3D Helmholtz Krylov Solver Preconditioned
by a Shifted Laplace Multigrid Method
on Multi-GPUs

H. Knibbe, C.W. Oosterlee, and C. Vuik

Abstract We are focusing on an iterative solver for the three-dimensional
Helmbholtz equation on multi-GPU using CUDA (Compute Unified Device
Architecture). The Helmholtz equation discretized by a second order finite
difference scheme is solved with Bi-CGSTAB preconditioned by a shifted Laplace
multigrid method. Two multi-GPU approaches are considered: data parallelism
and split of the algorithm. Their implementations on multi-GPU architecture are
compared to a multi-threaded CPU and single GPU implementation. The results
show that the data parallel implementation is suffering from communication
between GPUs and CPU, but is still a number of times faster compared to many-
cores. The split of the algorithm across GPUs limits communication and delivers
speedups comparable to a single GPU implementation.

1 Introduction

As it has been shown in paper [5] the implementation of numerical solvers for
indefinite Helmholtz problems with spatially dependent wavenumber, such as
Bi-CGSTAB and IDR(s) preconditioned by shifted Laplace multigrid method on a
GPU is more than 25 times faster than on a single CPU. Comparison of single GPU
to a single CPU is important but it is not representative for problems of realistic size.

H. Knibbe (24) - C. Vuik
Delft University of Technology, Delft, Netherlands
e-mail: hknibbe @ gmail.com; c.vuik @tudelft.nl

C.W. Oosterlee

Dutch National Research Centre for Mathematics and Computer Science (CWI), Delft University
of Technology, Delft, Netherlands

e-mail: c.w.oosterlee@cwi.nl

A. Cangiani et al. (eds.), Numerical Mathematics and Advanced Applications 2011, 653
DOI 10.1007/978-3-642-33134-3_69, © Springer-Verlag Berlin Heidelberg 2013



654 H. Knibbe et al.

By realistic problem size we mean three-dimensional problems which lead after
discretization to linear systems of equations with more than one million unknowns.
Such problems arise when modeling a wavefield in geophysics.

Problems of realistic size are too large to fit in the memory of one GPU, even
with the latest NVIDIA Fermi graphics card (see [6]). One solution is to use multiple
GPUs. The currently widely used architecture consists of a multi-core connected to
one or at most two GPUs. Moreover, in most of the cases those GPUs have different
characteristics and memory size. A setup with four or more identical GPUs is rather
uncommon, but it would be ideal from a memory point of view. It implies that the
maximum memory is four times or more than on a single GPU. However GPUs are
connected to a PCI bus and in some cases two GPUs share the same PCI bus, this
creates data transfer limitation. To summarize, using multi-GPUs increases the total
memory size but data transfer problems appear.

The aim of this paper is to consider different multi-GPU approaches and
understand how data transfer affects performance of a Krylov solver with shifted
Laplace multigrid preconditioner for the three-dimensional Helmholtz equation.

2 Helmholtz Equation and Solver

The Helmholtz equation in three dimensions for a wave problem in a heterogeneous
medium is considered

—————7—(1—ai)k2¢=g, (1)

where ¢ = ¢(x, y, z) is the wave pressure field, k = k(x, y, z) is the wavenumber,
a <« 1 is the damping coefficient, g = g(x,y,z) is the source term. The
corresponding differential operator has the form &/ = —A — (1 — ai)k?, where
A denotes the Laplace operator. The problem is given in a cubic domain 2 =
[(0,0,0),(X,Y,Z)], X,Y,Z € R. A first order radiation boundary condition is

applied (—% - ik) ¢ = 0, where 1 is the outward normal vector to the boundary

(see [2]). Discretizing equation (1) using the 7-point central finite difference scheme
gives the following linear system of equations: A¢p = g, 4 € CV*N ¢, g € CV,
where N = n,nyn; is a product of the number of discretization points in the x—,
y— and z—directions. Note that the closer the damping parameter « is set to zero, the
more difficult it is to solve the Helmholtz equation. We are focusing on the original
Helmbholtz equation with o« = 0.

As a solver for the discretized Helmholtz equation we have chosen the
Bi-CGSTAB method preconditioned by shifted Laplace multigrid method with
matrix-dependent transfer operations and a Gauss-Seidel smoother, (see [3]). It has
been shown in [5] that this solver is parallelizable on CPUs as well as on a single
GPU and provides good speed-up on parallel architectures. The prolongation in



3D Helmbholtz Solver on Multi-GPUs 655

this work is based on the three dimensional matrix-dependent prolongation for real-
valued matrices described in [7]. This prolongation is also valid at the boundaries.
The restriction is chosen as full weighting restriction. As a smoother the multi-
colored Gauss-Seidel method has been used. In particular, for 3D problems the
smoother uses eight colors, so that the color of a given point will be different from
its neighbours.

