/
2UCTE is a former association of transmission system operators in Europe.

As of July 2009, the European Network of Transmission SystemOperators
for Electricity (ENTSO-E), a newly formed association of 42TSOs from
34 countries in Europe, has taken over all operational tasksof the existing
European TSO associations, including UCTE. See http://www.entsoe.eu/

III. PRECONDITIONED GMRES

The Generalized Minimal Residual method (GMRES) [14]
is probably the most widely used iterative solver for general
linear systems. It is a minimal residual method, meaning that
in each iteration the residual error is minimized within the
Krylov subspace. In other words, in each iteration the solution
is as good as it can get with a Krylov method.

The drawback of GMRES is that it does not have short
recurrences. In each iteration the amount of vectors that has
to be stored in memory increases, as does the number of vector
operations that has to be performed. As a result, GMRES
becomes very slow when a lot of iterations are needed.

Preconditioning is an essential tool to bring down the
number of iterations needed by iterative linear solvers. Instead
of the original linear system (6), a preconditioned system

M−1
i Jisi = −M−1

i F i (7)

is solved, whereMi is called the preconditioner. The idea is
to chooseMi such that it is easy to solve systems of the form
Miy = b, while Mi resemblesJi in such a way thatM−1

i Ji

is well-conditioned. For details on preconditioning techniques
see again [13].

The efficiency of any iterative method generally relies
heavily on a good preconditioner. The preconditioners thatwe
consider are based on the Jacobian itself, and on the FDLF
matrix

Φ =

[

B′ 0
0 B′′

]

, (8)

according to the BX scheme advocated in [6]. Note that
we did also try other FDLF schemes, but they yield worse
results. The FDLF matrix can be seen as an approximate Schur
complement of the initial Jacobian matrix [7]. As such,Φ can
be expected to be a good preconditioner, with only half the
non-zeros of the Jacobian matrix. The use of the FDLF matrix
as preconditioner was also noted in [10].

As mentioned, we need to be able to solve systems of
the form My = b efficiently. To this end we factorize the
preconditioner, and pass the factors to the GMRES method.
The factorization used is the LU decomposition, a factorization
into a lower triangular matrix L, and an upper triangular ma-
trix U, see for example [15]. We also tried the incomplete LU
(ILU) decomposition, with varying drop tolerances. However
we found that, for currently available problem sizes, the gain in
sparsity with the ILU factorization did not nearly outweighthe
loss in quality of the preconditioner. Note that for very large
problems, say over 100,000 busses depending on the hardware,
doing a complete LU factorization may become problematic.
In this case ILU factorizations offer a useful alternative.

To test the preconditioners, we solve the initial Jacobian
systemJ0s0 = −F 0 for the UCTE test network described at
the end of Section I. The system is solved with preconditioned
GMRES, up to an accuracy of10−8. Table I shows the number
of GMRES iterations, the time used by GMRES, and the time
spent on the factorization, for the suggested preconditioners.

It appears that the Jacobian is the ideal preconditioner, as
it converges in one iteration. However, if we chooseJi as a
preconditioner in each iterationi, we are actually solving the

3

TABLE I
PRECONDITIONER FACTORIZATION TIME ANDGMRESCONVERGENCE

preconditioner GMRES (it) GMRES (s) factorization (s)
none 1886 388 0
LU(J0) 1 0.004 0.083
LU(Φ) 19 0.072 0.058

linear systems with a direct solver. All the computational effort
is diverted from the GMRES method to the factorizations.
Instead we will choose the preconditioner at the start, factorize
it once, and use these factors throughout all Newton iterations.
In other words, in each Newton iteration we solve

M−1Jisi = −M−1F i, (9)

whereM is a preconditioner chosen and factored at the start.
In load flow computations, the initial iteratex0 is generally

reasonably close to the solution, even at a flat start. Thus the
iteratesxi will be relatively close together, and the Jacobian
matricesJi should not vary too much. As such,J0 is expected
to be a good preconditioner for allJi. Obviously, for the FDLF
preconditionerΦ we had no other choice to begin with than
to keep it constant through all Newton iterations, as there is
only one such matrix available.

Using this strategy, the factorization becomes a sort of
preprocessing step outside of the Newton iteration loop, while
the factors serve to reduce the computational time of each
Newton iteration. The price one pays is in the quality of
the preconditioner. WhereJ0 is in a way the best possible
preconditioner for the first iteration, it will not be as goodfor
the Jacobian system of later iterations.

