
Real-time computation of interactive waves

using the GPU

Martijn de Jong, m.d.jong@marin.nl
Auke van der Ploeg, a.v.d.ploeg@marin.nl
Auke Ditzel, a.ditzel@marin.nl
Kees Vuik, c.vuik@tudelft.nl

1 Introduction

The Maritime Research Institute Netherlands
(MARIN) supplies innovative products for the off-
shore industry and shipping companies. Among
their products are highly realistic, real-time bridge
simulators [2], see Figure 1.

Figure 1: Left: full-scale bridge simulator. Right: tow-
ing tank.

Currently, the waves are deterministic and are not
affected by ships, moles, breakwaters, piers, or any
other object. To bring the simulators to the next
level, a new interactive wave model is being devel-
oped. This is the so-called Variational Boussinesq
model (VBM) as proposed by Gert Klopman [3].
The main improvement will be that the waves and
ships really interact, i.e., the movements of the ship
are influenced by the waves and the waves in their
turn are influenced by the ship. However, one pays
for the higher realism: the new model is much more
computational intensive and therefore a really fast
solver is needed to fulfill the requirements of real-
time simulation.

In this paper we present how a very efficient itera-
tive solver can be combined with a very efficient
implementation on the graphical processing unit
(GPU). In this way speed up factors of more than
30 can be obtained compared to sequential code on
the CPU for realistic problems. With the new solver
interactive waves can be computed in real-time for
large domains.

2 Model equations and dis-
cretization method

The governing linearized VBM equations are given
by:

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (1a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = −Ps, (1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0, (1c)

Equations (1a) and (1b) are the mass conserva-
tion equation and the Bernoulli equation. They
describe the evolution in time of the free surface el-
evation ζ(x1, x2, t) and free-surface velocity poten-
tial ϕ(x1, x2, t), respectively, where (x1, x2) are the
Cartesian horizontal coordinates and t is the time.
The third equation is an elliptic equation for the
free-surface vertical velocity ψ(x1, x2, t), and has to
be solved at each time frame for given ζ(x1, x2, t)
and ϕ(x1, x2, t). The other symbols in (1a-c) are:

U horizontal flow-velocity
h water depth
g gravitational acceleration
Ps “pressure pulse” ship
D,M,N model parameters

The VBM equations are discretized with the finite
volume method (FVM) on a Cartesian grid. Dis-
cretization leads to:

dq

dt
= Lq + f , (2)

S ~ψ = b. (3)

Equation (2) is solved using the Leapfrog integra-
tion scheme, a second order explicit integration
method. System (3) is a linear system that has
to be solved. In this system the matrix S is real-
valued, sparse (5-point, pentadiagonal), diagonally
dominant (not very strong for small mesh sizes),
symmetric positive definite (SPD), and large (in the
order of millions by millions).

3 The RRB-solver

For a system with a matrix as described above a
Preconditioned Conjugated Gradient (PCG) type
solver is most proficient. The PCG-algorithm is
given by Algorithm 1 (cf. [4]; Algorithm 9.1).

Rather than solving system (3) we solve a precon-
ditioned system

M−1Sψ = M−1b, (4)

mailto:m.d.jong@marin.nl
mailto:a.v.d.ploeg@marin.nl
mailto:a.ditzel@marin.nl
mailto:c.vuik@tudelft.nl


Algorithm 1 The PCG algorithm.

r = b− S ~ψ, solve Mz = r for z,
ρ1 = 〈r, z〉, set p = z.
While (not converged)
ρ0 = ρ1

q = Sp Matrix-vector product
σ = 〈p,q〉 Inner product
α = ρ0/σ
~ψ = ~ψ + αp Vector update
r = r− αq Vector update
Solve Mz = r Preconditioner step
ρ1 = 〈r, z〉 Inner product
β = ρ1/ρ0

p = z + βp Vector update
End while

where the preconditioning matrix M−1 is chosen
such that the location of the of eigenvalues of M−1S
are more favorable than those of S leading to faster
convergence, i.e., fewer CG-iterations.

The RRB-solver is such a PCG solver with the
RRB-method [1] as preconditioner. RRB stands for
“Repeated Red-Black” which refers to how nodes
in a 2D grid are colored and numbered. The RRB-
method makes an incomplete factorization

S = LDLT +R, (5)

where L is a lower triangular matrix, D a block
diagonal matrix, and R a matrix of adjustments re-
sulting from so-called lumping procedures. As pre-
conditioner for CG the matrix

M = LDLT ≈ S

is taken.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)

Figure 2: RRB-numbering for an 8× 8-grid. The black
nodes are represented by gray squares, red nodes by white
squares.

