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SUMMARY

A black box multigrid preconditioner is described for second order elliptic partial differential equations, to be
used in pressure calculations in a pressure correction method. The number of cells in a block is not restricted as
for standard multigrid, but completely arbitrary. The method can be used in a multiblock environment and fine
tuning for cache hits is described. A comparison is made with wall clock times of conventional preconditioners.
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1. INTRODUCTION

1.1. Computation of time dependent incompressible flows

We will describe a black box multigrid method for second order elliptic partial differential equations
discretized on structured grids. To provide motivation and background, we consider the non-stationary
incompressible Navier–Stokes equations

ut + (u · ∇)u + ∇p − 1

Re
∇2u = 0, div u = 0 (1)

After discretization in space we obtain a differential-algebraic system of the following form:

ut + N(u) + Gph = 0 (2)

Du = 0 (3)
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whereu andph are algebraic vectors containing the velocity and pressure unknowns, respectively. A
staggered grid has been assumed; the prototype of this kind of scheme has been proposed in Reference
[1]. N is a nonlinear algebraic operator, whereasG and D are linear. Recent implementations on
boundary fitted curvilinear grids with further references to the literature can be found in References
[2–5].

Solution methods for differential algebraic systems are necessarily different from those for systems
of ordinary differential equations. For example, they cannot be fully explicit. An efficient method is the
pressure correction method [1]. Taking the explicit Euler method as an example, we obtain

u∗ − un

τ
+ N(un) + Gpn−1/2 = 0

DG δp = Du∗

τ
(4)

un+1 = u∗ + τGδp, pn+1/2 = pn−1/2 + δp

The principles and time accuracy of pressure correction methods are discussed in References [6,7]. In
curvilinear coordinates, it is not necessarily true thatD = GT so the operatorDG is not necessarily
symmetric.

Almost all of the computational effort to complete a time step goes into computingδp. Experience
shows that this remains true for implicit time stepping schemes also. Hence an efficient method is
required to solve these equations and since the operatorDG is similar to the discretization of a second
order partial differential equation, multigrid seems attractive. In our case this is the Laplace equation,
but we will not restrict ourselves to this case, since in curvilinear coordinates variable coefficients are
involved. A disadvantage of conventional multigrid is the requirement that the number of cells in every
direction be divisible by a power of 2. This power has to be at least equal to the number of coarse grids that
will be used. One of our primary aims is to remove this restriction. This greatly facilitates incorporation
of a multigrid pressure solver in a general Navier–Stokes code, especially when a multiblock approach
is used to generate grids in geometrically complicated domains. Such incorporation is further facilitated
if the multigrid algorithm is wrapped in a black box, by which we mean that the user need only provide
a matrix and a right-hand side to the multigrid subroutine and remains unaware of the inner workings
of the method. For this reason we shall describe a black boxsingle stepmultigrid algorithm that can be
used for defect correction but also as apreconditionerfor Krylov space methods.

2. A BLACK BOX MULTIGRID PRECONDITIONER

The idea of wrapping a multigrid solver in a black box has proven its worth in recent decades. In
References [8–11], black box implementations of free standing solvers are described. As already has
been remarked, we have opted for a black box multigridpreconditioner, rather than a free standing
solver. Asolverof a set of linear equations gives the solution to a specified accuracy. Apreconditioner
P gives an approximate solutioñu = P −1b to the system of equationsAu = b. In our case, the
preconditioner takes the form ofonemultigrid V-cycle (for terminology see Reference [12]), which
can be used either as a single iteration step in defect correction [13] or as a preconditioner for a Krylov
subspace method such as BiCGSTAB [14] or GMRES [15].

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:429–447



TIME DEPENDENT INCOMPRESSIBLE FLOW CALCULATION 431

The direct demand for such a preconditioner came from our code for solving incompressible flow
problems [2]. Our current implementation uses GMRES with incomplete LU factorization as a precon-
ditioner [16–18] for solving the pressure equations. We expected to be able to do better with a multigrid
preconditioner, especially in large problems.

2.1. Problems the preconditioner can handle

The preconditioner handles second order elliptic equations on a rectangle (block). It is able to handle 9
(27) point discretizations (quantities between brackets are for the 3D case). So it will handle (say) the
Laplacian on a region that can be mapped smoothly onto a rectangle (block). This block is divided into
nx × ny(×nz) cells. The equation can be discretized using a finite difference, finite volume or finite
element method (bi(tri)- linear elements). Generically, this will lead to a set of equations with 9 (27)
unknowns per equation with the obvious modifications at the boundaries.

