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a  b  s  t  r  a  c  t

How  the  properties  of  ecosystems  relate  to spatial  scale  is a prominent  topic in  current  ecosystem
research.  Despite  this,  spatially  explicit  models  typically  include  only  a limited  range  of  spatial  scales,
mostly  because  of  computing  limitations.  Here,  we  describe  the use  of  graphics  processors  to efficiently
solve  spatially  explicit  ecological  models  at large  spatial  scale  using  the  CUDA  language  extension.  We
explain  this  technique  by  implementing  three  classical  models  of  spatial  self-organization  in ecology:  a
spiral-wave  forming  predator–prey  model,  a model  of  pattern  formation  in  arid  vegetation,  and  a model
of  disturbance  in  mussel  beds  on  rocky  shores.  Using  these  models,  we  show  that  the  solutions  of  mod-
els  on  large  spatial  grids can  be obtained  on graphics  processors  with  up  to two  orders  of  magnitude
reduction  in  simulation  time  relative  to normal  pc processors.  This  allows  for  efficient  simulation  of very
elf-organization
patially explicit models

large  spatial  grids,  which  is  crucial  for, for  instance,  the  study  of the  effect  of  spatial  heterogeneity  on
the formation  of  self-organized  spatial  patterns,  thereby  facilitating  the  comparison  between  theoretical
results and  empirical  data. Finally,  we  show  that large-scale  spatial  simulations  are  preferable  over  repe-
titions  at  smaller  spatial  scales  in  identifying  the  presence  of scaling  relations  in  spatially  self-organized
ecosystems.  Hence,  the study  of scaling  laws  in ecology  may  benefit  significantly  from  implementation

raphi
of  ecological  models  on  g

. Introduction

In the past years, spatially-explicit mathematical models have
layed an important role in the development of ecological the-
ry (Levin, 1992; Rohani et al., 1997; Rietkerk and Van de Koppel,
008). They have been used to gain understanding of the impor-
ance of space in the dynamics and conservation of species in
oth continuous (Hassell et al., 1994; Solé and Bascompte, 2006)
nd fragmented habitats (Hanski, 1994; Gravel et al., 2010).
specially models of spatial self-organization have been used to
mplement complexity theory principles to ecological systems.
hese models have been applied to for instance, spatial wave
ormation in large-scale predator-prey systems (Dunbar, 1983),
o explain the formation of regular, self-organized spatial pat-
erns in arid vegetation (Klausmeier, 1999), and scale-free patterns
n disturbance-governed rocky intertidal mussel beds (Guichard
t al., 2003). The basic premise behind self-organization models is
hat small-scale interactions between organisms generate coher-
nt spatial patterns at larger spatial scales (Levin, 1992). Predicted

atterns involve regular banded, dotted or labyrinth-shaped pat-
erns that have been observed in many ecosystems all over the
orld (Rietkerk and Van de Koppel, 2008), and “power law” pat-
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cs  processors.
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terns that have universal characteristics over an extensive range of
spatial scales, e.g., are scale-free (Pascual and Guichard, 2005). As
theoretical models predict consistent changes in spatial patterns
with changing environmental conditions, self-organized spatial
patterns have been put forward as promising predictors of immi-
nent degradation and desertification in ecosystems in response to
global change (Rietkerk et al., 2004; Kefi et al., 2007b; Solé, 2007;
Scheffer et al., 2009).

Despite the common use of spatial models to scale-up the
effects of ecological interactions, most spatially-explicit models
cover only a limited range of spatial scales. Partial differential
equations that form the basis for most models of regular patterns
are typically implemented on rectangular grids of 100 × 100 to
250 × 250 nodes. This allows a basic, limited scale prediction of
regular pattern formation, but does not allow for the analysis of
patterns along intrinsic or imposed gradients, modeling of nested
patterns, or inclusion of evolutionary dynamics (because of the
time scale differences between ecological and evolutionary pro-
cesses). Cellular automaton models can be implemented over larger
scales, but rarely exceed a size of 500 × 500 nodes. Yet, accurate
fits of power law-shaped size-frequency distributions to describe
patch formation depend crucially on precise predictions of the fre-

quency of occurrence of large clusters or patches, which are often
limited by the size of the simulated grid. Hence, to provide accu-
rate predictions of the response of spatially self-organized systems
to changing conditions, and to assess the value of the predicted

dx.doi.org/10.1016/j.ecolmodel.2011.06.004
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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atterns for indicator systems, predictions over extensive spatial
cales are essential.

