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SUPERCONVERGENT ERROR ESTIMATES

FOR POSITION-DEPENDENT SMOOTHNESS-INCREASING

ACCURACY-CONSERVING (SIAC) POST-PROCESSING

OF DISCONTINUOUS GALERKIN SOLUTIONS

LIANGYUE JI, PAULIEN VAN SLINGERLAND, JENNIFER K. RYAN, AND KEES VUIK

Abstract. Superconvergence of discontinuous Galerkin methods is an area of
increasing interest due to the ease with which higher order information can be
extracted from the approximation. Cockburn, Luskin, Shu, and Süli showed
that by applying a B-spline filter to the approximation at the final time, the
order of accuracy can be improved from O(hk+1) to O(h2k+1) in the L2-norm
for linear hyperbolic equations with periodic boundary conditions (where k is
the polynomial degree and h is the mesh element diameter) [Math. Comp.
(2003)]. The applicability of this filter for linear hyperbolic problems with

non-periodic boundary conditions was computationally extended and renamed
a position-dependent smoothness-increasing accuracy-conserving (SIAC) filter
by van Slingerland, Ryan, Vuik [SISC (2011)]. However, error estimates in
the L2-norm for this new position-dependent SIAC filter were never given.
Furthermore, error estimates in the L∞-norm have not been established for
the original kernel nor the position-dependent kernel. In this paper, for the

first time we establish that it is possible to obtain O(hmin{2k+1,2k+2− d
2
})

accuracy in the L∞-norm for the position-dependent SIAC filter, where d is
the dimension. Furthermore, we extend the error estimates given by Cockburn
et al. so that they are applicable to the entire domain when implementing
the position-dependent SIAC filter. We also computationally demonstrate the
applicability of this filter for visualization of streamlines.

1. Introduction

Superconvergence of discontinuous Galerkin methods is an area of increasing
interest [1, 2, 5, 6, 11, 12, 14]. This is due to the ease with which higher order infor-
mation can be extracted from the approximation. In most cases one can improve
on the solution from k+ 1

2 order accuracy to 2k+1. One of these superconvergent
techniques, the so-called Smoothness-Increasing Accuracy-Conserving (SIAC) post-
processor [6, 12], is based on convolving the numerical solution against a B-spline
kernel. It has well-established error estimates in the L2- and negative-order norms
for linear hyperbolic equations and convection-diffusion equations [6, 8]. However,
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these L2-error estimates were established for the original symmetric post-processor.
This post-processor was a convolution kernel consisting of symmetric B-splines that
used a symmetric amount of information from both sides of the point being post-
processed. This limitation required that the SIAC filter be applied only to problems
with periodic boundary conditions or a distance of 3k+1

2 h away from the domain
boundary, where h is the uniform element size.

Computationally, these limitations were overcome in [13, 14]. The approach in
[13] used the original idea of 2k + 1 central B-splines, but with a shifted support.
There were still problems that arose, however. These problems were a stair stepping
effect and the magnitude of the errors at the boundaries were larger than in the
interior. These issues were again computationally addressed in [14] with the so-
called position-dependent SIAC filter. This position-dependent filter made a more
intelligent choice for the shifted support and used a kernel that required more central
B-splines, which aided in reducing the magnitude of the errors while still achieving
the same 2k+1 order accuracy (see Figure 1.1(b),(c)). However, L2-error estimates
for the one-sided filters in [13] and [14] where never established. Furthermore, L∞-
estimates have never been introduced for any type of SIAC filtering, including the
original symmetric kernel in [6].

In this paper we establish, for the first time, L∞-error estimates as well as revised
L2-error estimates for the position-dependent SIAC filter. These estimates show
that the approximation can be improved from k + 1

2 order accuracy to min{2k +

1, 2k+2− d
2} and 2k+1, respectively. These estimates are valid for the discontinuous

Galerkin (DG) approximation to multi-dimensional linear hyperbolic equations of
the form

ut +

d∑
j=1

Ajuxj
+A0u = 0, (x, t) ∈ Ω× (0, T ],(1.1a)

u(x, 0) = u0(x),(1.1b)

where Aj are real, constant coefficients, x = (x1, x2, . . . , xd), and u(x) is sufficiently
smooth. The domain is taken as Ω = [a1, b1] ⊗ · · · ⊗ [ad, bd] in R

d. The DG
approximation, uh, is constructed using polynomial basis functions of degree k ≥ 1
over a uniform mesh with element diameter h, with first order upwind fluxes and
exact time integration. These assumptions are quite strong, and usually not valid
in practice. Nevertheless, numerical experiments show that the position-dependent
post-processor enhances the accuracy in a similar manner for other linear problems
as well [8, 9].

It should be emphasized that the estimates for the L∞-error are quite new, as
only L2-estimates for discontinuous Galerkin methods were obtained by Cockburn,
Luskin, Shu, and Süli in [6]. Bramble and Schatz presented both L2- and L∞-
estimates for finite element methods in [4]. However, these results only considered
the symmetric post-processor, which cannot be applied near the boundary. In
this paper we consider the position-dependent SIAC post-processor which can be
applied over the entire domain. Furthermore, we obtain the higher accuracy in
the (stronger) L∞-norm, thus extending the estimates in the maximum norm of
Bramble and Schatz that were only applicable for continuous approximations.

In [14], computational results validating the higher order accuracy in the L∞-
norm were presented for examples containing periodic and Dirichlet boundary con-
ditions as well as problems involving stationary shocks. An illustration of this error
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SUPERCONVERGENT ERROR ESTIMATES 2241

Figure 1.1. Comparison of the errors for the SIAC filter for the
DG solution to a one-dimensional linear hyperbolic equation with
constant coefficients and periodic boundary conditions for k = 2.
The new filter improves both the smoothness and the accuracy in
the entire domain, including the boundary.

improvement for the linear convection equation from [14] is presented in Figure
1.1. In this paper we instead concentrate on demonstrating the applicability of this
position-dependent SIAC filter as a filter for visualizing streamlines obtained from
discontinuous Galerkin approximations. This further extends the work in [15].

The outline of this paper is as follows. First, we introduce the necessary nota-
tion in Section 2. In Section 3, the discontinuous Galerkin method is given along
with some important theorems that will be useful in obtaining the required error
estimates. Important results from Bramble and Schatz [4] and Cockburn et al. [6]
giving prior superconvergent results as well as information regarding the position-
dependent SIAC post-processor are discussed in Section 4. The main work of this
paper is in Section 5, in which the theoretical error estimates are established. These
results are presented in such a way that they can be easily extended for any approx-
imation for which superconvergence of the error exists in the negative-order norm.
Although this theory was validated in [14], in Section 6 numerical experiments that
demonstrate the applicability of the position-dependent SIAC post-processor as a
visualization filter are given. Finally, conclusions are given in Section 7.
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2. Notation & Preliminaries

To develop the necessary theory establishing the L∞- and L2-estimates, we out-
line the notation that will be used. Throughout this paper, the standard space,
derivatives, norms and inner product notation are adopted. In particular, (, ) and
〈, 〉 denote the standard inner product on the computational domain and on the
boundary.

