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A comparison of numerical models for one-dimensional Stefan

problems

E. Javierre †, C. Vuik, F.J. Vermolen and S. van der Zwaag ‡

Abstract

In this paper we present a critical comparison of the suitability of several numerical
methods, level set, moving grid and phase field model, to address two well known Stefan
problems in phase transformation studies: melting of a pure phase and diffusional solid
state phase transformations in a binary system. Similarity solutions are applied to verify
the numerical results. The comparison shows that the type of phase transformation con-
sidered determines the convenience of the numerical techniques. Finally, it is shown both
numerically and analytically that the solid-solid phase transformation is a limiting case
of the solid-liquid transformation.

AMS classification: 35R35; 65M06; 80A22

Keywords: Stefan problem; Phase transformations; Similarity solutions; Moving grid
method; Level set method; Phase field method

1 Introduction

In Stefan problems, the boundary of the domain has to be found as part of the solution. These
problems describe several phenomena in nature, science and society, among others the melting
of the polar ice caps, originally studied by J. Stefan, the dendritic solidification problem
[4, 12, 21], the decrease of oxygen in a muscle in the vicinity of a clotted bloodvessel [5], the
etching problem [26], the American option prizing problem [10], or the phase transformations
in metallic alloys [22]. This paper deals with a survey of existing numerical techniques for
solving one-dimensional problems. In particular, we consider the melting problem and a solid
state phase transformation in parallel due to the resemblance in their governing equations,
that we will show afterwards. Existence of a solution was proved by Evans [6], while the
uniqueness was proved by Douglas [7]. Moreover, the solution of the Stefan problems we
consider here satisfies the maximum principle in each phase. Further, it is possible to derive
analytical expressions for the solution of these problems in an infinite or semi-infinite one
dimensional-space. Under these hypotheses the solution is a function of x−s0√

t
as proved by

Hill [11], and it is often called the similarity solution.
Several numerical methods have been developed to solve various Stefan problems. Crank

[5] provides a good introduction to the Stefan problems and presents an elaborate collection

†Delft University of Technology, Delft, The Netherlands, e-mail: e.javierre@ewi.tudelft.nl
‡The authors want to thank the Dutch Technology Foundation (STW) for its financial support.

3



of numerical methods used for these problems. Front tracking methods use an explicit repre-
sentation of the interface. Juric and Tryggvason [12] used a fixed grid in space where some
variables of the problem, i.e. temperature, were calculated, and a moving grid on the interface
where the interface heat sources were computed. Information from the interface to the fixed
grid was transferred via the immersed boundary method. Segal et. al. [22] used an adaptive
grid method in which the movement of the grid was introduced into the governing equations
by the use of the total time derivative (also called Arbitrarian Lagrangian Eulerian -ALE-
approach). Murray and Landis [14] compared an adapted grid procedure with a fixed grid,
and showed that the adaptive grid method captures more accurately the interface position
whereas the fixed grid algorithm gives a more precise heat distribution in the whole domain.

On the other hand, implicit methods are the natural alternative to the front tracking
methods. Within these implicit methods the most used are the enthalpy method, the level
set method and the phase field method. In the enthalpy method (see [5] and Chapter 9 of [15])
the enthalpy function is introduced. This function measures the total heat of the system, and
it has a jump discontinuity at the interface given by the heat released (or absorbed) during
the phase change. This discontinuity is helpful to determine the interface position. Although
this method has been successfully applied to phase change problems by Voller et. al. [16, 17],
and by Nedjar [18], it has only recently been generalized to solid state phase transformations
with a simple condition on the moving boundary, see Lam et. al. [19] for further details.

The level set method has gained much popularity for solving moving boundary problems.
Firstly introduced by Osher and Sethian [20], it has already been generalized to many prob-
lems [23, 24]. The level set function captures the interface position as its zero level set, and
it is advected by the introduction of a hyperbolic equation into the governing set of equa-
tions. The velocity field, used to advect the level set function, is quite different within the
applications of the level set method. Sussman et. al. [25] use the fluid velocity to simulate in-
compressible two-phase flows. Chen et. al. [4] use advection equations to extend the interface
velocity onto the whole domain in a solidification problem and Adalsteinsson and Sethian [1]
use a procedure based on the fast marching methods to extend the front velocity in such a
way that it does not destroy the distance function attribute of the level set function. In these
last references the velocity field is used for a numerical purpose.