Here, we report on the use and implementation of graphics pro-
essors to efficiently solve spatially explicit ecological models on
arge spatial grids. Graphics processors, a common component of
ff-the-shelf multimedia computers, typically house a large num-
er of processing cores that can efficiently process large grids,
rovided that the changes at each node (e.g., a point at the grid)
an be predicted in parallel. This is the case for most spatial mod-
ls where the entire grid is synchronously updated at the end of a
ingle computing cycle (e.g., timestep). We  describe how numer-
cal algorithms are implemented on the graphics processor using
he CUDA framework that is available for modern NVidia graph-
cs cards. We  provide example codes of implementations of three
lassical spatial models within ecological theory, the spiral-wave
orming predator–prey model of Dunbar (1983),  the model of self-
rganizing arid vegetation patterns by Rietkerk et al. (2002), and
he mussel disturbance model by Guichard et al. (2003).  We  then
tudy how the predictions of the models are affected by increased
patial scale.

. Spatially explicit ecological models

Most ecological models described in theoretical ecology text-
ooks describe the changes in populations and the environment at a
articular spatial location, or average their density over a particular
patial scale (e.g., a mean-field approach). Implicitly, these mod-
ls assume that the heterogeneity that exists in natural systems at
early every spatial scale is not of major influence to population
ynamics. For many systems and for many modeling goals, this
ssumption does not hold. In these cases, the spatial structure of
he population and the spatial movement of organisms and mat-
er need to be modeled explicitly. Examples of this are the spatial
ynamics of disease outbreaks, or the formation of regular spatial
atterns in arid lands, which are described using spatially explicit
odels.
Spatially explicit models are often solved numerically using a

patial grid approach. At each node on the grid, both local pop-
lation change and spatial fluxes are calculated as a function of
opulation size at the node itself and the neighboring nodes (the
cale of the neighborhood can be very local or more extensive).
ften, the same calculations are repeated over the entire grid, calcu-

ating how population size at each node would change as described
y a partial differential equation. In most modern computers, the
ates of change are calculated for one node after the other until cal-
ulation has finished for the entire grid and population level at all
odes can subsequently be updated.

A special type of spatial model is the cellular automaton, which
escribes the spatial structure of any population using discrete
tates at each node, for instance being an individual of a specific
pecies of plant. A node can change in state, for instance an individ-
al plant being replaced by another, in a stochastic process, in which
he replacement chance is a function of the state of the neighboring
odes. Similar to the partial-differential equation-based models,
he same numerical operation is done for each node on the grid,
alculating the new states based on the occupancies of the nodes
n its current state.

. Solving spatially explicit ecological models using a
raphics processor
Normally, simulation models are executed by the computer’s
entral processing unit, or CPU. Nearly all computers that are sold
hese days, however, also contain a graphics processing unit, or
PU, that handles the rendering of graphics before they are dis-
delling 222 (2011) 3011– 3019

played on the screen. GPUs are either integrated within the main
board of the computer, or placed on dedicated graphics cards. In
particular GPUs on graphics cards are often very powerful comput-
ing chips. Rather than being able to do a broad range of tasks, which
is the domain of the CPU, GPUs are specialized in floating point
operations, e.g., calculations with numbers with many decimals.
Another characteristic of modern GPUs is that they contain mul-
tiple cores, allowing the GPU to do many calculations at the same
time. While current CPUs in personal computers contain between
a single to four cores, high-end GPUs nowadays can contain many
hundreds of cores per GPU, and hence can do a very high number
of floating point calculations at the same time. These characteris-
tics make graphics cards particularly suited to numerically solve
spatially explicit models, especially those that are based on the
above-described grid approach. The rates of change in several nodes
can be calculated in parallel, which will significantly speed up the
simulation.