The L2-norm on Ω and on the boundary will be given by

‖η‖0,Ω =

(∫
Ω

η2dx

) 1
2

, ‖η‖∂Ω =

(∫
∂Ω

η2ds

) 1
2

,(2.1)

the �-norm, maximum �-norm, and semi-norm on Ω are defined as

‖η‖�,Ω =

⎛
⎝∑

|α|≤�

‖Dαη‖2Ω

⎞
⎠

1
2

, � > 0,(2.2)

‖η‖∞,Ω = sup
x∈Ω

|η(x)|,(2.3)

|η|�,Ω =
∑
|α|≤�

‖Dαη‖∞,Ω , � > 0.(2.4)

Here, α = (α1, α2, . . . , αd) is a multi-index of order |α| = α1 + α2 + · · · + αd,
and

Dαη := (Dα1
x1

(Dα2
x2

· · · (Dαd
xd

η))),(2.5)

denotes multi-dimensional partial derivatives.
Given � > 0, the negative-order norm on the domain Ω is defined as

‖η‖−�,Ω = sup
Φ∈C∞

0 (Ω)

(η,Φ)Ω
‖Φ‖�,Ω

.(2.6)

The difference quotients in the j-th direction are given by the formula

∂h,jv(x) =
1

h

(
v

(
x+

1

2
hej

)
− v

(
x− 1

2
hej

))
,(2.7)

here ej is a multi-index whose j-th component is 1 and all others 0. The α th-order
difference quotient is

∂α
h v(x) = (∂α1

h,1(∂
α2

h,2 · · · (∂
αd

h,dv(x)))).(2.8)

Let χ be the characteristic function that is equal to one on the interval
(
1
2 ,

1
2

)
and let δ denote the Dirac distribution concentrated at x = 0. A B-spline of order
� is recursively defined as

ψ(0) = δ, ψ(�) = ψ(�−1) 	 χ, ∀ � ≥ 1,(2.9)

where 	 denotes the convolution operator given by

f 	 g(x) =

∫
Rd

f(x− z)g(z) dz.(2.10)

Multiple dimensional B-splines of order � are defined to be a tensor product of
one-dimensional B-splines:

ψ(�)(x) = ψ(�)(x1)ψ
(�)(x2) · · ·ψ(�)(xd),(2.11)

for x=(x1, x2, · · · , xd) ∈ R
d. Denote by ψ

(�)
h = 1

hψ
(�)(xh ), the B-spline scaled by h.
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The following important properties for establishing the L∞- and L2-error esti-
mates using B-spline properties are given by Lemmas 2.1 and 2.2. The notation
Ω0 ⊂⊂ Ω1 ⊂⊂ Ω, will be used.

Lemma 2.1 (Bramble and Schatz [4]). For any multi-index α and u ∈ L2(Ω1),

∂α
h (ψ

(�)
h 	 u)(x) = ψ

(�)
h 	 ∂α

hu(x), x ∈ Ω0.(2.12)

Lemma 2.2 (Bramble and Schatz [4]). If s is any fixed integer (positive or negative)
and α is any multi-index with αj ≤ l, j = 1, . . . , d,

‖Dα(ψ
(�)
h 	 u)‖s,Ω0

≤ C‖∂α
hu‖s,Ω1

,(2.13)

for all u ∈ Hs(Ω1) and

‖Dα(ψ
(�)
h 	 u)‖∞,Ω0

≤ C‖∂α
hu‖∞,Ω1

,(2.14)

for all u ∈ L∞(Ω1). Here C is a constant which is independent of h and u.

Remark 2.1. Note that the lemmas given in Bramble and Schatz [4] are for the full
B-spline kernel, and not the individual B-splines, however, they are easily extended
for individual B-splines.

The following two lemmas will also be useful in proving the error estimates:

Lemma 2.3 ([4]). If u ∈ H [d/2]+1(Ω1), then (after possible modification on a set
of measure zero) u ∈ L∞(Ω0) and

‖u‖∞,Ω0
≤ C‖u‖[d/2]+1,Ω0

,(2.15)

where C depends on Ω0, Ω1 and [d/2] is the integral part of d/2.

Lemma 2.4 (Bramble and Schatz [4]). Let s be an arbitrary but fixed non-negative
integer. Then, for u ∈ Hs(Ω1), there is a constant C such that

‖u‖0,Ω0
≤ C

∑
|α|≤s

‖Dαu‖−s,Ω1
.(2.16)

3. Discontinuous Galerkin method

In this section a brief outline of the discontinuous Galerkin (DG) method will
be given. For more details, consult [7].

Let K define an element in the tessellation Th of the domain Ω, where h > 0. It is
assumed that the elements are invariant under translations by integer multiples of
the mesh scaling. Denote by Γ the union of the boundary faces of elements K ∈ Th,
i.e., Γ =

⋃
K∈Th

∂K.
The DG finite element space used in the approximation is given by

Vh =
{
ϕ ∈ L2(Ω) : ϕ|K ∈ Pk(K), ∀K ∈ Th

}
,(3.1)

where Pk(K) is the usual polynomial space. Vh is a piecewise polynomial space
that allows for discontinuities across element interfaces.

The approximation uh can now be determined by the following equations:

((uh)t, ζ) +B(uh, ζ) = 0, ζ ∈ Vh,(3.2a)

uh(x, 0) = Phu0(x),(3.2b)
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where Ph is the standard orthogonal projection onto Vh and B(, ) is a bilinear
operator

B(uh, ζ) = −
d∑

j=1

(uh, Ajζxj
) +
∑

K∈Th

〈ûh, ζA·ν〉∂K + (uh, A0ζ).(3.2c)

Here, A denotes vector (A1, A2, . . . , Ad) and ν = (ν1,ν2, · · · ,νd) is the unit out-
ward normal vector of the integral domain. Without lost of generality we assume
Aj ≥ 0, j = 1, . . . , d, then the numerical flux is taken as an upwind flux, ûh = u−

h .
The superconvergent accuracy of the discontinuous Galerkin method in the

negative-order norm was previously shown in [6] which follows from results for
finite element solutions in [4]. The reader is reminded of the main theorem:

Theorem 3.1 ([6]). Let u be the exact solution of (1.1), subject to periodic bound-
ary conditions, and uh the DG approximation defined in (3.2). Then the following
error estimates are valid:

‖∂α
h (u− uh)‖0,Ω0

≤ Chk+1‖∂α
hu0‖k+1,Ω1

,(3.3)

for the approximation itself, and for the difference quotients in the negative-order
norm

‖∂α
h (u− uh)‖−(k+1),Ω0

≤ Ch2k+1‖∂α
hu0‖k+1,DΩ1

(3.4)

with any multi-index α, where DΩ1 represents the domain boundary. The constant
C is independent of h.