Since our goal is to speed up the Helmholtz solver with the help of GPUs, we
still would like to keep the double precision convergence rate of the Krylov method.
Therefore Bi-CGSTAB is implemented in double precision. For the preconditioner,
single precision is sufficient for CPU as well as GPU.

3 Multi-GPU Implementation

For our numerical experiments NVIDIA [6] provided a Westmere based 12-cores
machine connected to 8 GPUs Tesla 2050 as shown on Fig. 1. The 12-core machine
has 48 GB of RAM. Each socket has 6 CPU cores Intel(R) Xeon(R) CPU X5670
@ 2.93 GHz and is connected through 2 PCI-buses to 4 graphics cards. Note that
two GPUs are sharing one PCI-bus connected to a socket. Each GPU consist of 448
cores with clock rate 1.5 GHz and has 3 GB of memory.

In the experiments CUDA version 3.2! is used. All experiments on CPU are done
using a multi-threaded CPU implementation (pthreads).

In general GPU memory is much more limited than CPU memory so we chose
a multi-GPU approach to be able to solve larger problems. The implementation on
a single GPU of major components of the solver such as vector operations, matrix-
vector-multiplication or the smoother has been described in [5]. In this section we
focus on the multi-GPU implementation.

There are two ways to do computations on multi-GPU: push different Cuda
contexts to different GPUs (see [6]) or create multiple threads on the CPU, where
each thread communicates with one GPU. For our purposes we have chosen the
second option, since it is easier to understand and implement.

Multiple open source libraries for multi-threading have been considered and
tested. For our implementation of numerical methods on a GPU the main require-
ment for multi-threading was that a created thread stays alive to do further
processing. It is crucial for performance that a thread remains alive as a GPU context
is attached to it. Pthreads has been chosen as we have total control of the threads
during the program execution.

"During the work on this paper, the newer version of CUDA 4.0 has been released. It was not
possible to have the newer version installed on all systems for our experiments. That is why for
consistency and comparability of experiments, we use the previous version



656 H. Knibbe et al.

Fig. 1 NVIDIA machine
with 12 Westmere CPUs and
8 Fermi GPUs, where two
GPUs share a PCI bus
connected to a socket

m

There are several approaches to deal with multi-GPU hardware:

1. Domain-Decomposition approach, where the original continuous or discrete
problem is decomposed into parts which are executed on different GPUs and
the overlapping information (halos) is exchanged by data transfer. This approach
can however have difficulties with convergence for higher frequencies (see [4]).

2. Data-parallel approach, where all matrix-vector and vector-vector operations
are split between multiple GPUs. The advantage of this approach is that it is
relatively easy to implement. However, matrix-vector multiplication requires
exchange of the data between different GPUs, that can lead to significant data
transfer times if the computational part is small. The convergence of the solver is
not affected.

3. Split of the algorithm, where different parts of the algorithm are executed on
different devices. For instance, the solver is executed on one GPU and the
preconditioner on another one. In this way the communication between GPUs
will be minimized. However this approach requires an individual solution for
each algorithm.

Note that the data-parallel approach can be seen as a method splitting the data across
multi-GPUs, whereas the split of the algorithm can be seen as a method splitting the
tasks across multiple devices. In this paper we are investigating the data-parallel
approach and the split of the algorithms and make a comparison between multi-core
and multi-GPUs. We leave out the domain decomposition approach because the
convergence of the Helmholtz solver is not guaranteed. The data parallel approach
is more intuitive and is described in detail in Sect. 4.

3.1 Split of the Algorithm

The split can be unique for every algorithm. The main idea of this approach is to
limit communication between GPUs but still be able to compute large problems.
One way to apply this approach to the Bi-CGSTAB preconditioned by shifted
Laplace multigrid method is to execute the Bi-CGSTAB on one GPU and the multi-
grid preconditioner on another one. In this case the communication only between
the Krylov solver and preconditioner is required but not for intermediate results.



3D Helmbholtz Solver on Multi-GPUs 657

The second way to apply split of the algorithm to our solver is to execute the
Bi-CGSTAB and the finest level of shifted Laplace multigrid across all available
GPUs using data parallel approach. The coarser levels of multigrid method
are executed on only one GPU due to small memory requirements. Since the
LU-decomposition is used to compute an exact solution on the coarsest level, we
use the CPU for that.

3.2 Issues

Implementation on multi-GPUs requires careful consideration of possibilities and
optimization options. The issues we encountered during our work are listed
below:

e Multi-threading implementation, where the life of a thread should be as long as
the application. This is crucial for the multi-threading way of implementation on
multi-GPU. Note that in case of pushing contexts this is not an issue.