First order derivatives will cause the discretization matrix to be non-symmetric. Furthermore, as
noted in the preceding section, even the pressure matrix is not necessarily symmetric in curvilinear
coordinates. This asymmetry may be caused by the discretization of both the curvilinear terms and the
boundary conditions. So symmetry will not be assumed.

As mentioned before, a special feature is that there is no limitation onnx , ny (or nz), unlike standard
multigrid methods. Our preconditioner handles all values ofnα equally well. Since the purpose is that
the solver can be deployed in existing environments we do not want to be hampered by any limitations
in this respect.

The problem under consideration is of the form

Au = f (5)

in which A is a block tridiagonal matrix of tridiagonal matrices (2D) or a block tridiagonal matrix of
block tridiagonal matrices of tridiagonal matrices (3D). The effect of boundary conditions is put into
the right-hand sidef .

To a given right-hand sidef , the preconditionerP gives an approximate solutioñu = P −1f . P −1

must be an approximation toA−1, but the cost to computeP −1f should be much lower than forA−1f ,
the exact solution. This can be cast into a formal iteration process calleddefect correction([13]), the
pseudo Pascal code of which is as follows:

presets u= 0, r = f , n = 0
begin (*Defect Correction*)

while ‖r‖ > ε do
c := P −1r ;
u := u + c;
r := r − Ac;

end while
end

It is easy to show that this results in an iteration on the residual of the formr := (I −AP −1)r , which
will converge if and only ifρ(I − AP −1) < 1. Hence the eigenvalues ofAP −1 must have positive real
parts, and the closer they are to unity the better.
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3. MULTIGRID ALGORITHM

For an introduction to multigrid methods, see Reference [12]. We shall only sketch the basic idea.
Suppose one has to solve a discrete problem with generic discretization parameterh:

Ahuh = fh, uh, fh [ Uh

Most iterative methods are very well suited to reducing the high frequency (orrough) component in
the error, and ill suited to reducing the low frequency (orsmooth) component. If, on the other hand, a
solution would be known to a discretization with a coarser generic discretization parameterH

AH uH = fH , uH , fH [ UH ,

then thiscoarse grid solutioncould be used as the basis for an approximation to the smooth component
of the fine grid solutionuh. For this an interpolation procedure is needed, or more generally a map from
UH toUh called theprolongationP . Nowvh = PuH is used as an initial estimate for an iterative process
on the fine levelh. Since the error in this initial estimate will mainly consist of a rough component
(interpolation represents the smooth component well) this will converge rapidly.

The multigrid algorithm exploits this fact recursively, by solving a sequence of problems on grids of
increasing coarseness. On the coarsest grid, the problem is solved exactly.

There are in principle many ways to obtain a coarse grid discretization, but one that works out well
is a Galerkin-like method. Suppose you have a map fromUh to UH (called therestrictionR), then a
natural way of obtaining a coarse discretization would be to take the basis ofUH to approximate any
element ofUh (in other words use the prolongation) and for an appropriate subspaceTH of Uh (the test
space) demand that the following relation be satisfied:

(tH , AhPuH ) = (tH , fh) ∀tH [ TH (6)

Clearly, the most natural subspace to take would be the orthogonal complement of null(R) or the range
of RT. In other words

(RTvH , AhPuH ) = (RTvH , fh) ∀vH [ UH (7)

As may easily be checked, this finally comes down to solving

RAhPuH = Rfh (8)

In other words,AH = RAhP andfH = Rfh.
It would appear that a natural choice forR would beP T. Unfortunately, this choice, though natural,

is not always possible, owing to the following limitations

1. It is undesirable that the difference molecule ‘spreads out’ at coarser levels. The 9 (27) point
molecule must remain like that at all levels.

2. The restriction and prolongation have to satisfy an accuracy requirement in order that the smooth
component is represented sufficiently well on the coarse grid. This accuracy requirement depends
on the order of the differential operatorm. In our case, wherem is 2, the sum of the orders of
accuracy ofP andRT must be at least 3. That is, if one isO(h) the other must be at leastO(h2).
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The choiceR =P T is possible in so-calledvertex centredmethods. A vertex centred method, however,
requires that the number of points in all directions is odd. In acell centredmethod, the footprint of the
molecule will increase if the interpolation accuracy ofP is O(h2) andR = P T. A lower accuracy is in
violation of the accuracy requirement. Hence eitherR or P have to be of orderO(h), but notboth. For
that case,R = P T is not possible. For further details see Reference [12].