Finally, the phase field method is a widely used method for phase transformation prob-
lems. The domain is parameterized by the phase field function which equals a fixed constant
in each phase, and varies rapidly, but smoothly, within these two values in the interface region.
The phase transformation occurs inside this interface region, whose thickness is an artificial
parameter of the model. There are several phase field models in the literature, but the most
used are based on the Kobayashi potential (see Wheeler et. al. [27] for phase transitions
in binary alloys) or based on the Caginalp potential (see Mackenzie and Robertson [13] for
the classical melting Stefan problem). The Kobayashi potential is based on a fourth order
polynomial with fixed minima at x = ±1 coupled with a monotonically increasing function of
the temperature to define the free energy functional, whereas the Caginalp potential uses a
double-well potential measured by a parameter and a linear coupling with the temperature.
Fabbri and Voller [8] compare these models in detail. In both studies a discretization with an
adaptive grid is used where the interface position coincides with one grid node. In their nu-
merical experiments they compare the solutions with a fixed grid solution, and the Kobayashi
potential shows a better agreement with this last solution. In addition, an asymptotic analysis
for the phase field models is required to check whether the phase field solution converges to
the sharp interface problem and to determine the parameters that appear in the formulation
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of the model. This asymptotic analysis is already done in [2], where Caginalp proves the
convergence to the Stefan and Hele-Shaw problems by taking the limit in the parameters in
a convenient way. In order to solve the governing equations numerically Caginalp and Lin [3]
use a coarse grid where the temperature of the system was calculated and a fine grid for the
phase field function. Mackenzie and Robertson [13] propose to use an adaptive mesh with a
high resolution in the interface region. Schmidt [21] uses finite elements with local refinement
in the vicinity of the interface to simulate dendritic growth.

An outline of the paper is as follows. The governing equations of both the melting problem
and the solid state phase transformation problem will be described in Section 2, together with
the analytical expressions of the similarity solutions for infinite domains. The moving grid,
level set and phase field methods will be presented in Section 3. Some numerical results will
be given in Section 4 and the conclusions in Section 5.

2 The physical problems

In the present paper we consider two classical Stefan problems: the melting problem and the
solid state phase transformation problem in binary metallic alloys. In the melting problem we
have a liquid phase in contact with a solid phase separated by the interface, where the tem-
perature is the melting temperature. This problem is also called solid-liquid transformation.
The heat transport through the interface causes its displacement. In the second problem a
volume of constant composition is surrounded by a diffusive phase. In the interface between
the particle and the diffusive phase a constant concentration is assumed, and the gradient of
the concentration causes the movement of the interface. This problem is also called solid-solid
transformation. Moreover, we can think that the solid-solid transformation is a particular
case of a solid-liquid transformation with zero thermal diffusivity in the liquid phase.

We restrict ourselves to the one dimensional problem. Hence, some physical features of
these problems like the surface tension (i.e., the Gibbs-Thomson effect) are not incorporated
here. The domain will be denoted by Ω = [0, l] where l denotes the length. This domain
will be split into two phases, and the interface separating these phases will consist of only
one point. Therefore, a function s : IR+ → [0, l] will assign each time t the position of the
interface at this time s(t).

2.1 The melting problem: a solid-liquid transformation

We consider the domain Ω = [0, l] where we have a material that is in its liquid state in
a certain region of Ω we call Ωliq(t) = [0, s(t)) and it is in its solid state in the rest of the
domain Ωsol(t) = Ω \ Ω̄liq(t) = (s(t), l]. The point separating the liquid and the solid phases
determines the position of the interface s(t). We denote the temperature in the point x at
time t by u(x, t).