Table II shows the number of GMRES iterations needed in
each Newton iteration for both preconditioners. Each GMRES
solve is again done up to an accuracy of10−8. This nicely
illustrates that bothJ0 andΦ remain very good preconditioners
throughout the Newton process. The FDLF preconditionerΦ
requires almost double the GMRES iterations total, compared
to J0. However, recall that it also has about half the non-
zeros, and thus each GMRES iteration will be faster. Both
preconditioners will therefore be considered in our numerical
experiments in Section V.

TABLE II
PRECONDITIONEDGMRESITERATIONS

preconditioner 1 2 3 4 5 6 total
LU(J0) 1 16 11 10 11 10 59
LU(Φ) 19 25 19 18 17 18 116

Methods like Bi-CGSTAB [16], and IDR(s) [17] use short
recurrences at the loss of the minimal residual property. In
other words, they only need constant work per iteration, where
GMRES needs more work in each subsequent iteration, but
they generally need more iterations to converge. Note that
Bi-CGSTAB was proposed as method of choice in [11].

With the low GMRES iteration count needed with the
proposed preconditioners, the long recurrences of GMRES do
not pose a problem, especially after application of the forcing
term strategies that we present in Section IV. We can use
GMRES without restarting it, as was also concluded in [12].

As such there is no reason to give up the minimal residual
property of GMRES, for a short recurrence method.

To further illustrate the quality of the preconditioners,
Fig. 1–3 show the eigenvalues of the coefficient matrix of the
linear system in the final Newton iteration, without precondi-
tioning, with the initial Jacobian preconditioner, and with the
FDLF preconditioner, respectively.

Without preconditioner there are a lot of eigenvalues close
to 0, as well as very large eigenvalues with real and imaginary
parts of order104. This makes the system hard to solve for
Krylov methods. Both preconditionersJ0, and Φ, manage
to cluster the eigenvalues nicely around 1, resulting in well-
conditioned coefficient matrices.

−2 0 2 4 6 8 10 12

x 10
4

−3

−2

−1

0

1

2

3
x 10

4

Fig. 1. Spectrum ofJ6 (no preconditioning)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Spectrum ofM−1J6, with M = J0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Spectrum ofM−1J6, with M = Φ

4

IV. I NEXACT NEWTON METHOD

A direct solver always solves the linear system up to
machine precision. By contrast, an iterative solver calculates
a solution that gets better in each iteration. With an iterative
method, therefore, a rough approximation of the solution takes
less time to calculate than a very good approximation. This
fact inspires the use of an inexact Newton method.

An inexact Newton method, is a Newton process where
in each iteration the Jacobian system (6) is solved up to a
precision

‖Jisi + F i‖ ≤ ηi‖F i‖, (10)

whereηi is called the forcing term. As long as the forcing
terms are chosen such thatηi → 0 for i → ∞, the
inexact Newton method has superlinear convergence near the
solution [18].

The idea is that the Newton stepsi is in itself an approxima-
tion, given by the linearization of the power mismatch function
F around the current iteratexi. In other words, let̂si be the
ideal step, such that̂x = xi + ŝi is the exact solution to the
load flow problem, then there is some step error‖si − ŝi‖.
Note that this step error is equal to the error in the solution
after taking the stepsi, because

si − ŝi = (xi + si) − (xi + ŝi) = xi+1 − x̂. (11)

Solving system (6) to such a high accuracy that the error in
si is much smaller than the step error‖si− ŝi‖ is thus a waste
of computational time, since it will not significantly reduce
the error inxi+1. As the Newton-Raphson method converges
quadratically near the solution, we can expect the step error
to reduce faster in later iterations. We can start with a relative
large forcing termηi, without losing the fast convergence of
the Newton process, as long as we sufficiently reduceηi in
each iteration

Fig. 4 shows a typical convergence plot of GMRES, precon-
ditioned with the initial Jacobian, in one of the later Newton
iterations. The relative residual error that is set out on the y-
axis is ‖Jisi+F i‖

‖F i‖ . This is exactly the target value to get below
the forcing termηi in equation (10).