More details about our choice of restriction/prolongation are provided in Section 3.5.

3.1. Multigrid as a preconditioner

It is very common to implement multigrid as a defect correction method and in fact all of References
[8–11] are designed that way.

As noted in Reference [19] it is a natural step to use it as a preconditioner for a conjugate gradient
method, since in a way defect correction is the dumbest iteration method and the extra computational
effort of a Krylov method is almost negligible compared with that of the preconditioner. For pure CG
one has to be very careful, since both the matrix and the preconditioner have to be symmetric. Apart
from a symmetric matrix to start with (not true in our case) one would also need:

• R = P T to preserve symmetry of the operator at the coarser levels;
• the post- and pre-smoothing operators have to be each others transpose. See Section 3.2 for a

discussion.

These two requirements stand in the way of the flexibility we aim at and we have used BiCGSTAB
[14] and GMRES [15] as Krylov methods that do not need the symmetry that CG needs. Compared
to defect correction, the use of a Krylov method typically saves half the number of iterations and 40%
computation time.

3.2. Smoothers

The typical two-grid algorithm for solvingAhuh = fh looks like (see Reference [12]):

presets uh = 0, rh = fh, npre, npost, AH = RAhP.

begin (*Presmoothing*)
for i := 1 to npre do

c := Sprerh

uh := uh + c
rh := rh − Ahc

end for
(*Coarse grid correction*)

rH := Rrh

SolveAH cH = rH

ch := PcH

uh := uh + ch

rh := rh − Ahch

(* Postsmoothing*)
for i := 1 to npostdo

c := Spostrh
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uh := uh + c
rh := rh − Ahc

end for
end

It will be noted that there is a great similarity between the defect correction with a preconditioner
as sketched in Section 2.1 and the pre- and post-smoothing process. This similarity is not coincidental:
although the aim of preconditioning and smoothing is quite different, it often turns out that a good
preconditioner is also a good smoother.

The form of the two-grid preconditioner follows directly from the observation that the residual of the
two-grid algorithm satisfies

rh = (I − AhSpost)
npost(I − AhP (RAhP )−1R)(I − AhSpre)

nprefh (9)

Let us denote this byrh = 3r fh for short. We see immediately that the preconditioner satisfies

ũh = A−1
h fh − rh = A−1

h (I − 3r )fh (10)

From this we conclude, that to make the preconditioner symmetric we must satisfyA−1
h 3r = 3T

r A−1
h .

The reader will have little trouble verifying that for this to be true it is sufficient thatR = P T,npre = npost
andSpre = ST

post. That this condition is also necessary follows from the observation that ifAB is

symmetric thenB = CAT, with C symmetric.

3.3. Choice of smoothers

We experimented with 3 types of smoothers: alternating damped line Jacobi, alternating zebra and
incomplete block factorization. The first two could operate in principle in a parallel environment, are
robust and are good smoothers. If parallelism is not a consideration, incomplete block factorization wins
out over both Jacobi and Zebra by about a factor of two. This might be even more in practice where
the pressure equation must be solved at every time step, and preliminary calculations to determine
the incomplete factorization have to be done only once. However, timings have shown us that these
preliminary calculations typically take about 10% of the total time. The same is true for Jacobi and
Zebra. In our 2D calculations there was almost no difference between Jacobi and Zebra. We took
npre = 0 andnpost= 1 or 2. These choices give the smallest wall clock times, though not necessarily the
smallest number of iterations. Note that one smoothing step for Jacobi/Zebra consists oftwo iterations,
one horizontal sweep, one vertical sweep (and three sweeps in 3D). The reason for this is to make the
algorithm more robust in the presence of stretched cells (see Reference [12]). With block factorization
as smoother this is not necessary except in very stretched grids (200:1 or worse). The advantage of this
smoother (fewer operations) will be lost in that case.