In this paper, the following result is useful for superconvergence of the post-
processed solution in the L∞-norm.

Lemma 3.2. Let u be the exact solution of (1.1), subject to periodic boundary con-
ditions, and uh the DG approximation defined in (3.2). Then we have the following
estimate for the L∞-norm of the divided differences of the error:

(3.5) ‖∂α
h (u− uh)‖∞,Ω0

≤ Chk+1− d
2 .

Proof. To show this inequality, begin by adding and subtracting the standard L2

projection Phu of u. Then use the inverse inequality from [3] in the last step:

‖∂α
h (u− uh)‖∞,Ω0

≤ ‖∂α
hu− Ph∂

α
hu‖∞,Ω0

+ ‖Ph∂
α
hu− ∂α

huh‖∞,Ω0

≤ C1h
k+1 + C2h

− d
2 ‖Ph∂

α
hu− ∂α

huh‖0,Ω0
≤ Chk+1−d

2 .(3.6)

�

4. Smoothness-increasing accuracy-conserving (SIAC) filtering

The main purpose of this section is to show how negative-order norms of dif-
ference quotients can be exploited to obtain superconvergence. In [6], the authors
found that using finite element methods to solve linear hyperbolic equations (1.1)
produces errors with large oscillations, which indicates that there are hidden su-
perconvergent points. Instead of considering the approximation, uh, a convolution

kernel Kr,�
h was introduced in order to consider certain “averages” of uh, K

r,�
h 	 uh.

The original kernel function Kr,�
h is a linear combination of central B-splines and is

symmetrically and compactly supported.
Superconvergence results for the symmetric kernel in the interior of the domain

were established by combining the following two theorems:
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Theorem 4.1 (Bramble and Schatz [4]). For T > 0, let u ∈ H2k+1(Ω) be the exact

solution to the linear hyperbolic equation (1.1). Let Ω0 + 2supp(K2k+1,k+1
h (x)) ⊂⊂

Ω1 ⊂ Ω, where U is any approximation to u, then

‖u(T )−K2k+1,k+1
h 	 U‖0,Ω0

≤ C1h
2k+1|u|2k+1,Ω1

+ C2

∑
|α|≤k+1

‖∂α
h (u− U)‖−(k+1),Ω1

.

where C1 and C2 are independent of h.

Theorem 4.2 ([6]). Let u be the exact solution of equation (1.1), subject to periodic
boundary conditions. Let uh be the DG approximation defined by (3.2), then

‖u(T )−K2k+1,k+1
h 	 uh‖0,Ω0

≤ C‖u0‖2k+2,Ω1
h2k+1,(4.1)

where C is a positive constant independent of h.

The main idea of the original kernel is to locally use a symmetric amount of
information from both sides of the point being post-processed, which restricts the
application of the convolution kernel to the interior of the domain. For periodic
boundary conditions, interior results can be periodically extended to the entire
domain. Further, in these theorems, the definition of Ω0 relied on h. To extend
superconvergence to the entire domain for general boundary value problems, a new
position-dependent SIAC filter was constructed [14] that can adaptively adjust the
kernel support depending on the position of the evaluation point so that Ω0 no
longer relies on h.

The main goal of this paper is to establish the superconvergence on the entire
domain by proving a theorem similar to Theorem 4.1, but applicable to the entire
domain through the use of the modified kernel in [14]. Furthermore, for the first
time, a maximum-norm error estimate will be proven. This will be useful as it
expresses the post-processed error using negative-order norms. Technically, the use
of the symmetric kernel in the interior of the domain is maintained. The difference
is that the number of B-splines used near the boundary is increased. If smoothness
is required in the post-processed solution, it is necessary to have transition regions
where a convex combination of these kernels is used. The post-processed solution
is then given by

u�
h(x) = θ(x)(Kr1+1,�

h 	 uh)(x) + (1− θ(x))(Kr2+1,�
h 	 uh)(x),(4.2)

where r2 > r1. Similar to the kernel itself, θ(x) is a tensor product of one-
dimensional functions. In [14], the one-dimensional function, θ(x) is defined as

θ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [xL, xL + 3k+1
2 h),

p(x), x ∈ [xL + 3k+1
2 h, xL + 3k+5

2 h],

1, x ∈ (xL + 3k+5
2 h, xR − 3k+5

2 h),

q(x), x ∈ [xR − 3k+5
2 h, xR − 3k+1

2 h],

0, x ∈ (xR − 3k+1
2 h, xR],

(4.3)

where p(x), q(x) are polynomials of degree 2k+3 and xL, xR are the left and right
boundaries, respectively. Further, continuity was enforced as follows:

p

(
xL +

3k + 1

2
h

)
= q

(
xR − 3k + 1

2
h

)
= 0,
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2246 L. JI, P. VAN SLINGERLAND, J. K. RYAN, AND C. VUIK

Figure 4.1. An example of a coefficient function, θ(x), that allows
a smooth transition between the one-sided filter and the symmetric
filter for a linear approximation (k = 1) over the unit domain with
step-size h = 1

10 .

p

(
xL +

3k + 5

2
h

)
) = q

(
xR − 3k + 5

2
h

)
= 1,

dm

dxm
p

(
xL +

3k + 1

2
h

)
=

dm

dxm
p

(
xL +

3k + 5

2
h

)
= 0,

dm

dxm
q

(
xR − 3k + 1

2
h

)
=

dm

dxm
q

(
xR − 3k + 5

2
h

)
= 0, m = 1, . . . , k + 1.(4.4)

We note that these restrictions are actually stronger than necessary. A sufficient
requirement is that θ(x) is a polynomial of degree 2k + 1 with continuity of k − 1
throughout the domain, with 0 ≤ θ(x) ≤ 1.