Let us now explain the RRB-numbering using an
8× 8-example, see Figure 2. The nodes in the first
level (1) are divided into two groups: the nodes (i, j)
with mod(i+j, 2) = 0 are red nodes, the nodes with
mod(i + j, 2) = 1 are black nodes. Then all black
nodes are numbered sequentially (1-32), and half of
the red nodes are numbered (33-48) in the way as
indicated. The remaining 16 nodes form the next
level (2). For level (2) the numbering procedure is
repeated. Ultimately this procedure leads to 4 lev-
els for an 8×8-grid. For grids with “not so perfect”
dimensions, i.e., Nx and Ny are not powers of 2,
things are a little more complicated, but the same
procedure can be applied. For general Nx and Ny

the maximal number of levels is given by:

kmax = 1 + b(log2(max{Nx, Ny}))c. (6)

We do not have to go all the way down; we can stop
at any level k and make a complete Cholesky fac-
torization on that level. The corresponding method
is called RRB-k. In Figure 3 the sparsity pattern
of S is shown for RRB-1 and RRB-4 for the 8× 8-
example.

Figure 3: Left: Sparsity pattern of S ∈ R64×64 when the
basic Red-Black numbering is applied (RRB-1). Right:
sparsity pattern after the RRB-4 numbering.

By applying a basic Red-Black numbering we can
write system (3) as[

Db Sbr

Srb Dr

] [
~ψb

~ψr

]
=

[
bb

br

]
, (7)

where the red nodes are indicated by “r” and the
black nodes by “b”. Herein Dr and Db are diagonal
matrices and Srb = ST

br are matrices with 4 diago-
nals, see Figure 3. Applying Gaussian elimination
yields [

Db Sbr

0 S1

] [
~ψb

~ψr

]
=

[
bb

b1

]
, (8)

where S1 := Dr − SrbD
−1
b Sbr is called the 1st

Schur complement (given by a 9-point stencil) and
b1 := br − SrbD

−1
b bb is the corresponding right-

hand side. Hence the original system (3) can be
solved as follows:

1. Compute b1;



2. Apply CG to the system S1
~ψr = b1;

3. Compute ~ψb via ~ψb = D−1
b (bb − Sbr

~ψr).

This is beneficial for the amount of computational
work as for the vector updates and inner products in
CG the work is reduced by a factor two. Note that
the matrix-vector product in CG becomes q = S1p,
with S1 given by a 9-point stencil and not by a 5-
point stencil, and hence the work is not reduced by
a factor two for this operation.

3.1 Construction of the precondi-
tioner

The RRB-method makes an incomplete factoriza-
tion (5) as follows. In each level Gaussian elimina-
tion is applied. Elimination of nodes leads to fill-in:
a 5-point stencil becomes a 9-point stencil. By using
graph representation, see Figure 4, the occurence
of fill-in can be explained nicely. A lumping pro-
cedure is then used to simplify the 9-point stencil
to a 5-point stencil: the four outermost coefficients
are added to the center coefficient, which leads to
a rotated 5-point stencil after elimination of black
nodes, see Figure 4.

=⇒

5-point stencil

=⇒

9-point stencil 5-point stencil

Figure 4: Elimination of the black nodes leads to fill-in
and a 9-point stencil. A lumping procedure is used to
obtain a (rotated) 5-point stencil again.

In Figure 5 the sparsity pattern of L + D + LT is
shown when the RRB-method is applied to matrix
S ∈ R64×64.

The RRB-solver offers good parallelization options.
The basic operations in the CG-algorithm, see Al-
gorithm 1, such as matrix-vector products, vector
updates and inner products parallelize very well on
shared memory machines. Further, from Figure 5
we see that within a block (the gray shaded areas)
the nodes do not depend on each other. Therefore,
within such a block the elimination described above
can be performed fully in parallel. As we shall see
this is the key in parallelizing the application of the
preconditioner as well.