The governing equations for this problem are the heat equation in both the liquid and the
solid phases

∂u

∂t
(x, t) =

∂

∂x

(

Kliq
∂u

∂x

)

, x ∈ Ωliq(t), (1)

∂u

∂t
(x, t) =

∂

∂x

(

Ksol
∂u

∂x

)

, x ∈ Ωsol(t), (2)
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where Ksol and Kliq denote the thermal diffusivities in the solid and the liquid phase re-
spectively, which involve the heat capacity, density and the heat conduction coefficient of the
materials. In this study we assume them to be constant in time and position. The velocity v

of the interface is given by the jump condition

Lv = Ksol
∂u

∂x
(x, t)|x↓s(t) − Kliq

∂u

∂x
(x, t)|x↑s(t), (3)

where L denotes the latent heat of solidification. Equation (3) is frequently called the Stefan
condition. At the interface we have the melting temperature, that we choose here to be zero
without loss of generality:

u(s(t), t) = 0. (4)

In this problem thermally insulated domains are considered. Hence, no heat fluxes through
the boundaries of the domain Ω are allowed, which leads to the homogeneous Neumann
boundary conditions

∂u

∂x
(x, t) = 0, x ∈ ∂Ω. (5)

We consider a piecewise constant initial heat distribution

u(x, 0) =







uliq if x ∈ Ωliq = [0, s0),
0 if x = s0,
usol if x ∈ Ωsol = (s0, l],

where uliq and usol are constants, generally positive and negative respectively, and s0 denotes
the initial position of the interface, i.e., s0 = s(0). For this problem the position of the
interface s is a differentiable function. Therefore, the velocity of the interface (v in Eq. (3))
can be replaced by ds

dt (t)

L
ds

dt
(t) = Ksol

∂u

∂x
(x, t)|x↓s(t) − Kliq

∂u

∂x
(x, t)|x↑s(t). (6)

2.2 Phase transformations in binary alloys: solid-solid transformations

We consider the domain Ω = [0, l] that is composed by a particle whose domain is denoted
by Ωpart(t) = [0, s(t)) and a diffusive phase Ωdp(t) = Ω \ Ω̄part(t) = (s(t), l]. The point
separating the particle and the diffusive phase represents the interface s(t). We consider
the concentration c of a certain material within Ω, and we assume this concentration to be
constant within the particle. Therefore, we have the following governing equations

c(x, t) = cpart, x ∈ Ωpart(t), (7)

∂c

∂t
(x, t) =

∂

∂x

(

D
∂c

∂x
(x, t)

)

, x ∈ Ωdp(t), (8)

where D denotes the diffusivity inside the diffusive phase Ωdp. The velocity of the interface
v is derived from a mass balance through the interface which leads to
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(cpart − csol)v = D
∂c

∂x
(x, t)|x↓s(t), (9)

where csol is the interface concentration, that is, c(s(t), t) = csol. Further cpart 6= csol, to avoid
an undefined velocity.

We assume that the domain Ω is isolated, and therefore there is no concentration trans-
ported out of the domain Ω

∂c

∂x
(x, t) = 0, x ∈ ∂Ω. (10)

We assume a piecewise initial concentration as follows

c(x, 0) =







cpart if x ∈ Ωpart = [0, s0),
csol if x = s0,
c0 if x ∈ Ωdp = (s0, l],

where s0 is the initial position of the interface, and cpart, csol, c0 > 0. Under these hypotheses
s is a monotonous and differentiable function. Hence, the Stefan condition for the velocity of
the interface Eq. (9) can be expressed by

(cpart − csol)
ds

dt
(t) = D

∂c

∂x
(x, t)|x↓s(t). (11)

If we take the thermal diffusivity of the liquid phase zero in the melting problem and
assign L = cpart − csol, then equations (1), (2) and (3) are equivalent to (7), (8) and (9),
being the only difference between the two models in the boundary value at the interface, that
simply realizes a translation.

2.3 Similarity solutions

In our numerical experiments we will compare the solutions obtained from the different numer-
ical methods with the analytical solutions that exist for the problems presented above. These
solutions are expressed as functions of x−s0√

t
as proved in [11], and the domain Ω has to be

infinite or semi-infinite. Hence, for Ω = IR the interface position is given by s(t) = s0 +2α
√

t,
where the constant α is obtained by solving the following equation

α =

√
Ksol√
πL

usol

erfc( α√
Ksol

)
exp(− α2

Ksol
) +

√

Kliq√
πL

uliq

2 − erfc( α√
Kliq

)
exp(− α2

Kliq
), (12)

for the melting problem and

α =
c0 − csol

cpart − csol

√

D

π

exp(−α2

D )

erfc( α√
D

)
, (13)

for the solid-solid transformation problem. As we noted above, if we let Kliq = 0, L =
cpart − csol and identify usol with the concentration difference c0 − csol then equation (12) and
(13) are the same. When α is known, the temperature is given by
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u(x, t) =



