0 1 2 3 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

re
la

tiv
e

re
si

du
al

 e
rr

or

Fig. 4. Convergence preconditioned GMRES

The convergence is approximately linear. It only takes 1
iteration to satisfy equation (10) forηi = 10−1, 2 iterations
for ηi = 10−2, and 5 iterations forηi = 10−4. To solve up
an accuracy of10−8 already takes 10 iterations. This nicely
illustrates the computational time that can be saved by solving
to a lower accuracy. Especially because GMRES uses more
time and memory per iteration in later iterations.

Note that GMRES generally converges superlinearly [19].
However, in our case the eigenvalues of the preconditioned
matrix are clustered tightly around1, as shown in Fig. 2. This
leads to very fast, albeit approximately linear, convergence.

From Table II we know that forηi = 10−8, a total of
59 GMRES iterations is needed, over 6 Newton iterations.
If we setηi to minimize the amount of GMRES iterations in
each Newton iteration, while maintaining the same Newton
convergence as full accuracy solves, only 16 GMRES itera-
tions are needed, over the same 6 Newton iterations. However,
in practice it is generally not possible to know such ideal
tolerance settings without solving the complete problem first.

Through the years, a lot of effort has been invested in
finding good strategies to choose the forcing terms in a Newton
process. Here we consider a few of these strategies. The
application of these strategies on our test problem, with the
J0 preconditioner, are shown in Table III.

TABLE III
GMRESITERATIONS - FORCING TERM STRATEGIES

1 2 3 4 5 6 7 8 9 10 total
ηi = 10−8 1 16 11 10 11 10 59
ηi = 10−1 1 2 2 2 2 2 2 2 2 2 19
strategy 1 1 2 2 2 2 3 6 18
strategy 2 1 3 1 3 3 6 7 24
strategy 3 1 2 2 3 5 9 22
ideal 1 1 1 2 4 7 16

A very simple strategy is to use constant low accuracy
solves. Such a strategy can lead to a great reduction in the
number of total GMRES iterations. However this generally
comes at the cost of doing quite a few more Newton iterations,
as the superlinear convergence of the Newton process is lost.
For example, choosingηi = 10−1, as was used in [10], leads
to 10 Newton iterations. As the overhead on extra Newton
iterations is quite high, we do not further consider such a
strategy.

Strategy 1 is to choose

ηi = min

{

1

2i
, ‖F i‖

}

. (12)

This allows for superlinear convergence when the power mis-
match is still large, while switching to quadratic convergence
when nearing the solution. A similar strategy was used in [20].

Strategy 2, as proposed in [21], sets fori > 0

ηi =

∣

∣

∣

∣

‖F i‖ − ‖F i−1 + Ji−1si−1‖

‖F i−1‖

∣

∣

∣

∣

, (13)

while safeguarding from oversolving by adding the rule

if η
(1+

√
5)/2

i−1 >
1

10
, thenηi = max

{

ηi, η
(1+

√
5)/2

i−1

}

. (14)

To start the process we useη0 = 0.1.

5

Strategy 3, finally, is to choose

ηi =
εi

1 + εi
, (15)

where

εi =
β

2
min {1, hi} , (16)

with

hi =

{

2−β
1+β i = 0,

1+β
2(1−εi−1)

h2
i−1 i > 0.

(17)

This is the affine contravariant strategy derived in [22]. Itwas
also applied to load flow problems in [11]. For our experiments
we usedβ = 1. Note that the forcing terms of strategy 3,
unlike the other strategies, do not depend on the problem.

From Table III it is clear that strategies 1–3 perform
very well. For this particular problem, strategy 1 reduces the
GMRES iterations the most, though at the cost of an extra
Newton iteration. Strategy 3 sets the forcing terms a little
sharper, resulting in more GMRES iterations, but no extra
Newton iteration.

Which strategy is the best will generally depend on the prob-
lem. Larger forcing terms will result in less GMRES iterations
per Newton iteration, but may result in extra Newton iterations.
The perfect balance depends not only on the problem, but also
on the computational cost of extra Newton iterations in the
used solver implementation.

V. NUMERICAL EXPERIMENTS

The theory and results of the previous sections can be
summarized as Algorithm 1. The main ideas are the choice of
the preconditioner, and the complete LU factorization of this
preconditioner, at the start, and the solution of the Jacobian
system by means of preconditioned GMRES, up to a variable
toleranceηi, in each Newton iteration.