The use of GPUs for parallel computation, for instance in solv-
ing spatially explicit ecological models, has to a large extent been
limited by the difficulties of addressing them from mainstream
computing languages such as C, Fortran or MatLab. Recently, GPU
manufacturers are facilitating the use of graphics processors for
custom programming applications by providing language exten-
sions to standard programming languages. The mostly widely used
extension at this moment is CUDA, the parallel computing architec-
ture developed by NVidia for their GPUs. CUDA is an extension of C
which can be used to execute the kernel of a simulation model (e.g.,
the part that gets repeated each time step) on the graphics proces-
sor. When a spatially explicit simulation model is implemented on
the graphics processor, execution speed can increase between 10-
and 100-fold as compared to a standard C implementation on the
main processor, depending on the type of graphics card, the size of
the grid and the type of spatial model.

Below, we  first explain conceptually how a spatially explicit
model is implemented on a graphics processor using CUDA. Then
we provide three examples implementations of well-known spa-
tially explicitly models from ecological theory to illustrate this
technique, examples that can form an easy starting point for further
model development. These example models are the predator–prey
model by Dunbar (1983),  the self-organizing arid vegetation model
by Rietkerk et al. (2002), and the mussel bed disturbance model by
Guichard et al. (2003).  We  briefly review these models, and then
describe their implementation in CUDA. Note that the implemen-
tation of spatially explicit models on graphics processors, or in
parallel processors in general, implies that all nodes are updated
synchronously (e.g., at the same time). Asynchronous updating,
where the nodes are updated in sequence (e.g., after each other),
requires just a single thread, and is therefore best implemented on
a single core, typically the CPU.

3.1. Implementing a spatially explicit model in CUDA

To run a spatially explicit simulation model on the GPU, it is
crucial to understand how parallel processing of a spatial model is
organized (Fig. 1). The calculations required to predict the rate of
change at any node are called a thread. Each thread is processed
by a specific processor core which has its own local memory to be
used in calculations within the thread. However, the grids used in
spatial models can easily have over 10,000 gridpoints, and hence
even with the most extensive GPUs, each core has to handle multi-
ple threads before the entire grid is updated. Haphazardly assigning
processing cores to threads would be very inefficient. For this rea-

son, the grid is split up in blocks, which is handled by what is called
a multiprocessor, a group of 8 processor cores. This block has its
own  “shared” memory in which the variables needed to process
the threads within this block are copied. Hence, the grid values
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ig. 1. Organization of computation and memory hierarchy on the GPU by the CUD
hread.  Threads are organized in blocks on which a multiprocessor operates, and all
ee  text for explanation.

sed within this block are loaded into the multiprocessor’s shared
emory, allowing it to efficiently process all threads without addi-

ional access to the global GPU memory outside the multiprocessor,
n which the entire grid is stored. The block structure ensures that
he transfer of data from the graphics card’s global memory to the
raphics processor register memory is handled in an efficient way,
reventing separate memory transfers for each individual thread.
or best performance it is important that the information needed
y each thread is local (e.g., from neighboring nodes), e.g., does not
riginate from the other side of the grid, so that it can all be loaded
n the multiprocessor’s memory before the block is executed.

When developing a model to run on the GPU, it is essential to
ptimize the size and number of the blocks, so that all processing
ores are used efficiently. Obviously, a block size is limited by the
ize of the multiprocessor’s memory, and hence large block sizes
re not optimal. Beyond that, it is essential that the number of
locks is adjusted to the number of multiprocessors. For instance,

f a GPU has 6 multiprocessors (e.g., 48 cores), it is inefficient to
plit the grid up into 8 blocks. Six blocks would then be first pro-
essed, after which two blocks remain. These would subsequently
e processed by two multiprocessors, leaving the others waiting
ntil those two have finished. It would be more efficient to divide
he grid into 12 smaller blocks, so that after two rounds, all blocks
ave been processed and no multiprocessors remained idle for part
f the time.