3.4. Jacobi damping parameter

In Reference [12] an empirical damping parameter of 0.7 is given to use for alternating line Jacobi
and the following reasoning provides a theoretical foundation for that. Consider a discretization of the
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anisotropic Laplace equation on the square(0, 1) × (0, 1):

εx(uj−1,k − 2ujk + uj+1,k) + εy(uj,k−1 − 2ujk + uj,k+1) = fjk (11)

with εx = ex/1x2, εy = ey/1y2. The resulting matrix isA = εxDx + εyDy . Let Nx = εxDx − 2εy .
Thedampedline Jacobi iteration in thex-direction with damping parameterω is given by

Nxun+1 = Nxun − ω(Aun − f ) (12)

For theerror en we have
en+1 = en − ωN−1

x Aen (13)

Let us first consider the eigenvaluesµx of the matrixMx = N−1
x A. The eigenvaluesλx of the Jacobi

iteration matrix will then be given byλx = 1 − ωµx .
We use von Neumann analysis on the generalized eigenvalue problem:

µx

(
εx(uj−1,k − 2ujk + uj+1,k) − 2εyujk

)

= εx(uj−1,k − 2ujk + uj+1,k) + εy(uj,k−1 − 2ujk + uj,k+1) (14)

Lettingujk = eijρx eikρy , we obtain after dividing byeijρx eikρy

µx

(
εx(2 cosρx − 2) − 2εy

) = εx(2 cosρx − 2) + εy(2 cosρy − 2) (15)

hence

µx = 2
εx sin2 ρx/2 + εy sin2 ρy/2

2εx sin2 ρx/2 + εy

(16)

The eigenvectors belonging to these eigenvalues are precisely those of the Jacobi iteration matrix. If at
least one ofρx, ρy [(p/4,p/2) this eigenvalue corresponds to a ‘rough’ eigenvector. We denote such
an eigenvalue asµxr . Consequently, a lower bound for the ‘rough’ part of the spectrumRx is obtained
for ρy = 0 andρx = p/4 and we haveµxr ≥ εx/(εx + εy). Since the smoothing properties of line
Jacobi with damping factorω are given by the factor 1− ωµx, µx [ Rx , we see that we cannot hope to
give a damping factorω that is effective uniformly inεx andεy . More specifically, whenεx/εy → 0 the
smoothing effect will vanish. If we use alternating line Jacobi, however, we get for the vertical sweep
a similar expression for the rough spectrum:µyr ≥ εy/(εx + εy). The smoothing effect of a complete
alternating Jacobi cycle can, assuming that the two smoothing operators commute, be given by the
factorσ = (1 − ωµx)(1 − ωµy) with µx [ Rx , µy [ Ry. For a specific pair ofεx andεy the rough
spectrum will be the rectangleRx × Ry with lower left-hand corner(εx/(εx + εy), εy/(εx + εy)) and
upper right-hand corner(2, 2). To get a robust smoother for a variety ofεx andεy we apparently must
solve a minimax problem:

min
ω [(0,1)

max
(x,y) [ G

|(1 − ωx)(1 − ωy)| (17)

in whichG is the pentagonal region defined byx ≥ 0, x + y ≥ 1, y ≥ 0, x ≤ 2, y ≤ 2 (see Figure 1)
The reader will have little trouble in verifying that for values ofω above 0.5 the smoothing factor

has negative extremes for the points(0, 2) and(2, 0) (these are equal because of the symmetry) and a
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Figure 1. The regionG with extremal points.

positive extreme for(1
2, 1

2). For an optimal value these should be equal in absolute value, hence

(2ω − 1) = (1 − 1

2
ω)2 (18)

with solutionsω1,2 = 6± 2
√

7. For damped Jacobi we need 0< ω < 1, soω = 6− 2
√

7 ≈ 0.7085 is
the one we were looking for.

A similar reasoning for the 3D case shows thatω has to satisfy

(2ω − 1) = (1 − 1

2
ω)3 (19)

giving ω ≈ 0.6528.

3.5. Restriction and prolongation

The usual implementations of black box multigrid use odd numbers of grid points in both thex- and
y-directions at all levels [8–11]. The advantage of this way of doing things becomes apparent if we look
at a 1D interval: the two extreme points of the interval belong to the grid atall levels. These are not
necessarilyboundarypoints but unknowns adjacent to or on the boundary, depending on the type and
implementation of the boundary condition. Since a black box multigrid method bases itself solely on
matrices and right-hand sides it should work independently of the type of boundary condition.

As we have implemented the black box solver, we allowany number of points in either direction.
We describe prolongation to a fine level and restriction to a coarse level in one dimension only. The
actual restriction/prolongation in two or three dimensions is obtained by chaining several of these
restrictions/prolongations along different coordinate directions.