Algorithm 1 Inexact Newton-Krylov Load Flow solver
1: i = 0
2: choose initial solutionx0

3: calculate power mismatchF 0

4: choose preconditionerM ∈ {J0, Φ}
5: factorize preconditionerLU = M
6: while not convergeddo
7: calculate JacobianJi

8: solveJisi = −F i with LU -preconditioned GMRES
up to a relative residual error tolerance ofηi

9: updatexi+1 = xi + si

10: calculate power mismatchF i+1

11: i = i + 1
12: end while

It is important to realize that the choice of the preconditioner
has no influence on the number of Newton iterations needed
to solve the problem, but only on the number of GMRES
iterations. Likewise, the forcing termηi only influences the
number of GMRES iterations needed, as long as it is chosen
small enough in each iteration. If it is chosen too big, extra

Newton iterations will be needed. But even then it could still
very well result in a gain in overall speed.

Table IV shows the results of running our test network on
a desktop computer. The methods used are FDLF, Newton
with a direct solver (N-D), and Newton-Krylov (N-K) using
GMRES with different combinations of preconditioners and
forcing term strategies. The forcing term strategies 1–3, are
as described in the previous section. Strategy 0 means that
the linear system was solved to an accuracy of10−8 in each
iteration.

Table columns 4 and 5 hold the number of iterations, and
total time, needed by the nonlinear solver. Note that the
iteration count of 31 for FDLF means that there were 16
P-iterations, and 15 Q-iterations. Column 6 shows the time
spent on building, and factorizing, the preconditioner, while
columns 7 and 8 hold the data on the linear solver. The final
column shows the time spent on calculating Jacobian matrices.
All times are measured in seconds.

TABLE IV
TEST CASE4253BUSSES, 7191LINES

nonlinear preco linear jacob
preco η iter time time iter time time

FDLF n/a n/a 31 0.35 n/a n/a n/a n/a
N-D n/a n/a 6 0.84 n/a n/a 0.50 0.18
N-K J0 0 6 0.64 0.08 59 0.21 0.18

J0 1 7 0.52 0.08 18 0.06 0.22
J0 2 7 0.55 0.08 24 0.08 0.22
J0 3 6 0.50 0.08 22 0.08 0.18

N-K Φ 0 6 0.88 0.14 116 0.43 0.18
Φ 1 7 0.61 0.14 38 0.10 0.22
Φ 2 7 0.72 0.14 52 0.19 0.22
Φ 3 6 0.64 0.14 46 0.17 0.18

When comparing the total solve times from column 5, we
see that the Newton-Krylov methods are a nice improvement
on Newton with a direct solver. The best results are offered
by using theJ0 preconditioner, with forcing term strategies 1
and 3. To truly appreciate the gain, we examine the linear
solve times in column 8. At the cost of 0.08s to build a
preconditioner, the total linear solve time is reduced from
0.50s for direct solves, to a mere 0.06s when using forcing
term strategy 1.

It is also interesting to note the effect of the stricter forcing
terms of strategy 3, compared to strategy 1, for this particular
load flow problem. For both preconditioners, strategy 3 needs
one Newton iteration less than strategy 1, at the cost of some
extra GMRES iterations. In the case of theJ0 preconditioner
this leads to a slightly reduced solve time overall, whereasfor
the Φ preconditioner the extra GMRES iterations dominate,
making strategy 3 slightly slower than strategy 1.

Although both preconditioners perform very well, usingJ0

as a preconditioner for GMRES clearly outperforms usingΦ.
It is a better quality preconditioner, and leads to about half the
number of iterations that are needed withΦ. Recall thatΦ has
only half the non-zero entries ofJ0. This does speed up each
GMRES iteration slightly, but not by such an amount that it
rivals the performance of theJ0 preconditioner. Using an in-
exact Newton-Krylov method with theJ0 preconditioner, and
properly chosen forcing terms, comes a lot closer to the speed

6

of FDLF than Newton with a direct solver, while retaining the
advantageous convergence properties of the Newton process.

Due to the local quadratic convergence of the Newton
method, the iterates in the last few iterations are very close
together. As such, the Jacobians of these iterations also hardly
vary. This could inspire the idea to choose a new precon-
ditioner Ji, and factorize it, halfway the Newton process.
However, note that with theJ0 preconditioner, and a proper
forcing term strategy, the total linear solve time is actually
lower than that of a single factorization. An extra factorization
can thus only lead to increased computational time overall.