3.2 Application of the precondi-
tioner

At each CG-iteration the preconditioning step
Mz = r needs to be solved for z. The precondi-
tioner matrix M can be written as M = LDLT so
that solving Mz = r can be done in three steps as
follows. Set y := LT z and x := DLT z = Dy, then:

Figure 5: Sparsity pattern of L + D + LT . The gray
areas indicate where fill-in has been lumped.

1. Solve Lx = r using forward substitution;

2. Compute y = D−1x;

3. Solve LT z = y using backward substitution.

If we have a closer look at the structure of matrix
L, see Figure 6, we see that Step 1 can be done
level-wise in parallel as follows.

r
(1)
1

r
(1)
2

r
(1)
1 r

(1)
2

2nd level

b(2) r
(2)
1 r

(2)
2

Step I)

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Step III)

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 6: Forward and backward substitution can be
done level-wise in parallel.

Solving Lx = r using forward substitution:

I) Do in parallel : Update x-values corresponding
to r2-nodes using the x-values of the r1-nodes
from the same level (according to a rotated 5-
point stencil);

II) Go to the next level if there is any; otherwise:
stop;

III) Do in parallel : Update x-values corresponding
to r1- and r2-nodes using the x-values of the
b1− and b2-nodes from the same level (accord-
ing to a straight 5-point stencil);

IV) Repeat I).



Step 3, solving LT z = y, can be done level-wise in
parallel by a similar procedure (but in the reverse
order). Step 2 is trivially parallelized as it comes
down to elementwise division.

3.3 Convergence behaviour

Because of the multiple levels the RRB-solver shows
“Multigrid-like” behaviour: the required number of
CG-iterations grows only very slowly with increas-
ing problem size N . In Figure 7 the required num-
ber of CG-iterations is shown when Poisson’s equa-
tion on the unit square with Dirichlet boundary
conditions, i.e.,

−∆u = f(x, y) on Ω = (0, 1)× (0, 1),

u(x, y) = 0 on ∂Ω,
(9)

is discretized on an N×N (internal) nodes grid, and
solved with the RRB-solver. The right-hand side f
is taken such that u(x, y) = x(x−1)y(y−1) exp(xy)
(cf. [1]; model problem (2)). As termination cri-
terium we have taken: ‖ri‖M−1/‖r0‖M−1 ≤ 10−5

and as initial guess the zero-vector.

N

#iter

0 256 512 768 1024 1280 1536 1792 2048
0

10

20

30

Figure 7: Number of CG-iterations versus problem size
for model problem (9).

4 A parallel implementation
on the GPU using CUDA

We have implemented the RRB-solver on the GPU
using CUDA C. CUDA stands for “Compute Uni-
fied Device Architecture”. It is NVIDIA’s parallel
programming environment to program the GPU.

A program on the GPU is divided over kernels
which are invoked by the CPU. A kernel basically is
a C function that is executed as many times in par-
allel as there are different CUDA threads. Threads
are organized by the programmer by defining a grid
and making a division of the grid in thread blocks.
The GPU follows the SIMD (single instruction mul-
tiple data) programming model. The thread blocks
are divided among the physical processors of the
GPU. The physical processors are divided among
several streaming multiprocessors (SMs), each hav-
ing many cores; e.g., the GeForce GTX 580 has 16
SMs each having 32 cores, a total of 512 cores, hence
a massively parallel architecture.

The GPU has different layers of memory including
(cached) global memory, texture memory, shared
memory and registers. The global memory is the
largest in size (up to 6 GB) but it is also the slow-
est (400-800 cycles latency). Shared memory is
very fast but also very limited in amount. Threads
within the same SM communicate through this
shared memory.

Programming on the GPU comes with a rich set of
rules. One of the most important rules is related to
the notion of coalesced memory. The global mem-
ory bandwidth is highest when the global memory
accesses can be coalesced within a half-warp, e.g.,
for 16 threads in a half-warp the consecutive 4-byte
words must fall within 64-byte memory boundaries,
and the 16 threads must access the words in se-
quence: the kth thread in the half-warp must ac-
cess the kth word. The penalty for non-coalesced
memory transactions varies according to the actual
size of the data type and architecture of the device.
However, in any case performance is degraded when
memory transfers are non-coalesced.

For modern architectures (Fermi, Kepler) the
penalty for reading or writing data with a shift
is small. However, when reading or writing data
with a stride, the effective bandwidth is strongly
reduced, see Figure 8 and Figure 9.