* Because of limited GPU memory size, large problems need multiple GPUs.

» Efficient memory reusage to avoid allocation/deallocation. Due to memory
limitations the memory should be reused as much as possible, especially in the
multigrid method. In our work we create a pool of vectors on the GPU and reuse
them during the whole solution time.

¢ Limit communications CPU—GPU and GPU—CPU.

* The use of texture memory on Multi-GPU is complicated as each GPU needs its
own texture reference.

* Coalescing is difficult since each matrix row has a different number of elements.

4 Numerical Results on Multi-GPU

4.1 Vector- and Sparse Matrix-Vector Operations

Vector operations such as addition, dot product are trivial to implement on multi-
GPU. Vectors are split across multiple GPUs, so that each GPU gets a part of the
vector. In case of vector addition, the parts of a vector remain on GPU or can
be send to a CPU and assembled in a result vector of original size. The speedup
for vector addition on 8-GPUs compared to a multi-threaded implementation (12
CPUs) is about 40 times for single and double precision. For the dot product,
each GPU sends its own sub-dot product to a CPU, where they will be summed
into the final result. The speedup for dot product is about 8 for single precision
and 5 for double precision. Note that in order to avoid cache effects on a CPU
and to make a fair comparison, the dot product has been taken from two different



658 H. Knibbe et al.

Table 1 Matrix-Vector-Multiplication in single (SP) and double (DP) precision

Speedup (SP) Speedup (SP) Speedup (DP) Speedup (DP)
Size 12-cores/1 GPU 12-cores/8 GPUs 12-cores/1 GPU 12-cores/8 GPUs
100,000 54.5 6.81 30.75 5.15
1 Min 88.5 12.95 30.94 5.97
20 Min 78.87 12.13 32.63 6.47

Table 2 Speedups for Bi-CGSTAB in single (SP) and double (DP) precision

Speedup (SP) Speedup (SP) Speedup (DP) Speedup (DP)
Size 12-cores/1 GPU 12-cores/8 GPUs 12-cores/1 GPU 12-cores/8 GPUs
100,000 12.72 1.27 9.59 1.43
1 Min 32.67 7.58 15.84 5.11
15 Min 45.37 15.23 19.71 8.48

vectors. The speedups for vector addition and dot product on multi-GPU are smaller
compared to the single GPU because of the communication between CPU and
multiple GPUs.

The matrix is stored in a CRS matrix format (Compressed Row Storage, see
e.g. [1]) and is split row-wise. In this case a part of the matrix rows is transferred
to each GPU as well as the whole vector. After matrix-vector multiplication parts of
the result are transferred to a CPU where they are assembled into the final resulting
vector. The timings for matrix-vector multiplication are given in Table 1.

4.2 Bi-CGSTAB and Gauss-Seidel on Multi-GPU

Since the Bi-CGSTAB algorithm is a collection of vector additions, dot products
and matrix-vector multiplications described in the previous section, the multi-
GPU version of the Bi-CGSTAB is straight forward. In Table 2 the timings of
Bi-CGSTAB on many-core CPU, single GPU and multi-GPU are presented. The
stopping criterion is 107>, It is easy to see that the speedup on multi-GPUs is smaller
than on a single GPU due to the data transfer between CPU and GPU. Note that
for the largest problem in Table 2 it is not possible to compute on a single GPU
because there is not enough memory available. However it is possible to compute
this problem on multi-GPUs and the computation on multi-GPU is still many times
faster than 12-core Westmere CPU.

As mentioned above, the shifted Laplace multigrid preconditioner consists of
a coarse grid correction based on the Galerkin method with matrix-dependent



3D Helmbholtz Solver on Multi-GPUs 659

Table 3 Speedups for colored Gauss-Seidel method on different
architectures in single precision

Size 12-cores/1 GPU 12-cores/8 GPUs
5 Min 16.5 5.2
30 Min 89.1 6.1

prolongation and of a Gauss-Seidel smoother. The implementation of coarse grid
correction on multi-GPU is straight forward, since the main ingredient of the
coarse grid correction is the matrix-vector multiplication. The coarse grid matrices
are constructed on a CPU and then transferred to the GPUs. The matrix-vector
multiplication on multi-GPU is described in Sect. 4.1.

The Gauss-Seidel smoother on multi-GPU requires adaptation of the algorithm.
We use 8-colored Gauss-Seidel, since the problem (1) is given in three dimensions
and computations at each discretization point should be done independently of the
neighbours to allow parallelism. For the multi-GPU implementation the rows of
the matrix for one color will be split between multi-GPUs. Basically, the colors
are computed sequentially, but within a color the data parallelism is applied across
the multi-GPUs. The timing comparisons for 8-colored Gauss-Seidel implementa-
tion on different architectures are given in Table 3.