An example of such a theta for a linear approximation (k = 1) over the domain
[xL, xR] = [0, 1] is shown in Figure 4.1. In this example,

p(x) = 5− 6

h
x+

9

4h2
x2 − 1

4h3
x3

and

q(x) =
1

4h3

[
−(1− 2h)2(1− 5h) + 3(1− 4h)(1− 2h)x− 3(1− 3h)x2 + x3

]
in the definition for θ(x) given by equation (4.3).

Now, a rigorous general definition for the position-dependent kernel Kr+1,�
h is

given. Then, it will be shown that if u�
h is used as an approximation to u, super-

convergence estimates can be obtained.
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4.1. The position-dependent kernel. The DG solution is post-processed by con-

volving uh against the position-dependent kernel Kr+1,�
h ,

Kr+1,�
h 	 uh(x) =

∫
Rd

Kr+1,�
h (x− z)uh(z)dz.(4.5)

In this summary, the one-dimensional position-dependent convolution kernel is first
defined on a general domain [a, b]. The multi-dimensional kernel is then a tensor
product of the one-dimensional kernels.

The position-dependent kernel, Kr+1,�
h (x), is defined as

Kr+1,�
h (x) =

1

h

r∑
γ=0

cγψ
(�)
(x
h
− x̄γ

)
, for all x ∈ R,(4.6)

where r + 1 central B-splines of order � are used (see equation (2.9)). Here the
kernel coefficients c0, ..., cr are uniquely determined by a small locally linear system

r∑
γ=0

cγ

∫ ∞

−∞
ψ(�)(x)(x+ x̄γ)

mdx =

{
1, for m = 0,

0, for all m = 1, ..., r,
(4.7)

and the kernel nodes are chosen to be

x̄γ = −r

2
+ γ + λ(x̄), for all γ = 0, ..., r.(4.8)

λ(x̄) is a shift function defined to adjust the support of the kernel so that it can be
applied to the entire computational domain. The notation x̄ is used to signify that
it is evaluated at a specific point in the domain, namely the evaluation point used
to evaluate the kernel. It has the form

λ(x̄) =

⎧⎨
⎩
min
{
0,− r+�

2 +
x̄−a− εh

2

h

}
, x̄ ∈ [a, a+b

2 ],

max
{
0, r+�

2 +
x̄−b+ εh

2

h

}
, x̄ ∈ (a+b

2 , b]
(4.9)

(cf. Figure 4.3). In practice, ε = 0. However, to obtain theoretical error estimates,
it is necessary to take ε > 0 to be arbitrarily small yet fixed. The choices for r and
λ affect the shape and support of the kernel (cf. Figure 4.2).

To remind the reader about the differences between the above defined position-
dependent kernel and that of [6] some important features of the original kernel are
emphasized. Namely,

• Kernel nodes. Symmetric nodes are chosen to be evenly distributed around
the origin, i.e., the shift function λ(x̄) is always taken to be 0 for the
symmetric kernel.

• Kernel coefficients. Since the kernel nodes are independent of the evaluation
points for the symmetric kernel, the coefficients are fixed and therefore only
need to be calculated once.

The main idea of the modified kernel is to use a shift function λ(x̄) that changes

such that 1) the support of the kernel Kr+1,�
h lies within the spatial domain [a, b]

even when it is applied near a boundary; 2) the post-processor does not (re)introduce
unphysical discontinuities in the solution; 3) the post-processor is “as symmetric
as possible” (λ is taken to be as close to zero as possible), since a symmetric dis-
tribution of the kernel nodes is known to give a more accurate result. This λ can
be seen in Figure 4.3. Notice that for points near the boundary a partly one-sided
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Figure 4.2. The SIAC kernel (solid line) is a linear combination
of r + 1 B-splines of order k + 1 (dashed lines) that are centered
around kernel nodes (circles). In these examples, r=2 and k+1=2.
Observe that the location of the kernel nodes affects the shape and
support of the kernel.

kernel is used, which requires calculating the kernel coefficients at each evaluation
point.

Remark 4.1. Using the definition of the kernel nodes, x̄γ , it is easy to obtain

(Kr+1,�
h 	 uh)(x̄) =

∫
R

Kr+1,�
h (x̄− z)uh(z)dz

=
1

h

r∑
γ=0

cγ

∫
R

ψ(�)

(
x̄− z

h
− x̄γ

)
uh(z)dz

=

r∑
γ=0

cγ

∫
R

ψ(�)(z)uh(x̄− h(z + x̄γ))dz.(4.10)

Using

(4.11) x̄ ∈ [a, b], z ∈
[
− �

2
,
�

2

]
, λ(x̄) ∈

[
−r + �+ ε

2
,
r + �+ ε

2

]
,

this gives

(4.12) x̄− hx̄γ ∈
[
a+

�+ ε

2
h, b− �+ ε

2
h

]
, x̄− h(z + x̄γ) ∈

[
a+

ε

2
h, b− ε

2
h
]
.

From the above it can clearly be seen that the position-dependent kernel can be
applied to the entire domain.
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Figure 4.3. Shift Function λ(x̄)

To remind the reader of how to apply the kernel to multiple dimensions, take
x = (x1, . . . , xd) ∈ R

d. The position-dependent kernel is then taken to be a tensor
product of the one-dimensional kernel

Kr+1,�
h (x) :=

[
1

h

r∑
γ1=0

c(1)γ1
ψ(�)
(x1

h
− x̄(1)

γ1

)]
· · ·
[
1

h

r∑
γ1=0

c(d)γd
ψ(�)
(xd

h
− x̄(d)

γd

)]
.

(4.13)

Denote ψ
(�)
h (x) = 1

hdψ
(�)(xh ), then the above definition is simplified to

Kr+1,�
h (x) =

r∑
γ=0

kr+1
γ ψ

(�)
h (x− hx̄γ),(4.14)

where x̄γ = (x̄
(1)
γ1 , . . . , x̄

(d)
γd ) and kr+1

γ = c
(1)
γ1 · · · c(d)γd .

For a discussion of the computational implementation and efficiency, the reader
is referred to [10].

5. The superconvergent error estimates

In this section the superconvergent error estimates are given proving that

O(h2k+1) accuracy is achieved in the L2-norm and O(hmin{2k+1,2k+2− d
2 }) in the

L∞-norm throughout the entire domain. In order to establish such estimates it is
first necessary to recall important properties of the convolution kernel.
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5.1. Important kernel properties. In this section, kernel properties that are
useful in obtaining the error estimates are outlined. To begin, a reminder that

the kernel is constructed in such a way that Kr+1,�
h (x) reproduces polynomials of

degree no more than r in each variable. This is stated by the following theorem:

Lemma 5.1 (Reproduction of polynomials). Let α = (α1, . . . , αd) be a multi-index
with 0 ≤ |α| ≤ r. Then

(Kr+1,�
h 	 p)(x) = p(x), with p(x) = xα,(5.1)

where xα = xα1
1 · · ·xαN

N ∈ R
d.