The number of multiprocessors and the size of their internal
emory are specific to the type of GPU and graphics card; more

xpensive graphics cards have more multiprocessors and more
emory. This means that in order to maximize the acceleration,

he model needs to be geared to the GPU in the computer and
ecompiled before the model is run. However, a thread block size

f 16 × 16 (256 threads) is a common choice that gave us good
imulation results. More details about how to design an optimal
onfiguration can be found in the NVidia CUDA programming guide
t www.nvidia.com/cuda.
gramming model. The computation of changes in the state of each node is called a
read blocks which make up the entire spatial grid. Each level has its own memory.

3.2. CUDA: an extension of the C language

Within any model program, the code needs to indicate which
part of the program needs to be executed on the graphics proces-
sor. For this, a C language extension is provided that indicates that
certain parts of the code need to be executed on the GPU, and that
variables (most notably the arrays containing the state values at
each node) and constants (e.g., the model’s parameter values) need
to be placed on the graphics processor before they are executed. For
this, these variables have to be labeled specifically in the code using
specific variable and function definitions that have been developed.

This is best explained using an example code. For this, we use
Fisher’s equation for a biological invasion of a species U in a spatial
domain (Fisher, 1937):

∂U

∂t
= U(1 − U) + ∂2U

∂x2
.

In this equation, local growth is modeled by the first term, the logis-
tic growth equation with both intrinsic growth and maximum local
density set to 1. Dispersal of organisms is modeled by the sec-
ond term using a diffusion approximation. This model describes
the formation of an invasion front that moves from one side of
the domain to the other, starting with an initial condition where
population density is one at the edge of the domain, and zero in
the remaining space. We  will describe the implementation of this
model in CUDA below, assuming a basic understanding of the C
programming language.

In Table 1, an example code is given that implements Fisher’s
equation along a one-dimensional domain U. This code describes
how to implement the kernel that calculates the rate of change of
local population density U in CUDA. For this, we need to copy the ini-

tial values of the domain U to the graphics processor, run the kernel
that calculates the changes in U using the above equation for a num-
ber of times, and then copy the results back from the GPU memory
to the CPU memory. We  start with describing how the comput-

http://www.nvidia.com/cuda
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Table  1
A condensed example of a CUDA program, implementing Fisher’s equation describing a biological invasion.

1 // includes, system & CU DA
2 #include <stdio. h>
3 #include <cuda.h >
4 // Paramete r definition s
5 #defin e Block_Size     4                        // Thread block size
6 #defin e Block_Number 16                         // Number of blocks in the grid
7 #defin e Grid_Width (Block_Number*Block_Size)  // Doma in widt h
8 #defin e Length       100                     // The Length of the landscape
9 #defin e dT            0.1                        // Time st ep
10 /* ---- --- Device function that calculates U flu x------ -*/
11 __device __ floa t d2Udx2(floa t* U,  int current) {
12 float dx, retval ;
13 dx=(floa t)Length/Grid_Width;
14 retval = ( (-( U[cu rrent ] - U[cu rrent -1] ) / dx )  
15 -(-( U[cu rrent+1]  - U[cu rrent] ) / dx ) ) / dx  ;
16 return retval;}
17 /* ---- ------- Main Simulation Kernel  ------ ---------------*/
18 __global __ void dUdt_Kernel (floa t* U)  {
19 int current;
20 current = blockIdx.x*Block_Size+threadIdx.x;
21 // The actual calculations for the model
22 if (cu rrent > 0 && current < Grid_Width -1) {  // excluding the boundaries
23 U[current]=U[cu rrent]+(U[current]* (1-U[cu rrent])+d2Udx2(U,current))*dT;  }
24 __syncthreads(); }  // End assembleMusselKerne l
25 /* ---- ------ Program main  ---- ---------- ---------------- -----*/
26 int main(int argc, char ** argv){
27 unsigned int size_U = Grid_Width;
28 unsigned int mem_size_U = sizeof(floa t) * size_ U;
29 float* h_U, * d_U;
30 int time,x,i;
31 FILE *fp;
32 h_U = (floa t*) malloc(mem_size_U);    // allocate host memory
33 for(x=0;x<Grid_Width;x++) h_U[x]=0;   // initial values
34 h_U[0]=1;                               // the first doma in point is one
35 /*-------- - INITIALIZATION ON THE GPU  ------ ---------------- */
36 // allocate device memor y
37 cudaMalloc( (void **) &d_U, mem_size_U);
38 // copy host memory to devi ce
39 cudaMemcpy(d_U, h_U, mem_size_U,cudaMemcpyHostToDevice);  
40 // setup execution paramete rs
41 dim3 threads(Block_Size); 
42 dim3 grid(Grid_Width/ threads.x);
43 /*----- The simulatio n loo p -------- ---------- --------------*/
44 for(time=1;time<500;time++) {
45 dUdt_Kernel<<< grid, threads >>>(d_U); }   
46 /*----- Printing the data and storing it in a file  ------ ----*/
47 // copying back from device to host memo ry
48 cudaMemcpy(h_U, d_U, mem_size_U,cudaMemcpyDeviceToHost);
49 for(i=0;i<Grid_Width;i++)
50 printf("%f ",h_U[i] );
51 printf("\r\n");
52 fp=fopen("Simple.txt","wt ");
53 fwrite(&h_U,sizeof(floa t),Grid_Width,fp);
54 fclose(fp);
55 /*----- Cleaning up at the end of the progra m ------ --------*/
56 free(h_U);
57 cudaFree(d_U);