−
uliq erfc

(

α√
Kliq

)

2 − erfc
(

α√
Kliq

) +
uliq erfc

(

x−s0

2
√

Kliqt

)

2 − erfc
(

α√
Kliq

) , if x < s(t),

usol −
usol erfc

(

x−s0

2
√

Ksolt

)

erfc
(

α√
Ksol

) , if x ≥ s(t),

(14)

for the melting problem, whereas the concentration is given by

c(x, t) =











cpart, if x < s(t),

c0 +
(csol − c0) erfc

(

x−s0

2
√

Dt

)

erfc
(

α√
D

) , if x ≥ s(t),
(15)

for the solid-solid transformation problem.

3 The numerical solution methods

In this section we present three numerical methods to solve the solid-liquid and the solid-solid
transformations. These are the moving grid, the level set and the phase field methods. The
moving grid method, as presented here, is easy to implement and to increase the order of
accuracy in the discretizations. Moreover, it leads to symmetric matrices, which are desir-
able to solve the large systems of equations numerically. For higher dimensional methods it
is convenient to introduce the displacement of the grid into the governing equations (ALE
approach). However, an implicit discretization of the convection term will lead to a nonsym-
metric matrix. The level set method captures the interface position implicitly and moves it
according to a new artificial equation in the governing mathematical model. It is known from
literature that merging interfaces are easy to handle with the level set method. In addition,
for this method a fixed grid can be used, which avoids the mesh generation at every time
step required with the moving grid. Finally, the phase field method allows a better agreement
between the numerical model and the physical problem, since most of the driving forces acting
on the interface (such as surface tension) are related to the phase field parameters. However,
an adaptive mesh with a local refinement in the interfacial region seems to be necessary.

For the sake of simplicity we will restrict the presentation of the numerical methods con-
sidered in this paper to the solid-liquid transformations. Generalization of these procedures
to the solid-solid transformations is straightforward, except for the phase field model.

3.1 The moving grid method

Here we present an interpolative moving grid method, in which the grid is computed for each
time step and the solution is interpolated from the old grid to the new grid. The interpolation
might be abolished by the introduction of the grid displacement into the governing equations
with the ALE approach. This technique is used by Murray and Landis [14] and Segal et. al.
[22]. However, we prefer to use interpolation for the ease of implementation and since the
difference is not decisive for 1D problems.

Let N be the total number of grid intervals, r of those lie inside the liquid phase and
N − r lie inside the solid phase. The grid is uniform in each phase and the interface is always
located in the rth node. Due to the movement of the interface, the grid should be adapted at

8



each time step. To obtain the temperature at the next time step, a backward Euler scheme
is used for the time discretization of the heat equation and central differences are used for
the discretization in space. With the temperature profile, the displacement of the interface
is calculated using first order accurate directional derivatives in each phase, and the grid is
adapted to the new position of the interface. Finally, the solution is interpolated from the
previous grid to the new one. The interested reader is referred to [5] for further details.

3.2 The level set method

The level set method captures the position of the interface as the zero level set of a continuous
function φ initialized as a distance function,

φ(x, 0) =







|x − s0| if x < s0,
0 if x = s0,
−|x − s0| if x > s0,

which has been arbitrarily selected positive in the liquid phase. This function is called the
level set function, and the interface is implicitely represented by its zero level set

x = s(t) ⇔ φ(x, t) = 0, ∀t ≥ 0.

The evolution of the level set function is derived from the above equation taking into account
a continuous extension v of the interface velocity (6) (or (11) respectively) as follows

∂φ

∂t
(x, t) + v(x, t)

∂φ

∂x
(x, t) = 0, x ∈ Ω. (16)

In our specific application the interface velocity is only defined at the front position itself.
Hence, a continuous extension v of the interface velocity is unavoidable, and it is taken as the
steady solution of the next advection equation

∂ṽ

∂τ
(x, τ) + S

(

φ(x, t)
∂φ

∂x
(x, t)

)∂ṽ

∂x
(x, τ) = 0 (17)

that propagates the front velocity in the correct upwind direction (see Chen et. al. [4]). Here
τ denotes a fictitious time step not related to the main time step, and S denotes the sign
function.