Proof. The proof of this lemma follows by noting that

(Kr+1,�
h 	 p)(x) =

(∫
R

Kr+1,�
h (y1)(x1 − y1)

α1 dy1

)

· · ·
(∫

R

Kr+1,�
h (yd)(xd − yd)

αd dyd

)

=

⎛
⎝xα1

1 +

α1∑
β1=1

(
α1

β1

)
xα1−β1

1 (−1)β1

∫
R

Kr+1,�
h (y1)(y1)

β1dy1

⎞
⎠

· · ·

⎛
⎝xαd

d +

αd∑
βd=1

(
αd

βd

)
xαd−βd

d (−1)βd

∫
R

Kr+1,�
h (yd)(yd)

βd dyd

⎞
⎠ .

Then use equation (4.7) to cancel the integrals and obtain

(5.2) Kr+1,�
h 	 p(x) = p(x), for p(x) = xα. �

This property means that the kernel Kr+1,�
h is constructed in such a way that

Kr+1,�
h 	 u is an approximation of order r + 1 to u. More precisely, the following is

true:

Lemma 5.2. For u ∈ Hs(Ω) and h > 0,

(5.3) ‖u−Kr+1,�
h 	 u‖∞,Ω ≤ C

(
sup
x∈Ω

∑
γ

|kr+1
γ |
)
|u|s,Ωhs, 0 ≤ s ≤ r + 1,

where C is a positive constant independent of h.

Proof. This was shown in [4] for the symmetric kernel. Since this proof deals with
the kernel applied to the exact solution, it is easily extended to include a larger
subset of the domain by implementing the new definition for the kernel nodes,
equation (4.8). �

5.2. The main estimates. In the previous section, basic results for a general

kernel, Kr+1,�
h , were given. In practice, common choices for the kernel are r = 2k for

the interior, and � = k+1. Near the boundary, it was computationally demonstrated
in [14] that r = 4k is a suitable choice to produce errors at the boundary with the
same magnitude as the interior. If smoothness is required, in transition regions it is
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necessary to use a convex combination of these kernels so that the post-processed
solution is given by

u�
h(x) = θ(x)(K2k+1,k+1

h 	 uh)(x) + (1− θ(x))(K4k+1,k+1
h 	 uh)(x).(5.4)

Recall that θ is defined by equation (4.3), so that the kernel using 4k+1 B-splines
is only applied near the boundaries and the symmetric post-processor is applied
whenever possible.

Remark 5.1. Note that a choice of r = 2k near the boundaries will produce the
superconvergent rate of 2k + 1, but the magnitude of the errors compared to the
interior are worse [13]. There is no theoretical benefit with respect to convergence
rate for using a larger number of B-splines as this is controlled by the negative-
order norm of the discontinuous Galerkin solution, which is at best 2k + 1 order
accuracy. It is the entire estimate for the approximation properties of the kernel
that reduces with a larger number of B-splines near the boundaries. This will be
discussed within the proof of the error estimates.

Now the post-processed error,

‖u− u�
h‖Ω ≤ ‖u− u�‖Ω + ‖u� − u�

h‖Ω,(5.5)

can be considered. We note that ‖u−u�‖Ω is the error from the kernel construction
and ‖u�−u�

h‖Ω is the error from the filtered DG approximation. Here ‖ · ‖Ω is used
to denote a general norm, which can be the L∞-norm or the L2-norm. The following
superconvergence error estimates will be proven:

Theorem 5.3. Let u be an exact solution and u�
h be the post-processed DG approx-

imation to the linear hyperbolic equation (1.1). For all h sufficiently small

‖u− u�
h‖∞,Ω ≤ Chs‖u0‖2k+3+[d/2],Ω(5.6)

and

‖u− u�
h‖0,Ω ≤ Ch2k+1‖u0‖2k+2,Ω,(5.7)

where s = min{2k + 1, 2k + 2− d
2} and C is a positive constant independent of h.

Remark 5.2. For the proof of the L∞-error, use of an inverse inequality makes the
estimate suboptimal for d ≥ 3. In practice, the optimal accuracy order of 2k + 1 is
obtained numerically.

In order to obtain the above superconvergent results it is necessary to estimate
‖u− u�‖Ω and ‖u� − u�

h‖Ω separately.

5.2.1. Estimate of ‖u−u�‖Ω. The first result gives an estimate of the error between
the exact solution u, and the post-processed exact solution. Consider the term

‖u− u�‖Ω ≤ ‖θ(x)(u(x)− (K2k+1,k+1
h 	 u)(x))‖Ω

+ ‖(1− θ(x))(u(x)− (K4k+1,k+1
h 	 u)(x))‖Ω

≤ ‖u(x)− (K2k+1,k+1
h 	 u)(x)‖Ω + ‖u(x)− (K4k+1,k+1

h 	 u)(x)‖Ω
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Lemma 5.2
≤

(
C1 |u|2k+1,Ω

(
sup
x∈Ω

∑
γ

|k2k+1
γ |

)
h2k+1

+ C2 |u|4k+1,Ω

(
sup
x∈Ω

∑
γ

|k4k+1
γ |

)
h4k+1

)

≤ Ch2k+1.(5.8)

For the symmetric kernel, the coefficients kγ are fixed with the number of B-splines
used, 2k + 1. However, for the one-sided kernel these kernel coefficients not only
depend on the number of B-splines used, but also the evaluation point. Because
of the non-symmetric support of the kernel, this means that

∑
γ |kr+1

γ | near the
boundary of the domain will tend to be larger than in interior domain. However,
this is balanced by hr+1, which for near the boundary gives the following relation:∑

γ

|kr+1
γ |h4k+1 ≤

∑
γ

|k2k+1
γ |h2k+1(5.9)

for h sufficiently small. This relation is obtained by computing the coefficients
for the kernels using 2k + 1 and 4k + 1 B-splines through the use of Lemma 5.1.
This process is described in detail in [10]. In Figure 5.1, a demonstration of this
difference is illustrated for the case k = 2.

Figure 5.1. Plots demonstrating the effect of the coefficients on
the error estimate for r = 2k and r = 4k B-splines.

5.2.2. Estimate of ‖u� − u�
h‖Ω. In order to estimate the second term the following

lemma will be needed for the general position-dependent kernel.