S Numerical Experiments for the Wedge Problem

This model problem represents a layered heterogeneous problem taken from [3].
For o € R find ¢ € C"*"

— Ap(x,y,2) — (1 —ai)k(x,y,2)%¢(x, y.2) = 8§ ((x —500)(y — 500)z). (2)

(x,y,2) € £2 = [0,0,0] x [1000, 1000, 1000], with the first order boundary con-
ditions. We assume that @ = 0. The coefficient k(x, y, 7) is given by k(x, y,z) =
2nfl/c(x,y,z) where c(x, y,z) is presented in the Fig.2. The grid size satisfies
the condition max,(k(x,y,z))h = 0.625, where h = ﬁ Table 4 shows
timings for Bi-CGSTAB preconditioned by the shifted Laplace multigrid method
on the problem (2) with 43 millions unknowns. The single GPU implementation is
about 13 times faster than a multi-threaded CPU implementation. The data-parallel
approach shows that on multi-GPUs the communication between GPUs and CPUs
takes a significant amount of the computational time, leading to smaller speedup
than on a single GPU. However, using the split of the algorithm, where Bi-CGSTAB
is computed on one GPU and the preconditioner on the another one, increases the
speedup to 15.5 times. Figure 3 shows the real part of the solution for 30 Hz.



660 H. Knibbe et al.

100}
200/
300/
4001 .
500}
600/
700}
800+
900/ _
1000, 200 400 600 800 1000
x (m)

2000 mis

Depth (m)

3000 mis

Fig. 2 The velocity profile of the wedge problem

Table 4 Timings for Bi-CGSTAB preconditioned by shifted Laplace multigrid

12-cores/1 GPU 12-cores/8 GPUs
Size Bi-CGSTAB (DP) Preconditioner (SP) Total Speedup
12-cores 95 690 s 784 s 1
1 GPU 135 47 s 60s 13.1
8 GPUs 83s 86s 169s 4.6
2 GPUs+split 12s 38s 50s 15.5

Fig. 3 Real part of the solution, f/* = 30 Hz

6 Conclusions

In this paper we presented a multi-GPU implementation of the Bi-CGSTAB solver
preconditioned by a shifted Laplace multigrid method for a three-dimentional
Helmbholtz equation. To keep the double precision convergence the Bi-CGSTAB
method is implemented on GPU in double precision and the preconditioner in



3D Helmbholtz Solver on Multi-GPUs 661

single precision. We have compared the multi-GPU implementation to a single-
GPU and a multi-threaded CPU implementation on a realistic problem size. Two
multi-GPU approaches have been considered: data parallel approach and a split
of the algorithm. For the data parallel approach, we were able to solve larger
problems than on one GPU and get a better performance than multi-threaded
CPU implementation. However due to the communication between GPUs and
a CPU the resulting speedups have been considerably smaller compared to the
single-GPU implementation. To minimize the communication but still be able to
solve large problems we have introduced split of the algorithm. In this case the
speedup on multi-GPUs is similar to the single GPU compared to the multi-core
implementation.

The autors thank NVIDIA Corporation for access to the latest many-core-multi-
GPU architecture.

References

1. J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Solving Linear Systems on
Vector and Shared Memory Computers. SIAM, Philadelphia (1991).

2. B. Engquist and A. Majda. Absorbing boundary conditions for numerical simulation of waves.
Math. Comput., 31:629-651 (1977).

3. Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for
heterogeneous Helmholtz problems. SIAM J. Sci. Comput., 27:1471-1492 (2006).

4. O. Ernst and M. Gander. Why it is difficult to solve Helmholtz problems with classical iterative
methods. In Durham Symposium 2010 (2010).

5. H. Knibbe, C. W. Oosterlee, and C. Vuik. GPU implementation of a Helmholtz Krylov solver
preconditioned by a shifted Laplace multigrid method. Journal of Computational and Applied
Mathematics, 236:281-293 (2011).

6. www.nvidia.com (2011).

7. E. Zhebel. A Multigrid Method with Matrix-Dependent Transfer Operators for 3D Diffusion
Problems with Jump Coefficients. PhD thesis, Technical University Bergakademie Freiberg,
Germany (2006).


www.nvidia.com

	3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs
	1 Introduction
	2 Helmholtz Equation and Solver
	3 Multi-GPU Implementation
	3.1 Split of the Algorithm
	3.2 Issues

	4 Numerical Results on Multi-GPU
	4.1 Vector- and Sparse Matrix-Vector Operations
	4.2 Bi-CGSTAB and Gauss-Seidel on Multi-GPU

	5 Numerical Experiments for the Wedge Problem
	6 Conclusions
	References