3.5.1. The fine level has2N + 1 points. If the fine level has 2N + 1 points, the restriction will be
standard vertex centred toN + 1 points (see Figure 2). The prolongationP will be obtained by linear
interpolation and the restriction will be its transpose:R = P T. The formulae for the prolongation are

u2j = Uj , j = 0, . . . , N (20)

u2j+1 = 1

2
Uj + 1

2
Uj+1 j = 0, . . . , N − 1 (21)
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Figure 2. Placement of coarse- and fine-grid points for odd number of fine-grid points.

Figure 3. Placement of coarse- and fine-grid points for even number of fine-grid points.

and for the restriction

W0 = w0 + 1

2
w1 (22)

Wj = 1

2
w2j−1 + w2j

+ 1

2
w2j+1 j = 1, . . . , N − 1 (23)

WN = 1

2
w2N−1 + w2N (24)

3.5.2. The fine level has2N points. If the fine level has an even number of points, care must be taken
that the prolongation of a constant function is again the same constant. The easiest way to do this is
to takeN + 1 cell centred points (see Figure 3) and to take the prolongation by linear interpolation as
follows:

u2j = 3

4
Uj + 1

4
Uj+1 (25)

u2j+1 = 1

4
Uj + 3

4
Uj+1, j = 0, . . . , N − 1 (26)
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The restriction is standard first order:

W0 = 1

2
w0 (27)

Wj = 1

2
w2j−1 + 1

2
w2j , j = 1, N − 1 (28)

WN = 1

2
w2N−1 (29)

We apply these rules recursively and this completely determines the dimension of the grids at all
coarse levels. For instance: if (say) thex-dimension of a problem is 76 the respectivex-dimensions on
the various coarse grids will be 39, 20, 11, 6, 4, 3 and 2.

4. IMPLEMENTATION CONSIDERATIONS

4.1. Stand-alone preconditioners

For a stand-alone preconditioner to be useful in a variety of applications it is necessary that it is
configurable in a number of ways. First and foremost: the way the matrixA is stored must have a certain
flexibility. One key choice must be made however: to store it as a rectangle (block) of molecules or to
store it as a molecule of rectangles (blocks). Or, in matrix notation, if the 9 point difference molecule
has indicesp0 : p8, do we haveA(0 : nx, 0 : ny, p0 : p8) or A(p0 : p8, 0 : nx, 0 : ny). Our flow
solving package (coded in FORTRAN) uses the first option, which is equivalent (since in FORTRAN
the first index varies most rapidly) to a molecule of rectangles. In the section about speed we shall say
a word or two about the wisdom of this choice, but since it just does not pay to copy large structures of
data into other large structures, we went along with it.

Within the molecule, however, the user of the package is free to use his own indexing. The default
(standard) order would be

7 8 9
4 5 6
1 2 3

but the user is free to provide the preconditioner with a different permutation. This simple feature should
make the preconditioner easily embeddable in existing software packages.

A second measure to provide optimal flexibility consists in addingslack spaceto the matrix. The
matrix can be extended toA(−sx : nx + ux, −sy : ny + uy, p0 : p8), wheresx , ux , sy anduy are slack
parameters. The actual data is stored between the limits 0 :nx, 0 : ny , but the slack space makes sure
that (say) Dirichlet boundary conditions on certain boundaries can be accommodated without having
to copy the whole structure. This feature is also useful in the context ofstaggered grids, where there
will be a difference in dimensions of horizontal velocity points, vertical velocity points and pressure
points. This can be implemented in various ways, but the slack space sees to it that, whatever method
is chosen, the resulting matrix can be used as input for the preconditioner without an extra matrix copy.
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4.2. Fine tuning for speed

A profile of the preconditioner reveals that it spends about 75 to 80% of its time doing matrix vector
multiplications, usually in the evaluation of residuals. So, optimizing the matrix vector multiplication is
of prime importance in achieving optimal speed. This will be largely machine dependent, but on a variety
of computers good use can be made of thecache, auxiliary fast memory. If an operand is in the cache it
can be accessed an order of magnitude faster than when it has to be got from conventional memory. On
most architectures, when an element is accessed in conventional memory a whole contiguous block is
loaded into the cache. There are cache optimization techniques that exploit this fact very elegantly [20]
but there one has to have control over what goes into the cache and what does not. This is usually not
true in standard programming languages, but a few general guidelines will help to optimize cache use
also in this case.