Lemma 5.4. Let Ω0 + 2supp(Kh) ⊂⊂ Ω1 ⊂⊂ Ω, v ∈ L∞(Ω) and d0 = [d/2] + 1.
Then for all h sufficiently small

‖ψ(�)
h 	 v(x)‖∞,Ω0

≤ C

⎛
⎝ ∑

|α|≤d0+�

‖∂α
h v‖−�,Ω1

+ h�
∑
|α|≤�

‖∂α
h v‖∞,Ω1

⎞
⎠(5.10)

and

‖ψ(�)
h 	 v(x)‖0,Ω0

≤ C
∑
|α|≤�

‖∂α
h v‖−�,Ω1

,(5.11)

where C is a positive constant independent of h.
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Proof. The first step in this estimate is to rewrite the function as

ψ
(�)
h 	 v = Kr+1, d0

h 	 (ψ
(�)
h 	 v) + ψ

(�)
h 	 v −Kr+1, d0

h 	 (ψ
(�)
h 	 v).(5.12)

Using Lemmas 2.1, 2.2, 2.3 and 2.4 it is possible to show

‖Kr+1, d0

h 	 (ψ
(�)
h 	 v)‖∞,Ω0

Lemma 2.3
≤ C

∑
|α|≤d0

‖Dα(Kr+1, d0

h 	 (ψ
(�)
h 	 v))‖0,Ω0

Lemma 2.2
≤ C

∑
|α|≤d0

‖∂α
h (ψ

(�)
h 	 v)‖0,Ω′

1

Lemma 2.1
= C

∑
|α|≤d0

‖ψ(�)
h 	 ∂α

h v‖0,Ω′
1

Lemma 2.4, 2.2, 2.1

≤ C
∑

|α|≤d0

⎛
⎝∑

|β|≤�

‖ψ(�−β)
h 	 ∂β

h∂
α
h v‖−�,Ω1

⎞
⎠

def. of negative order norm

≤ C
∑

|α|≤d0+�

‖∂α
h v‖−�,Ω1

,

(5.13)

for some Ω0 + 2supp(Kh) ⊂⊂ Ω′
1 ⊂⊂ Ω1. Next use Lemmas 5.2 and 2.2 to obtain

‖ψ(�)
h 	 v −Kr+1, d0

h 	 ψ
(�)
h 	 v‖∞,Ω0

≤ Ch�
∑
|α|≤�

‖Dα(ψ
(�)
h 	 v)‖∞,Ω0

(5.14)

≤ Ch�
∑
|α|≤�

‖∂α
h v‖∞,Ω1

.

Similarly, it is easy to see that

‖ψ(�)
h 	 v‖0,Ω0

≤ C
∑
|α|≤�

‖Dα(ψ
(�)
h 	 v)‖−�,Ω′

1
≤ C

∑
|α|≤�

‖∂α
h v‖−�,Ω1

.(5.15)

Note again that the same notation, C, is used to denote the different constants. �

Using the definition of convolution and the multi-dimensional post-processor we
have

Kr+1,�
h 	 (u− uh)(x) =

∫
Rd

Kr+1,�
h (x− z)(u− uh)(z)dz(5.16)

=

r∑
γ=0

kγ

∫
Rd

ψ
(�)
h (x− hx̄γ − z)(u− uh)(z)dz(5.17)

=

r∑
γ=0

kγψ
(�)
h 	 (u− uh)(x− hx̄γ),(5.18)

which gives

‖Kr+1,�
h 	 (u− uh)‖∞,Ω ≤

(
sup
x∈Ω

∑
γ

|kr+1
γ |
)
‖ψ(�)

h 	 (u− uh)‖∞,Ω0
(5.19)
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and

‖Kr+1,�
h 	 (u− uh)‖0,Ω ≤

(
sup
x∈Ω

∑
γ

|kr+1
γ |
)
‖ψ(�)

h 	 (u− uh)‖0,Ω0
,(5.20)

here Ω0 + 2supp(Kh) ⊂⊂ Ω. Next it can be shown that, similar to Lemma 5.4,
there exists Ω1 ⊂⊂ Ω such that

‖Kr+1,�
h 	 (u− uh)‖∞,Ω ≤ C

(
sup
x∈Ω

∑
γ

|kr+1
γ |
)

(5.21)

×

⎛
⎝ ∑

|α|≤d0+l

‖∂α
h (u− uh)‖−�,Ω1

+ h�
∑
|α|≤�

‖∂α
h (u− uh)‖∞,Ω1

⎞
⎠

and

‖Kr+1,�
h 	 (u− uh)‖0,Ω ≤ C

(
sup
x∈Ω

∑
γ

|kr+1
γ |
) ∑

|α|≤�

‖∂α
h (u− uh)‖−�,Ω1

.(5.22)

The estimates bounding the domain Ω by norms over Ω0 are obtained through the
definition of the kernel nodes, equation (4.8), while the constant still relies on the

original domain, Ω. The maximum value that this obtains is when λ(x̄) = ± (r+�)
2

and is found using Lemma 5.1.
The estimate for the second term is then

‖u� − u�
h‖Ω ≤ ‖θ(x)K2k+1, k+1

h 	 (u− uh)(5.23)

+ (1− θ(x))K4k+1, k+1
h 	 (u− uh)‖Ω

≤ ‖K2k+1, k+1
h 	 (u− uh)‖Ω + ‖K4k+1, k+1

h 	 (u− uh)‖Ω.(5.24)

Taking � = k+1 and r = 2k, r = 4k separately and using the result (5.22) completes
the error estimate,

‖u� − u�
h‖∞,Ω ≤ C

(
sup
x∈Ω

∑
γ

|k4k+1
γ |

)(5.25)

×

⎛
⎝ ∑

|α|≤d0+(k+1)

‖∂α
h (u− uh)‖−(k+1),Ω1

+ hk+1
∑

|α|≤(k+1)

‖∂α
h (u− uh)‖∞,Ω1

⎞
⎠

and

‖u� − u�
h‖0,Ω ≤ C

(
sup
x∈Ω

∑
γ

|k4k+1
γ |

) ∑
|α|≤k+1

‖∂α
h (u− uh)‖−(k+1),Ω1

.(5.26)
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Remark 5.3. Notice that the new definition of the kernel nodes, equation (4.8),
shifts the support of the kernel depending on the evaluation point. This means that
the support of the convolution kernel only excludes an arbitrarily small distance
ε > 0 from the domain boundary, which allows using the estimates (5.10) and (5.11)
in equations (5.19) and (5.20). This is an improvement over the proofs given in
[4,6]. Further, the specific properties of the DG solution have not been used at this
point. This guarantees that the proof will be valid for any numerical approximation,
similar to Theorem 4.1.