64 bytes 64 bytes 64 bytes

idata

odata

Figure 8: Copying data with a stride. Each thread han-
dles 1 output. On the GPU data is read and written
using 32-, 64-, and 128-byte memory transactions only
(related to half-warps).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

180

Stride

E
ff

e
c
ti

v
e

b
a
n
d
w

id
th

(G
B

/
s)

Figure 9: Throughput versus stride for GeForce
GTX 580 with (×) and without (•) textures.

This small example already nicely illustrates the
main problem we had to deal with when implement-
ing the RRB-solver with CUDA on the GPU: with
a naive storage format the required data for each
of the operations in CG would not be located next



to each other in the global memory. As we men-
tioned earlier, the CG-algorithm operates on the
first level red nodes only. This means that if we
were to perform, say, a vector update, we would
have to read data with stride 2 (red/black), and
hence we would loose 1/3th bandwidth according
to Figure 9. Even worse, when solving the precon-
ditioner step Mz = r for z we would access data
with stride 2, 4, 8, 16, 32, . . ..

To overcome this problem we have introduced a new
storage format: the so-called r1/r2/b1/b2 storage
format, see Figure 10.

r1 b1

r2b2

r1 b1

b2

r1 b1

b2

r2

=⇒

Next level

r1 b1

b2 r2

Figure 10: The nodes are divided into four groups: r1-,
r2-, b1- and b2-nodes. Note that all the r2-nodes together
form the next level. On the next level the grouping pro-
cedure can be reapplied.

Every vector (and the matrix S) occuring in the
CG-algorithm is only stored in this new format, ex-
cept from b and ~ψ which are stored in both for-
mats. This is necessary as in a real-time simulator
each time frame we have to communicate b and
~ψ. The overhead that comes with r1/r2/b1/b2 is
thus restoring 2 vectors. The overhead is very little
and worth it by realizing how much throughput we
gain every CG-iteration: all operations can be per-
formed fully coalesced. To ensure coalesced memory
transactions throughout the preconditioner step,
the r1/r2/b1/b2 storage format is recursively ap-
plied for all levels. Notice how using the new format
comes for free for the preconditioner step.

5 Test problems and testing
method

To test our solver we have used a collection of var-
ious test problems, including Poisson’s problem (9)
(for throughput analysis) and several realistic do-
mains from MARIN’s extensive database such as
the Gelderse IJssel, a small river in the Netherlands,
Plymouth Sound, a bay located in the South Shore
region of England, see Figure 11, and Port Presto,
a fictional region that shows great similarities with
Barcelona. Port Presto is used frequently as a ref-
erence harbour in real-time simulator studies and
assesments of mariners. The realistic domains were
discretized on Cartesian grids varying from 100k to
1.5M nodes.

Figure 11: Left: the Gelderse IJssel. Right: Plymouth
Sound.

All experiments were performed using single-
precision numbers (floats). The experiments were
performed on a Dell T3500 workstation equipped
with a Xeon W3520 processor (@2.67 GHz), 6GB
RAM and a GeForce GTX 580 graphics card
(CUDA dedicated). The operating system is
Ubuntu 10.04.3 LTS (2.6.32-34-generic x86 64) with
CUDA version 4.0 (driver 270.41.19).

We have compared an optimized C++ RRB-solver
(without the r1/r2/b1/b2 format) on 1 core of the
Xeon W3520 with the CUDA RRB-solver on all
cores of the GTX 580. Speed ups were computed
at the hand of wall-clock timings on the host.
For throughput analysis of the CUDA RRB-solver
NVIDIA’s profiler was used.

6 Results

In Figure 12 we have plotted the speed up that we
obtain when we use the CUDA RRB-solver instead
of the C++ RRB-solver.

0

5

10

15

20

25

30

35

IJssel

Plymouth

Port Presto

S
p

e
e
d

u
p

100k 200k 500k 1M 1.5M

Figure 12: Speed up numbers for the realistic test prob-
lems.

For the largest test problems we find a speed up
around a factor 25. The 1.5M IJssel, Plymouth
and Port Presto problems were respectively solved
within 10.7, 10.6 and 11.6 milliseconds, hence the
1.5M test problems can be solved in real-time. De-
pending on the specific problem it is to be expected
that realistic domains consisting of up to 4 million
nodes can be solved in real-time.