• Minimize reloads. If one has an element in the cache, do all the things one has to do with it.
• Organize loops such that contiguous array elements are used in subsequent steps to maximize

cache hits.

Independently of cache size, it will always be advantageous to have the most rapidly varying index in
the innermost loop. This is well known for vector machines but it applies to cache hits as well. The rest
of the fine tuning depends very much on the size of the blocks that will be loaded into the cache and
whether this size is fixed or optimized during execution time.

Superficially it might seem that, using our configuration of molecules of blocks, the following im-
plementation ofv = Au (2D) would be optimal in FORTRAN:

c preset: v(i,j) = 0 , i = 0 . . . nx, j = 0 . . . ny
do ip = 1, 9

do j = 1, ny-1
do i = 1, nx-1

ix = i - 1 + mod (ip - 1, 3)
iy = j - 1 + (ip - 1) / 3
v (i, j) = v (i, j) + a(i, j, ip ) * u (ix, iy)

end do
end do

end do

Experiments have shown, however, that making theip-loop the innermost loop makes the multipli-
cation about twice as fast; and unrolling theip-loop (that is, writing it out) gains another factor of about
1.3. The explanation for this typical behaviour has to be found in that the above implementation reloads
the vectorsv andu nine times, whereas the alternative implementation reloads them only three times.

Let us call the chunk of memory that is loaded into the cache a vector (matrix)cache block. Having
theip-loop as innermost loop gives 12 cache blocks simultaneously in the cache (9 for the matrix and 3
for the vector). When we get to the end of a cache vector block, at some point in time we have 6 vector
cache blocks and 9 matrix cache blocks simultaneously in the cache.

In 3D these numbers are 18 and 27, respectively. If all these blocksdo notfit in the cache, performance
drops dramatically. From this point of view it must be better to change the design, and make a block of
molecules instead of a molecule of blocks. In other words, in FORTRAN the array structure should be
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Figure 4. The configuration of the curved channel. Figure 5. The flow in the curved channel.

Table I. Number of iterations and CPU time for different numbers of
smoothing steps.

CPU to build
nsmooth = 1 nsmooth = 2

Grid preconditioner Iterations CPU Iterations CPU

8 × 32 < 0.01 7 0.02 4 0.02
16× 64 0.01 8 0.08 5 0.08

32× 128 0.03 8 0.42 5 0.42
64× 256 0.15 8 2.16 6 2.47

a(1:9,0:nx,0:ny) and nota(0:nx, 0:ny, 1:9) . The former structure will give only one
block for the matrix coefficients in the cache instead of 9 (27).

5. NUMERICAL EXPERIMENTS

In this section we present results of the computing time incurred to solve the pressure equations in
various flow problems. Since the Reynolds number has no bearing on the pressure equation, it will not
be given.

5.1. Curved channel

We consider the flow in a curved channel. The configuration of the channel is shown in Figure 4, together
with its (8× 32) grid. On the fixed walls a no-slip condition is given, whereas on the inflow a uniform
velocity is given. Finally, a free outflow condition is proposed at the outlet. The resulting flow is given
in Figure 5.

From previous experiments [21] it appears that a large gain can be obtained for the pressure equation.
Therefore we restrict ourselves to this equation. First some experiments are done to investigate the
efficiency of the GMRES accelerated multigrid method with respect to the number of smoothing steps.
The measurements are given in Table I. GMRES was not restarted, so that the number of auxiliary
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Table II. Number of iterations
and CPU time measured in
milliseconds per unknown for

various grid-sizes.

Grid Iterations CPU

16× 64 5 0.08
13× 60 5 0.06
15× 63 5 0.08
17× 66 6 0.07
18× 65 5 0.07
23× 87 6 0.17

Table III. Number of iterations with and without
Krylov acceleration.

Iterations

Multigrid GMRES/multigrid

8 × 32 5 4
16× 64 7 5

32× 128 8 5
64× 256 8 6

vectors that has to be stored is equal to the number of iterations. It appears that the time to build the
multigrid preconditioner is negligible with respect to the total solution time. Note that the CPU times for
both choices ofnsmooth are comparable, but that the number of iterations is fewer fornsmooth = 2
than fornsmooth = 1. Therefore we take the choicensmooth = 2 in all the following experiments.