With the help of the above two estimates and Theorem 3.1, the main Theorem
5.3 is finally proven.

6. Numerical validation

Numerical validation in one and two dimensions was already provided in [14].
The tests in [14] verify the theoretical superconvergence error estimates for the
position-dependent SIAC post-processor that are presented in this paper. They in-
cluded discontinuous Galerkin solutions with Runge-Kutta time-stepping, periodic
and Dirichlet boundary conditions, variable coefficients equations, and stationary
shocks. Therefore, this section concentrates instead on the applicability of this
position-dependent SIAC kernel as a streamline visualization filter. In order to do
so, three two-dimensional tests of Steffan et al. [15] are considered.

In each test, a velocity profile (u, v) on the square [−1, 1]2 is given. The exact
solution is compared against the L2-projection of that solution onto the space of
piecewise polynomials of degree k + 1 on a uniform mesh with N ×N elements as
given in (3.1). The latter can be interpreted as a DG approximation at the initial
time. The exact solution is also compared against the result of post-processing this
L2-projection. To obtain the post-processed approximation, the position-dependent
post-processor described in Section 4.1 is used.

The implementation is as follows: first, the L2-projection of the field is done onto
the space of polynomials decribed by Vh. The solution is then convolved against the

filter functions K2k+1,k+1
h for x in the interior of the domain (a distance of 3k+1

2 h

away from the domain boundary) and K4k+1,k+1
h for x near the domain boundary

(a distance of 3k+5
2 h near the domain boundary). These functions can be defined

as

u�,1
h (x) = (K2k+1,k+1

h 	 uh)(x),(6.1)

u�,2
h (x) = (K4k+1,k+1

h 	 uh)(x),(6.2)

where the filtering is done componentwise. The filtered solution is then given by

u�
h(x) = θ(x)u�,1

h (x) + (1− θ(x))u�,2
h (x).(6.3)

as in equation (5.4), where u�
h(x) = (u�

h(x), v
�
h(x))

T . Once we have obtained the
filtered solution, the streamlines are calculated:

dx

dt
= u�

h(x).(6.4)
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In the following test cases, the velocity (u, v) is obtained as a function of (x, y)
from the real and imaginary parts of a complex number ω:

u := �
(
ω
)
, v := �

(
ω
)
,

where, defining the complex number z := x+ ıy, the following three test cases are
given:

ω = (z − (0.74 + 0.35ı))(z − (0.68− 0.59ı))

(z − (−0.11− 0.72ı))(z − (−0.58 + 0.64ı))

(z − (0.51− 0.27ı))(z − (−0.12 + 0.84ı))2 (Case 1),(6.5)

ω = (z − (0.94 + 0.15ı))(z + (−0.38− 0.39ı))

(z − (0.09− 0.92ı))(z − (−0.38 + 0.84ı))

(z − (0.71− 0.07ı)) (Case 2),(6.6)

ω =− (z − (0.74 + 0.35ı))(z − (0.11− 0.11ı))2

(z − (−0.11 + 0.72ı))(z − (−0.58 + 0.64ı))

(z − (0.51− 0.27ı)) (Case 3).(6.7)

For each test case, the position-dependent post-processor enhances the conver-
gence rate from O

(
hk+1
)
to at least O

(
h2k+1

)
in both the L∞-norm (as predicted

by theory), and the (weaker) L2-norm (where h is the uniform element size). This
can be seen from Tables 6.1, 6.2, and 6.3. Figure 6.1 illustrates the local accuracy
improvement.

An interesting effect can be seen in Tables 6.2 and 6.3: for sufficiently large
k, the errors of the post-processed field are of the order of the machine precision,
which suggests that the exact solution has been reached. In the second case, for
example, the exact solution is a polynomial of degree five. At the same time, the
post-processed solution is a piecewise polynomial of degree at most 2k+1 (= 5 for
k = 2) in each variable. The latter stems from the fact that the post-processed
solution is obtained from the convolution of a piecewise polynomial of degree of
at most k (the L2-projection before post-processing) with a piecewise polynomial
of degree k (the kernel, a linear combination of B-splines of degree k + 1) in each
variable. As a consequence, the high accuracy suggests that the post-processed
L2-projection onto the space of piecewise polynomials of degree k behaves like the
L2-projection onto the space of piecewise polynomials of degree 2k + 1 in each
variable.

A good feature of the post-processor is that it can enhance the accuracy of
streamlines, especially near critical points. This was observed by Steffan et al.
[15] (Figure 3) for the symmetric post-processor, away from the boundary. Figure
6.2 shows that similar improvements are obtained for the position-dependent post-
processor in the entire spatial domain (using a standard RK-4 method with the
time step taken to be Δt = 0.01 to compute the streamlines). The second field
of Steffan et al. was translated so that the critical points are located close to the
boundary. This helps to emphasize the improved applicability and accuracy of the
position-dependent post-processor near the boundary.
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Table 6.1. The position-dependent post-processor applied to
(Case 1) enhances the convergence rate from O(hk+1) to at least
O(h2k+1) in both the L∞-norm as predicted by theory, and the
weaker L2-norm.

u-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 5.36e-02 - 3.58e-03 - 4.63e-01 - 2.26e-02 -

40 1.35e-02 1.99 1.20e-04 4.90 1.27e-01 1.87 8.48e-04 4.74

80 3.37e-03 2.00 5.98e-06 4.33 3.32e-02 1.93 2.95e-05 4.85

P2

20 1.92e-03 - 6.01e-06 - 1.97e-02 - 7.56e-06 -

40 2.41e-04 2.99 2.00e-07 4.91 2.67e-03 2.89 2.19e-07 5.11

80 3.01e-05 3.00 4.23e-09 5.56 3.47e-04 2.94 4.25e-09 5.69

P3

20 4.96e-05 - 1.08e-23 - 4.22e-04 - 1.84e-22 -

40 3.11e-06 4.00 7.03e-22 - 2.80e-05 3.91 1.40e-20 -

80 1.94e-07 4.00 2.13e-21 - 1.81e-06 3.96 7.16e-20 -

v-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 1.23e-01 - 4.82e-03 - 1.40e+00 - 3.53e-02 -