Also note the computational time spent on calculating
Jacobian matrices. For theJ0 preconditioned Newton-Krylov
methods, with forcing term strategy 1–3, the cost of these
Jacobians is higher than that of building the preconditioner,
and doing all linear solves, together. We feel that this is inlarge
part due to the MATLAB implementation, because element
operations are slow in MATLAB , while the preferred matrix-
vector operations are not ideal for this particular problem. An
implementation in a low level language, such as C or Fortran,
should reduce the cost of calculating the Jacobian matrices.

It is well-known that iterative linear solvers generally
perform better for large sparse systems than direct solvers.
The larger the power system network is, the larger the gain
we can expect from Newton-Krylov methods, over Newton
methods with a direct solver. To illustrate that the use of
Newton-Krylov methods is not restricted to large systems,
we also tested our solver on the IEEE 300 bus test case.
The results are shown in Table V. Even for such a small
network, proper preconditioning and forcing terms lead to
reduced computational time.

TABLE V
TEST CASEIEEE 300

nonlinear preco linear jacob
preco η iter time time iter time time

FDLF n/a n/a 17 0.020 n/a n/a n/a n/a
N-D n/a n/a 5 0.039 n/a n/a 0.023 0.012
N-K J0 0 5 0.036 0.005 26 0.013 0.012

J0 1 5 0.031 0.005 12 0.008 0.012
J0 2 6 0.037 0.005 17 0.010 0.014
J0 3 6 0.037 0.005 18 0.011 0.014

N-K Φ 0 5 0.073 0.010 89 0.044 0.012
Φ 1 6 0.049 0.010 32 0.016 0.014
Φ 2 5 0.043 0.010 29 0.014 0.012
Φ 3 6 0.052 0.010 40 0.021 0.014

VI. CONCLUSIONS

We treated the inexact Newton-Krylov method to solve
load flow problems. Preconditioned GMRES was motivated
as the iterative linear solver of choice, with the complete LU
factorization of the initial JacobianJ0, or the FDLF matrix
Φ, as preconditioner. The best results were attained with the
J0 preconditioner. Three strategies for choosing the forcing
termsηi were also introduced and tested. All performed very
well, greatly decreasing the iterations, and time, needed by
the linear solver. However, which one is the best depended on
the problem, and the preconditioner used. From the presented
numerical experiments, strategy 1 seems a solid choice overall,
always being the best, or close to it, and never the worst.

The treated method offers a significant improvement on
Newton load flow with a direct solver. With the proper choice
of forcing terms, the convergence properties of the Newton
method are preserved, while the time spent on linear solves is
greatly reduced. The larger the power system network is, the
greater the reduction is expected to be.

The proposed method comes a lot closer to FDLF than
traditional Newton load flow, in terms of computational time. It
provides a fast alternative in cases where FDLF convergence
can not be guaranteed beforehand. Note that solving a load
flow problem to low accuracy can favor FDLF, because
the Newton method may not reach the stage of quadratic
convergence. On the other hand, solving from a good starting
solution favors the inexact Newton-Krylov method. Not only
can quadratic convergence be reached early, also theJ0

preconditioner will remain of better quality throughout all
iterations.

ACKNOWLEDGMENT

The authors would like to thank Robert van Amerongen for
his many contributions, providing hands-on experience, and
invaluable insight on the subject of load flow analysis, and
UCTE/ENTSO-E for providing the UCTE study model, and
their assistance on using it.

REFERENCES

[1] P. Schavemaker and L. van der Sluis,Electrical Power System Essentials.
Chichester: John Wiley & Sons, 2008.

[2] B. Stott, “Review of load-flow calculation methods,”Proceedings of the
IEEE, vol. 62, no. 7, pp. 916–929, 1974.

[3] W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s method,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-86,
no. 11, pp. 1449–1449, 1967.

[4] W. F. Tinney and J. W. Walker, “Direct solutions of sparsenetwork
equations by optimally ordered triangular factorization,” Proceedings of
the IEEE, vol. 55, no. 11, pp. 1801–1809, 1967.

[5] B. Stott and O. Alsac, “Fast decoupled load flow,”IEEE Transactions on
Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 859–869, 1974.

[6] R. A. M. van Amerongen, “A general-purpose version of thefast
decoupled loadflow,”IEEE Transactions on Power Systems, vol. 4, no. 2,
pp. 760–770, 1989.

[7] A. J. Monticelli, A. Garcia, and O. R. Saavedra, “Fast decoupled load
flow: Hypothesis, derivations, and testing,”IEEE Transactions on Power
Systems, vol. 5, no. 4, pp. 1425–1431, 1990.