The multigrid method is made such that every grid-size can be handled. It appears from experiments
that for this problem the number of iterations and the efficiency is indeed independent on the grid-size
(see Table II). The final grid-size 23× 87 is a worst case. For this choice, the coarse grid-sizes are odd
and even alternately. The number of iterations is more or less the same for all grid-sizes, whereas the
CPU time per unknown increases by a factor of two in the worst case problem. In Table III we summarize
the number of iterations with and without Krylov acceleration. It appears that Krylov acceleration helps
to lower the number of iterations. Since the overhead is small there is also a gain in CPU time.

Finally, we compare the GMRES and Bi-CGSTAB acceleration methods with the multi-grid precon-
ditioner and an ILU preconditioner with 8 diagonals of fill-in in the upper- and lower triangular matrix.
The results are given in Figure 6. It appears for this problem that the combination of GMRES with a
multigrid preconditioner is also optimal for relatively small problems. It is to be noted, however, that
BiCGSTAB requires fewer intermediate vectors to be stored (4). But in the context offlow problems
the number of vectors required by GMRES to solve the pressure never presents a problem: the storage
used for the momentum matrix on the previous time level can be used for that.
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Figure 6. The efficiency of the various iterative methods, measured in CPU time in milliseconds per unknown.

Figure 7. The configuration of the multiblock backward facing step.

5.2. Multiblock backward facing step

We also do some experiments with a flow in a backward facing step, which is computed by a multiblock
algorithm [22]. In each outer iteration of this algorithm, the subdomain problems are solved by an inner
iteration method. For the inner iteration method we consider the GMRES accelerated multigrid method
and the GMRES/ILU method. The geometry of the backward facing step together with the 40× 8 grid
is shown in Figure 7. The number of outer iterations is the same for both methods. The number of inner
iterations and the CPU time are given in Table IV. Again, the number of inner multigrid iterations is

Table IV. Number of inner iterations and CPU time.

GMRES/multigrid GMRES/ILU

Grid Iterations CPU Iterations CPU

40× 8 4 0.55 5 1.37
80× 16 4 3.6 8 9.4

160× 32 4 30 11 66
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Table V. Number of iterations and CPU time
for the pressure equation of the NACA airfoil

problem.

Method Iterations CPU

multigrid n.c. —
GMRES/multigrid 58 5.22
BiCGSTAB/multigrid 41 5.94
GMRES/ILU 239 10.44
BiCGSTAB/ILU 86 4.2

Figure 8. The grid used around the NACA 66-209 airfoil profile.

independent of the grid size, whereas the number increases for the GMRES/ILU method. Furthermore
GMRES/multigrid costs less CPU time than GMRES/ILU.

5.3. Flow around an airfoil

In order to investigate the efficiency in more practical problems with non-orthogonal and stretched grids
we also compute the flow around a NACA 66-209 airfoil. The 224× 20 grid used in this simulation is
presented in Figure 8. Note that there are large differences in the size of neighbouring grid cells and the
cells at the profile or at the trailing edge are severely stretched. In Table V, the number of iterations and
the CPU time are given for various methods. Note that multigrid with defect correction is not convergent.
Using Krylov acceleration, multigrid is convergent and efficient. For this problem it appears that an ILU
preconditioner without fill-in leads to a good performance. The combination GMRES/ILU needs many
iterations. The reason is that GMRES is restarted after 40 iterations, which leads to slow convergence.
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Table VI. Number of iterations and CPU time for
the cube.

GMRES/multigrid GMRES/ILU

nx Iterations CPU Iterations CPU

8 4 0.07 14 0.07
16 4 0.85 17 0.91
32 4 8.1 24 16.4

Note that with the ILU preconditioner, BiCGSTAB is the fastest method, whereas with the multigrid
preconditioner, GMRES is the fastest method. This is as expected because the number of iterations is
small for GMRES/multigrid but the matrix–vector product (including the preconditioner times vector
product) is expensive, whereas for the ILU preconditioner the number of iterations is large and the
matrix–vector product is relatively cheap (cf. Reference [23]). For this problem, BiCGSTAB/ILU is
the fastest method, but the difference from GMRES/multigrid is not significant. The reason Defect
Correction/multigrid does not converge (as least not rapidly) is probably that the smoother is not robust
enough and does not perform well on this grid. We see here that instead of making the smoother more
robust (probably at the cost of its excellent parallelizability) a good alternative is to replace defect
correction with GMRES.