For general dimensions, the normal vector to the interface is given by n = ∇φ
|∇φ| and the

curvature of the interface by κ = ∇·n. Furthermore, several simplifications can be done when
φ is signed distance function (see [24] for further details). However, after solving (16) the level
set function φ possibly is no longer a distance function. Then, a reinitialization procedure is
required. This reinitialized level set is the steady-state solution of

∂φ̃

∂τ
(x, τ) = S(φ(x, t))

(

1 −
∣

∣

∣

∂φ̃

∂x
(x, τ)

∣

∣

∣

)

, (18)

where τ is again a fictitious time and φ(x, t) is the level set we want to set as a distance

function. Note that the zero level set of φ is not changed, and
∣

∣

∂φ̃
∂x

∣

∣ = 1, which characterizes
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the distance functions, in the steady solution.
The numerical discretization of the set of governing equations is done on a uniform fixed

grid with grid spacing ∆x. The front velocity is calculated by forward differences in the
solid phase and backward differences in the liquid phase. The extension of the front ve-
locity and the advection of the level set function are done by a forward Euler scheme for
the time discretization and an upwind discretization in space. This leads to stability condi-
tions for the time steppings: ∆τ < ∆x in the artificial advection of the front velocity, and
maxx∈Ω |v(x, t)| ∆t

∆x < 1 in the advection of the level set function. The equation for the reini-
tialization is discretized by the first order accurate Godunov’s scheme presented in [25]. The
heat equation is discretized using a backward Euler scheme in time and central differences in
space. For the neighbouring nodes to the interface we use the second order derivatives of the
quadratic Lagrangian interpolation polynomials that approximate the solution in the vicinity
of the interface from the appropriate side of the interface. When a grid node changes phase
(i.e. the interface crosses it) the discretization of the heat equation should be adapted. When
this happens, the node in question is not included in the discretization, and the solution at
this node is obtained by interpolation from the neighboring nodes within the same phase.
This procedure is slightly different from the method presented recently by Gibou et. al. in
[9], where the temperature in the conflictive node is adapted to the interface position before
the heat equation is solved.

3.3 The phase field method

The phase field method uses a function φ(x, t) which characterizes the phase of the system
at each point x and time t. This function, that is called the phase field function, assumes
an interface region of thickness ε where the phase transitions occur. This is clearly different
from the moving grid and level set methods where a sharp interface is considered. The phase
field function φ is given by

φ(x, t) =

{

1 if x is in the liquid phase at time t,

−1 if x is in the solid phase at time t,

and the interface region is characterized by −1 < φ(x, t) < 1. Then the evolution of the
system is described by the following system of two coupled partial differential equations

νξ2 ∂φ

∂t
= −δF

δφ
,

∂u

∂t
+

L

2

∂φ

∂t
=

∂

∂x

(

K
∂u

∂x

)

,

where K is the appropriate diffusivity constant in each phase, i.e., K = Kliq where φ > 0
and K = Ksol where φ < 0. Further, L denotes the latent heat and F denotes a free energy
functional which is a function of φ as well as other variables of the problem, and δF

δφ denotes
the variational derivative of F with respect to φ. The parameter ν is a relaxation time and
ξ is related with the thickness of the interface region. We use the Caginalp model, for which
the asymptotic analysis is done by Caginalp [2]. The free energy functional F is expressed by
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F(φ, u) =

∫

Ω

[1

2
ξ2

(∂φ

∂x

)2
+ f(φ, u)

]

dx,

where f is the so-called free energy density which consists of a double-well potential measured
by a parameter a and a term coupling u with φ

f(φ, u) =
1

8a
(φ2 − 1)2 − 2uφ.

The two minima of f establish the stable states of the problem (i.e. the liquid and solid
states), which are slightly displaced from its physical values φ = ±1 due to the influence of
the parameter a. Hence to minimize this influence the parameter a should be chosen small.
Further, the interface thickness is given by the relation ε = ξ

√
a.