The RRB-solver is very efficient in itself as we can
see from the required number of CG-iterations, see
Table 1. All test problems were solved within 7
CG-iterations.



Problem IJssel Plymouth Port Presto
100k 5.814 5.804 5.924
200k 5.832 5.892 5.962
500k 5.836 5.964 5.986
1M 5.859 5.976 6.362
1.5M 5.766 5.984 6.921

Table 1: Average number of CG-iterations over 1000
time frames.

To see how well the CUDA RRB-solver has been
parallelized we have listed in Table 2 the perfor-
mance for each of the routines that are part of the
CG-algorithm, recall Algorithm 1. All routines are
expected to be bandwidth bound as they are level 1
and level 2 BLAS routines. From the table this is
clear as the achieved effective throughput is close
to the device’s peak bandwidth: the GTX 580 has
a peak bandwidth of 193 GB/s. We have to remark
that the listed throughput number for the precondi-
tioner step is an average over the throughput num-
ber of the kernels on the 1st level; on coarser levels
the throughput is lower due to overhead. The ta-
ble shows that the time is well divided amongst the
routines as there are 3 vector updates and 2 inner
products in the CG-algorithm, hence there is no
bottleneck.

Operation Time Gflop/s Throughput
(µs) (GB/s)

Matrix-vector 732 48.7 184
Vector update 160 13.1 164
Inner product 139 15.1 148
RRB solve step 1092 32.9 188

Table 2: Performance of the separate routines of the
CUDA RRB-solver on the GTX 580 for a 2048× 2048
domain.

In Table 3 it is shown how the time in the precon-
ditioner step is distributed over the various levels.
According to Equation (6) the maximal number of
levels is kmax = 1+b(log2(max{1024, 1024}))c = 11.
However, the coarsest 6 levels fit in the cache of the
GPU and are therefore handled by 1 SM at once
on the 6th level. As we can see only a small frac-
tion of the time is taken by the coarsest levels. So,
the typical “Multigrid-issues” such as idle threads
on the coarsest levels are not really an issue for the
CUDA RRB-solver.

Finally, in Figure 13 an example of the solution of
Equation (1) is shown.

7 Conclusions and discussion

To solve the systems of linear equations we have
used a solver which is very efficient in itself. In
combination with a very efficient implementation

Level 1
2#Nodes Time (µs) Percentage

1 1024× 1024 428 39.2
2 512× 512 405 37.1
3 256× 256 130 11.9
4 128× 128 50 4.6
5 64× 64 25 2.3
6-11 32× 32 54 4.9
Total 1092 100

Table 3: Time spent per level for a domain of 2048 ×
2048 nodes.

Figure 13: A ship sailing through the Gelderse IJssel.

on the GPU, the solver allows real-time simulation
of interactive waves using up to 4 million nodes.

ILU preconditioners tend to parallelize very poorly
as the operations usually are inherently sequential.
However, we have demonstrated that the RRB-
solver allows an efficient parallelization for both the
construction and the application of the precondi-
tioner. With the r1/r2/b1/b2 storage format we
were able to implement the RRB-solver efficiently
on the GPU. By doing so we found speed up factors
of more than 30 compared to a sequential implemen-
tion on the CPU.

In our experiments we used equidistant Cartesian
meshes, but this is not mandatory. With non-
equidistant and curvilinear meshes one should be
able to simulate even much larger domains in real-
time.

Acknowledgement

The authors gratefully acknowledge the contri-
butions of Gert Klopman and Anneke Sicherer-
Roetman to the research project.

References

[1] C.W. Brand, An Incomplete-factorization Pre-
conditioning using Repeated Red-Black Ordering,
Numerische Mathematik, pp. 433–454, 1992.

[2] A. Ditzel, N. Leith, Deep Water Anchor Handling
Simulation. MARSIM, Singapore, 2012.

[3] G. Klopman, Variational Boussinesq Modelling
of Surface Gravity Waves over Bathymetry, PhD
Thesis, University of Twente, Twente, 2010.

[4] Y. Saad, Iterative Methods for Sparse Linear Sys-
tems, SIAM, 2nd edition, Philadelphia, 2003.


	Introduction 
	Model equations and discretization method
	The RRB-solver
	Construction of the preconditioner
	Application of the preconditioner
	Convergence behaviour

	A parallel implementation on the GPU using CUDA
	Test problems and testing method
	Results
	Conclusions and discussion
	References