i
F
t
n
n
o
t
w
d
t

58 cudaThreadExit();
59 }

ng kernel that executes Fisher’s equation is implemented in CUDA.
irst, any functions that need to be implemented on the kernel need
o be specifically labeled. A function that is implemented on the GPU
eed to be declared as global ; this we use de declare the function
amed dUdt kernel. device declares a function that is executed
n the GPU and is called upon from another GPU-function (e.g., from

he kernel that has been labeled by the global instruction). This
e use to implement the function d2Udx2, which calculates the
ispersal term in Fisher’s equation. The memory blocks that hold
he gridded variables need to be defined as pointers, and then allo-
cated dynamically (e.g., as the program runs) in the memory of the
graphics card. After that, they can be filled from mirroring mem-
ory blocks on the main computer’s memory. For these operations,
CUDA has specific command called cudaMalloc and cudaMemcopy.
The size of the grid that the graphics card can handle is obviously
determined by the onboard memory of the graphics card. A card

with 1 GB of memory will hold, for instance, 2 variables of type
float with grid dimensions of 8192 × 8192, while a 4 GB Tesla card
will hold 2 variables of 16,384 × 16,384 nodes. Note that an optimal
speed is obtained using floating point variables of 4 bytes (e.g., type
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oat). When using double precision variables of 8 bytes (e.g., type
ouble), most graphics cards are significantly slower.

Before the kernel is called upon, we need to specify the grid
hat the kernel will be working upon. In a normal C++ program,
e would use a number of for statements to let the kernel move

ver the grid. When the model is being run on the GPU, we cannot
efine such a rigid structure, because a large number of cores will
e processing the grid simultaneously. The programming that is
eeded for that is being taken care of by the CUDA compiler, and
e just need to tell the compiler what the size of the grid is, and
ow many thread will be grouped within one block. This is done
y defining two variables, called threads and grid, which follow a
UDA-defined type called dim3. Within the code, this would look

ike this for a 1D array:

dim3 threads (Block Size);
dim3 grid (Width/threads.x);

Here, the names with the first letter capitalized are constants
efined by the programmer. For 2 dimensional arrays, we  provide
hree examples in the appendixes.