The phase field varies rapidly from −1 to 1 within the interface region, which motivates
the use of an adaptive mesh procedure. Here the approach presented by Mackenzie and
Robertson in [13] is used. The adaptive mesh is constructed by an equidistribution principle

∫ xi+1(t)

xi(t)
M(x̃, t)dx̃ =

1

N

∫ 1

0
M(x̃, t)dx̃, for i = 0, 1, . . . , N − 1, (19)

where N is the number of space intervals we consider in our spatial domain Ω and M is a
monitor function related with the thickness of the interfacial region. In this case

M(x, t) = γβ(t) + sech
(x−s(t)

2ε

)

, β(t) =
∫ 1
0 sech

(x−s(t)
2ε

)

dx, (20)

where γ > 0 is a parameter chosen by the user. The parameter γ must be chosen positive
to ensure that the monitor function M is positive and not zero to avoid the clustering of all
the grid nodes inside the interface region, since the number of grid nodes placed within the
interface region is approximately N

1+γ .
Finally, the use of the Caginalp potential and the adaptive mesh procedure leads to the

following system of differential equations

νξ2
(Dφ

Dt
− dx

dt

∂φ

∂x

)

= ξ2 ∂2φ

∂x2
− 1

2a
(φ3 − φ) + 2u, (21a)

Du

Dt
− dx

dt

∂u

∂x
+

L

2

(Dφ

Dt
− dx

dt

∂φ

∂x

)

=
∂

∂x

(

K
∂u

∂x

)

, (21b)

where the total-time derivative (ALE approach, see also Section 3.1) has been used to incorpo-
rate the mesh movement into the governing equations. These equations are solved separately.
It has to be remarked that the mesh at the new time step is required to solve system (21).
We use the following algorithm. First we estimate the interface position at the new time step
by sn+1 = 2sn − sn−1. Note that a fixed time step is used. Then, the mesh at the new time
step is calculated with the equidistribution principle Eqs. (19)-(20), which is determined by
solving the non-linear equation
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γβ(tn+1)xn+1
i + 2ε

[

sin−1
(

tanh(
xn+1

i − sn+1

2ε
)
)

− sin−1
(

tanh(
−sn+1

2ε
)
)

]

=
iβ(tn+1)(γ + 1)

N
,

for xn+1
i , i = 0, . . . , N . Thereafter, the phase field at the new time step is calculated from

Eq. (21a), where the temperature at the previous time step is used. For the computation of
the phase field function, we use the following discretization

νξ2
(φn+1

i − φn
i

∆t
− xn+1

i − xn
i

∆t

φn
i+1 − φn

i−1

hn
i+1 + hn

i

)

=
2ξ2

hn+1
i+1 + hn+1

i

(φn+1
i+1 − φn+1

i

hn+1
i+1

−
φn+1

i − φn+1
i−1

hn+1
i

)

− 1

2a

[

(φn+1
i )3 − φn+1

i

]

+ 2un
i ,

for i = 1, . . . , N−1. The value at the boundary nodes is given by the boundary conditions. We
use the Newton method to solve this non-linear system of equations up to a given tolerance.
Subsequently, the temperature distribution is obtained by substitution of the phase field at
the new time step into its time derivative in Eq. (21b). We use the following discretization

un+1
i − un

i

∆t
− xn+1

i − xn
i

∆t

un
i+1 − un

i−1

hn
i+1 + hn

i

+
L

2

(φn+1
i − φn

i

∆t
− xn+1

i − xn
i

∆t

φn
i+1 − φn

i−1

hn
i+1 + hn

i

)

=

2

hn+1
i+1 + hn+1

i

(

Kn+1
i+1/2

un+1
i+1 − un+1

i

hn+1
i

− Kn+1
i−1/2

un+1
i − un+1

i−1

hn+1
i

)

,

for i = 1, . . . , N − 1. The value at the boundary nodes is obtained from the boundary
conditions. Note that central differences have been used to discretize the convective terms
since the phase transformation is diffusion controlled. We refer the interested reader to [13]
for further details. In the post-processing of the results, the interface position is calculated
as the zero of the phase field function by linear interpolation.