[8] R. Idema, D. J. Lahaye, and C. Vuik, “Load flow literature survey,”
Delft Institute of Applied Mathematics, Delft University of Technology,
Report 09-04, 2009.

[9] J. E. Dennis, Jr. and R. B. Schnabel,Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. New Jersey: Prentice
Hall, 1983.

[10] A. J. Flueck and H. D. Chiang, “Solving the nonlinear power flow
equations with an inexact Newton method using GMRES,”IEEE Trans-
actions on Power Systems, vol. 13, no. 2, pp. 267–273, 1998.

[11] F. de Len and A. Semlyen, “Iterative solvers in the Newton power
flow problem: preconditioners, inexact solutions and partial Jacobian
updates,”IEE Proc. Gener. Transm. Distrib, vol. 149, no. 4, pp. 479–
484, 2002.

[12] D. Chaniotis and M. A. Pai, “A new preconditioning technique for
the GMRES algorithm in power flow andP − V curve calculations,”
Electrical Power and Energy Systems, vol. 25, pp. 239–245, 2003.

[13] Y. Saad,Iterative methods for sparse linear systems, 2nd ed. SIAM,
2000.

[14] Y. Saad and M. H. Schultz, “GMRES: A generalized minimalresidual
algorithm for solving nonsymmetric linear systems,”SIAM J. Sci. Stat.
Comput., vol. 7, pp. 856–869, 1986.

[15] G. H. Golub and C. F. van Loan,Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

7

[16] H. A. van der Vorst, “Bi-CGSTAB: a fast and smoothly converging
variant of Bi-CG for solution of nonsymmetric linear systems,” SIAM
J. Sci. Stat. Comput., vol. 13, pp. 631–644, 1992.

[17] P. Sonneveld and M. B. van Gijzen, “IDR(s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations,”
SIAM J. Sci. Comput., vol. 31, no. 2, pp. 1035–1062, 2008.

[18] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton
methods,”SIAM J. Numer. Anal., vol. 19, no. 2, pp. 400–408, 1982.

[19] H. A. van der Vorst and C. Vuik, “The superlinear convergence behaviour
of GMRES,” J. Comp. Appl. Math., vol. 48, pp. 327–341, 1993.

[20] R. S. Dembo and T. Steihaug, “Truncated-Newton algorithms for large-
scale unconstrained optimization,”Mathematical Programming, vol. 26,
pp. 190–212, 1983.

[21] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an
inexact Newton method,”SIAM J. Sci. Comput., vol. 17, no. 1, pp. 16–
32, 1996.

[22] A. Hohmann, “Inexact Gauss Newton methods for parameter dependent
nonlinear problems,” Ph.D. dissertation, Freie Universität Berlin, 1994.

Reijer Idema obtained his MSc in Applied Math-
ematics (Computational Science and Engineering
specialization) at the Delft University of Technology
in 2007. Currently he is a PhD student at the
Numerical Analysis research group of the Delft
Institute of Applied Mathematics, Delft University
of Technology.

Domenico Lahaye obtained his MSc in Applied
Mathematics at the Free University of Brussels in
1994, his post-graduate degree in Mathematics for
the Industry at the Eindhoven University of Tech-
nology in 1996, and his PhD in Computer Science
at the Catholic University of Leuven in 2001. After
having held postions at the Center for Advanced
Studies, Research and Development in Sardinia, and
at the National Research Center for Mathematics
and Computer Science in the Netherlands, he joined
the Numerical Analysis research group of the Delft

Institute of Applied Mathematics, Delft University of Technology, as assistant
professor in 2007.

Kees Vuik obtained his MSc in Applied Math-
ematics at the Delft University of Technology in
1982. After a short stay at the Philips Research
Laboratories, he obtained his PhD in Mathematics
at Utrecht University in 1988. Thereafter he became
employed at the Delft University of Technology,
where he holds the position of full professor of
the Numerical Analysis research group. In 2007 he
additionally became director of the Delft Center of
Computational Science and Engineering.

Lou van der Sluis obtained his MSc in Electrical
Engineering at the Delft University of Technology
in 1974. He joined the KEMA High Power Lab-
oratory in 1977. In 1990 he became a part-time
professor at the Delft University of Technology, and
since 1992 he is employed as full professor of the
Power Systems Department of the Delft University
of Technology.