5.4. Flow in three-dimensional configurations

In this section we summarize some results for three-dimensional flow problems.

5.4.1. Flow in a cube.We consider the flow in a cube on annx × nx × nx grid. The flow is prescribed
at the left, there are no-slip boundary conditions on the bottom, top, front and back faces and a free
outflow on the right side of the cube.

Table VI contains the number of iterations and CPU time to solve the pressure equation. Again,
the number of iterations for the multigrid method is independent of the grid-size. Furthermore GM-
RES/multigrid is also an efficient method for small grid sizes.

5.4.2. Flow in a skew cube.In this section we investigate the influence of the skewness of the grid on
the convergence. In Figure 9 a skewcube is shown. The upper plane of this cube is translated along the
vector (0,0.5,0). The convergence results are given in Table VII for a 16× 16× 16 grid. Note that for
both methods the convergence deteriorates. However the convergence of GMRES/multigrid depends
less on the skewness than that of GMRES/ILU.

5.4.3. Flow in a rectangular channel.Finally, we consider the flow in a rectangular channel with length
l, width w and heighth. The configuration of the channel is given in Figure 10. The flow of the fluid
is from left to right. The boundary conditions are: a uniform inflow at the left-hand plane, an outflow
condition at the right-hand plane, and a no-slip condition at the other planes. In Table VIII the results
for various values ofl, w andh are given using a 16× 16× 16 grid. Varyingh in the same way asw
leads to comparable results. It appears that the rate of convergence of GMRES/multi-grid deteriorates
considerably when the grid cells are stretched in the direction of the flow. Below a possible explanation
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Figure 9. The configuration of the skew cube.

Table VII. Number of iterations and CPU time for the skew
cube.

Translation
GMRES/multigrid GMRES/ILU

vector Iterations CPU Iterations CPU

(0,0,0) 4 0.85 17 0.91
(0,0.5,0) 4 0.86 23 1.30
(0,1.5,0) 7 1.34 37 2.30

Figure 10. The rectangular channel with length 10, width 1, and height 1.

Table VIII. Number of iterations and CPU time for the rect-
angular channel.

GMRES/multigrid GMRES/ILU

l × w × h Iterations CPU Iterations CPU

1 × 1 × 1 4 0.85 17 0.91
5 × 1 × 1 14 2.64 19 1.03

10× 1 × 1 24 4.30 22 1.26
1 × 5 × 1 8 1.5 19 1.03
1 × 10× 1 9 1.65 24 1.33
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Table IX. Number of iterations and CPU time for the rect-
angular channel with outflow boundary conditions.

GMRES/multigrid GMRES/ILU

l × w × h Iterations CPU Iterations CPU

1 × 1 × 1 4 0.85 14 0.71
5 × 1 × 1 11 1.98 11 0.61

10× 1 × 1 12 2.14 11 0.61

of this phenomenon is given. Owing to the boundary conditions for the velocity, the resulting system
for the pressure resembles a discretized Poisson equation with a Dirichlet boundary condition at the
right-hand plane and Neumann boundary conditions at the remaining planes. As a smoother we used a
damped line Jacobi method. When a line is perpendicular to the flow direction and the grid is stretched
in the flow direction the resulting system of equations per line converges to a discrete version of the one-
dimensional Poisson equation with Neumann boundary conditions. Such a system is singular, which
may be the origin of the bad smoothing property.

To verify this explanation the same problem is solved with a uniform inflow at the left plane and an
outflow condition at all other planes. The results are given in Table IX and indeed the GMRES/multigrid
results are now also acceptable for a stretched grid.

6. CONCLUSIONS

We have shown how restrictions on the number of grid cells can be removed in multigrid methods
without incurring an efficiency penalty. A black box implementation of the multigrid method has been
incorporated in an existing flow code to solve the pressure equation. A simple smoother with excellent
parallelization potential is used, namely alternating line Jacobi with fixed optimal damping parameter.
Efficiency and robustness are enhanced by Krylov subspace acceleration, using GMRES or BiCGSTAB.
Usually GMRES is more efficient, but if storage is at a premium, BiCGSTAB is to be preferred. Cache
performance has a significant impact on efficiency. Some considerations have been presented on the
implementation that will improve cache usage. Applications to two- and three-dimensional flows have
been presented.

The code is available by anonymous ftp at

ftp://ta.twi.tudelft.nl/pub/nw/vankan/multigrid
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