In addition, Mackenzie and Robertson [13] study the existence of a solution for the non-
linear system coming from Eq. (21a). They found a sufficient condition for the existence
of a numerical solution based on the time step: ∆t < 2νaξ2 = 2νε2, which reveals the
numerical difficulties that arise when we try to recover the sharp interface problem with ε

small. However, in their and our numerical experiments it is possible to use a larger time
step, although its selection is very sensitive to the other parameters in the phase field model.

4 Numerical results

In this section we present some numerical results for both the single phase (solid-solid trans-
formation) and the two phases (solid-liquid transformation) problems. Our aim is to mimic
the first Stefan problem by solving the second Stefan problem, for which the phase field
method can be applied. We also examine the convergence of the moving grid and the level
set methods for the single phase problem. The data used through all the computations are:
the concentration inside the particle cpart = 0.53, the concentration on the interface csol = 0
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, the initial concentration in the diffusive phase c0 = 0.1, the diffusivity constant D = 1, the
domain length l = 1 and the initial position of the interface s0 = 0.2.

4.1 Solid-solid transformation

In this section we use the moving grid and the level set methods to simulate the single phase
problem presented above.
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Figure 1: The solid-solid transformation problem with the moving grid (MGM) and the level
set (LSM) methods.

In Figure 1(a) the evolution of the interface positions for the moving grid, the level set
methods and the similarity solution (obtained from Eq. (13)) is shown. It appears that there
is a close agreement with the similarity solution in the beginning of the simulation. However,
in the numerical simulations a finite domain Ω is considered whereas for the similarity solution
the domain Ω is infinite. This causes the divergence of the numerical solutions with respect to
the similarity solution if time evolves. In Figure 1(b) the concentration at x = 0.25 versus the
time is compared again with the similarity solution given by Eq. (15). For both the moving
grid and the level set methods we take N = 100. For the moving grid method the time step
is ∆t = 1.25 × 10−3, whereas in the level set method the time step is determined by the CFL
condition for stability, which prescribes ∆tn = CFL · ∆x

|vn| with CFL < 1. In our calculations

we have used CFL = 0.1. This choice made the time step to vary from 2.918 × 10−4 to
1.25× 10−3 , which was used as an upper bound to avoid excessively large times steps due to
small interface velocities.

In Table 1 the convergence to the similarity solution of both the moving grid and the
level set methods is examined, with final time for the numerical integration tend = 0.1. The
time step was refined when N was increased in both methods. First order convergence in
the interface position is observed for both methods, although a slightly higher accuracy is
observed with the moving grid method. This is likely due to the differences in the grid
spacing and time steppings for both methods.
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Moving Grid Method Level Set Method

N sh(0.1) ||s − sh||∞ sh(0.1) ||s − sh||∞
100 0.276223 0.000727 0.278445 0.001630

200 0.276470 0.000495 0.277812 0.000997

400 0.276609 0.000343 0.277405 0.000594

800 0.276687 0.000239 0.277144 0.000342

1600 0.276730 0.000168 0.276988 0.000194

Table 1: Convergence analysis for the Moving Grid Method (left) and the Level Set Method
(right). Similarity solution s(0.1) = 0.276815.

4.2 Solid-liquid transformation

In this section we mimic the problem presented above with a solid-liquid transformation
problem. Hence, we consider the next initial temperature distribution

u(x, 0) =











0.53, in the liquid phase (0 ≤ x < s0)

0, on the interface x = s0

0.1, in the solid phase (s0 < x ≤ 1)

where the initial position of the interface is s0 = 0.2 again. The latent heat L = cpart − csol =
0.53 and the thermal diffusivity in the solid phase is Ksol = D = 1 and in the liquid phase
is either Kliq = 0.05, 0.01 or 0.005. As mentioned in Section 2.3 the interface position of the
similarity solution is determined by a parameter α which is calculated from the initial data
in Eq. (12). In Table 2 values of α are given for different values of Kliq, compared with the
value of α in the solid-solid transformation problem Eq. (13). Note that the solid phase has
been artificially super-heated to mimic the solid-solid phase transformation problem presented
above, which is obtained for Kliq = 0. The three methods were also tested on classical Stefan
problems, and the same kind of behavior for the numerical solutions as presented here has
been observed.