40 3.10e-02 1.99 1.75e-04 4.78 3.77e-01 1.90 1.31e-03 4.75

80 7.75e-03 2.00 9.84e-06 4.16 9.78e-02 1.95 4.57e-05 4.85

P2

20 4.20e-03 - 1.14e-05 - 4.78e-02 - 1.56e-05 -

40 5.27e-04 3.00 3.07e-07 5.21 6.37e-03 2.91 3.49e-07 5.48

80 6.59e-05 3.00 5.99e-09 5.68 8.21e-04 2.95 6.31e-09 5.79

P3

20 9.09e-05 - 1.75e-23 - 8.18e-04 - 3.47e-22 -

40 5.69e-06 4.00 1.41e-21 - 5.37e-05 3.93 2.87e-20 -

80 3.56e-07 4.00 2.44e-21 - 3.44e-06 3.96 6.81e-20 -
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Table 6.2. The position-dependent post-processor applied to
(Case 2) enhances the convergence rate from O

(
hk+1
)
to at least

O
(
h2k+1

)
in both the L∞-norm as predicted by theory, and the

weaker L2-norm. For k ≥ 2, the errors of post-processed field are
of the order of the machine precision.

u-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 2.00e-02 - 2.57e-04 - 1.31e-01 - 7.92e-04 -

40 5.00e-03 2.00 1.25e-05 4.36 3.42e-02 1.93 2.65e-05 4.90

80 1.25e-03 2.00 8.39e-07 3.90 8.76e-03 1.97 9.38e-07 4.82

P2

20 4.65e-04 - 2.68e-26 - 2.80e-03 - 2.95e-25 -

40 5.83e-05 3.00 7.75e-25 - 3.62e-04 2.95 1.08e-23 -

80 7.28e-06 3.00 2.34e-24 - 4.60e-05 2.98 4.55e-23 -

P3

20 6.80e-06 - 4.13e-24 - 2.53e-05 - 5.94e-23 -

40 4.25e-07 4.00 3.91e-22 - 1.61e-06 3.97 4.90e-21 -

80 2.66e-08 4.00 9.63e-22 - 1.02e-07 3.99 2.31e-20 -

v-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 2.69e-02 - 2.72e-04 - 1.84e-01 - 8.04e-04 -

40 6.74e-03 2.00 1.42e-05 4.26 4.80e-02 1.94 2.73e-05 4.88

80 1.69e-03 2.00 9.50e-07 3.90 1.23e-02 1.97 1.05e-06 4.71

P2

20 5.73e-04 - 7.39e-26 - 3.49e-03 - 1.04e-24 -

40 7.17e-05 3.00 1.45e-24 - 4.50e-04 2.96 2.82e-23 -

80 8.97e-06 3.00 3.63e-24 - 5.71e-05 2.98 9.69e-23 -

P3

20 7.45e-06 - 1.01e-23 - 2.81e-05 - 1.77e-22 -

40 4.66e-07 4.00 7.18e-22 - 1.79e-06 3.98 1.22e-20 -

80 2.91e-08 4.00 1.68e-21 - 1.13e-07 3.99 4.11e-20 -
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Table 6.3. The position-dependent post-processor for the v-
component (Case 3) enhances the convergence rate from O

(
hk+1
)

to at least O
(
h2k+1

)
in both the L∞-norm as predicted by theory,

and the weaker L2-norm. For k ≥ 2, the errors of post-processed
field are of the order of the machine precision.

u-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 4.92e-02 - 1.34e-03 - 3.98e-01 - 8.15e-03 -

40 1.23e-02 1.99 3.73e-05 5.16 1.06e-01 1.90 2.82e-04 4.85

80 3.09e-03 2.00 1.56e-06 4.58 2.75e-02 1.95 8.84e-06 5.00

P2

20 1.89e-03 - 4.50e-06 - 1.42e-02 - 4.78e-06 -

40 2.37e-04 3.00 1.11e-07 5.34 1.88e-03 2.92 7.47e-08 6.00

80 2.97e-05 3.00 2.03e-09 5.77 2.41e-04 2.96 1.17e-09 6.00

P3

20 4.27e-05 - 3.98e-24 - 2.40e-04 - 5.29e-23 -

40 2.67e-06 4.00 5.44e-22 - 1.56e-05 3.94 1.45e-20 -

80 1.67e-07 4.00 1.25e-21 - 9.92e-07 3.97 4.04e-20 -

v-component

Mesh L2-error L∞-error

Before After Before After

Error Order Error Order Error Order Error Order

P1

20 4.17e-02 - 7.11e-04 - 2.04e-01 - 3.90e-03 -

40 1.05e-02 1.99 2.26e-05 4.98 5.39e-02 1.92 1.28e-04 4.93

80 2.62e-03 2.00 1.10e-06 4.35 1.39e-02 1.96 4.17e-06 4.94

P2

20 1.66e-03 - 3.65e-26 - 6.80e-03 - 5.33e-25 -

40 2.08e-04 3.00 9.01e-25 - 8.95e-04 2.93 2.28e-23 -

80 2.60e-05 3.00 2.58e-24 - 1.15e-04 2.96 9.17e-23 -

P3

20 3.79e-05 - 4.01e-24 - 1.24e-04 - 5.62e-23 -

40 2.37e-06 4.00 4.48e-22 - 8.05e-06 3.95 1.11e-20 -

80 1.48e-07 4.00 9.47e-22 - 5.12e-07 3.97 3.13e-20 -
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Figure 6.1. Contour plots of the absolute value of the error for
Case 1. The position-dependent post-processor enhances the lo-
cal accuracy in the entire domain, including the region near the
boundary.

7. Conclusion

In this paper multi-dimensional superconvergent error estimates have been es-
tablished confirming the numerical results for the position-dependent SIAC filter
given in [14]. These estimates are valid for both general approximations as well as
for discontinuous Galerkin approximations. This position-dependent Smoothness-
Increasing Accuracy-Conserving post-processor enhances the accuracy in the entire
spatial domain from O(hk+1) in the L2-norm to O(h2k+1) in the L2-norm and

O(hmin{2k+1,2k+2− d
2 })in the L∞-norm (where k is the polynomial degree and h is

the mesh element diameter). Because many numerical results were given in [14],
this paper concentrated on the applicability as a streamline visualization filter.

The advantages of this filter are that it needs to be applied only once, at the
final time, and it does not contain any information of the underlying physics or
numerics. Unlike the traditional symmetric post-processor, the position-dependent
post-processor can be applied in the entire domain, with proven superconvergence
obtained in both the L2- and L∞-norms.
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SUPERCONVERGENT ERROR ESTIMATES 2261

Figure 6.2. The Smoothness-Increasing Accuracy-Conserving fil-
ter improves the accuracy of the streamlines, started at the seeding
points (circles). To see this, consider streamline 1 where the DG,
SIAC DG, and exact streamlines agree. In streamlines 2 and 3, the
streamlines obtained from the DG approximation diverges from the
exact streamline near the boundary. The SIAC filterd DG solution
follows the exact streamline.
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