Kliq 0.05 0.01 0.005 0

α 0.169082 0.127968 0.122595 0.121455

Table 2: Values of α for different values of Kliq.

In Figure 2(a) the interface position with the Moving Grid, the Level Set and the Phase Field
methods is presented. Comparison with the similarity solution is only correct for small times,
due to the bounded domain. Hence tend = 0.25 is used as the final time for the simulation.
In Figure 2(b) the temperature history in x = 0.25 is presented, and the numerical solutions
are consistent with the similarity solution given by Eq. (14). For the moving grid method
N = 200 grid intervals were used for the entire domain Ω, of which r = 100 were in the liquid
phase. The time step used was ∆t = 5 × 10−4. For the level set method we took N = 200,
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while the CFL parameter was 0.1. The time step varied from 9.2398×10−5 to 5×10−4, which
was used as a upper bound. Finally, for the phase field method a = 0.0625 and ξ = 0.0001,
which led to an interface thickness of ε = 5 × 10−5 and relaxation time ν = 1. Further we
use N = 200 and γ = 1, which implies that about 100 nodes were placed within the interface
region. As mentioned in Section 3.3 the criterion on the time stepping found by Mackenzie
and Robertson [13] leads to ∆t < 1.2510−9 which is useless for practical purposes. However,
as they also pointed in [13] it has been possible to obtain satisfactory results with larger time
steps. In this case we used ∆t = 5× 10−4. The initial temperature distribution was obtained
from the similarity solution Eq. (14) using an initial time t0 = 0.01, since it was seen that a
discontinuous initial temperature distribution causes instabilities in the phase field method.
The same experiment has been done for Kliq = 0.05 and Kliq = 0.01, for which ξ = 0.002
and ξ = 0.0002 were used respectively. The following observations can be done: decreasing
the interface thickness might require to decrease the time step (although in our calculations
∆t = 5×10−4 was used and satisfactory results were obtained), decreasing the diffusivity Kliq

will require to increase the initial time t0 to obtain an initial temperature distribution that
is sufficiently smooth inside the interface region. Further decreasing the thermal diffusivity
Kliq requires a decrease of the interface thickness.
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Figure 2: The solid-liquid transformation problem with the Moving Grid, the Level Set and
the Phase Field methods.

5 Conclusions

In this paper we consider two Stefan problems resulting from phase transformations: the
melting problem and a diffusional phase transformation in binary alloys where only in one of
the two phases the solution of the diffusion equation is determined, whereas the solution is
constant in the other phase. Numerical solutions of those problems have been obtained with
the moving grid, the level set and the phase field methods.

The formulation of the problems and the existing similarity solutions show the resemblance
between the two problems. In fact, the diffusional one phase transformation is a special case of
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the melting problem. From the numerical computations several conclusions can be obtained:

• Both the moving grid and the level set methods are suitable numerical models for the
solid state phase transformation, and their accuracy is comparable.

• The same can be concluded for the melting problem. Furthermore, for this problem
the phase field method is also suitable. From the reported results (Figure 2) one might
conclude that the phase field method gives a better approximation of the interface
position and temperature profile. However, the grid resolution within the interfacial
region is much higher with the phase field method than with the moving grid and the
level set methods, which also leads to larger computational cost.

• The phase field method has shown to be applicable for the melting problem, even when
the difference of the thermal properties in each phase is remarkable. Unfortunately it
is hard to derive appropriate phase field parameter values from the physical parameters
of the phases involved, which limits the true predictive power of this technique. The
moving grid and the level set methods do not suffer from this high dependence of the
physical parameters of the problem. Their input values can be obtained rather easily
from tables and phase-diagrams.

The interpolative approach presented for the moving grid method can be replaced by the
ALE approach, which introduces the displacement of the grid into the governing equations,
leading to solving a convection-diffusion equation, which is more convenient for higher dimen-
sional problems. Topological changes, which involve merging or breaking of the interface, are
difficult to model with the moving grid method. However, this is easily handled in the level
set method. The difficulties in the level set method are the extension of the front velocity
and the reinitialization, although they can be overcome without much effort. This motivates
us to investigate the level set method for higher dimensional problems.
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