A CUDA implementation of Fisher’s equation would, after
ncluding the standard input/output and CUDA header files (Table 1,
ines 2–3) and defining the model’s constants (lines 5–9), first
efine any specific functions that are used within the GPU kernel.

n the case of Fisher’s equation, we have defined a function called
2Udx2 that calculates the Laplacian operator ∂2U/∂x2, which is
sed in the kernel to calculate the rate of the dispersal of U (lines
1–16). This function is preceded by the device qualifier, indi-
ating that it has to be run on and is only available for the GPU.
fter that, we define the main GPU kernel that calculates the rate
f change of U for a specific location (lines 18–24). This function,
alled dUdt Kernel, is preceded by the global qualifier, indi-
ating that it is run on the GPU, but can be called upon the CPU part
f the code (line 45). The position on the grid needs to be extracted
sing the blockIdx.x and threadIdx.x variables, which are pro-
ided by CUDA (line 20). The syncthreads() command at the
nd of the kernel ensures that all the threads wait for every thread to
ave finished before the model continues, preventing non-parallel
xecution (line 24).

After this, the main program (lines 26–58) is defined, which
pecifies local variables (lines 27–31), allocates and initializes the
ridded variables, and copies them to GPU memory (lines 32–39).
he CUDA execution parameters are then defined and a for-loop
s constructed that calls the GPU kernel for each timestep (lines
1–45; note: a loop in time, not in space). After that, the results are
opied back from GPU to CPU memory, are displayed on the console
nd written to a file (lines 48–54). To finalize, all gridded memory
locks are freed from memory (lines 56–58).

It is beyond the scope of the paper to give a thorough description
f the CUDA language definitions, for this we refer to the CUDA
anual (NVidia CUDA programming guide, www.nvidia.com).

. Application to spatially explicit ecological models

Here, we provide three example implementations of well-
nown ecological models for execution on the graphics processor.
he models that we implement are the spiral-wave forming
redator–prey model that was originally developed by Dunbar
1983), the model of self-organized pattern formation in arid
egetation by Rietkerk et al. (2002),  and the stochastic mussel dis-

urbance model by Guichard et al. (2003).  The first two  models are
ased on deterministic partial differential equations, where spatial
xchange of organisms and matter drive the spatial dynamics of
he system. The first model implements a predator–prey interac-
delling 222 (2011) 3011– 3019 3015

tion, while the second model involves ecosystem-level processes
in the form of water infiltration and overland flow. The last model
is based on a stochastic cellular automaton, in which local changes
in the presence or absence of mussels at any node is a function of
the states of the neighboring nodes on a grid. We will briefly intro-
duce these models, explain how they were implemented within
CUDA, and then show how their performance and predictions are
improved by solving them on the GPU.

4.1. Spiral waves in spatially explicit predator–prey systems

The first model that we will implement is the spatial
predator–prey model that was initially developed by Dunbar
(1983), and further studied by Hassell et al. (1991) in a
host–parasite context. This model revealed the emergence of non-
stationary spatial structures in the form of spatial waves and
spirals, which allowed the persistence of otherwise non-persistent
predator–prey interaction. The model describes the dynamics
between a predator P and its prey N, as a function of their local
interaction and the spatial movement of both species across the
landscape. The equations of this model are given by:

∂N

∂t
= N(1 − N) − CN

(1 − CN)
P + �N,  (1a)

∂P

∂t
= P

AB

(
ACN

1 − CN
− 1

)
+ ı�P. (1b)

Here, parameters A, B and C represent dimensionless parameters
that determine the strength of the interaction between the prey
and the predator, the Laplacian operators �N and �P represent
the dispersal of prey and predator, respectively, and the parameter
� represents the ratio between the movement rates of the preda-
tor and the prey. For a full explanation of this model, we refer to
Sherratt et al. (2002).

4.2. Spatial self-organization in arid systems

An important insight that has been obtained from spa-
tially explicit ecological models is that natural ecosystems can
develop intricate spatial patterns in a process called spatial self-
organization. An important real-world example of this process is
the formation of tiger bush in arid ecosystems, where patches of
shrub vegetation alternate with bare soil to form a regularly pat-
terned landscape. The formation of this pattern can be explained
by a spatial interaction between vegetation and water, the limiting
resource in arid systems. Vegetation can promote the infiltration
of rain water, promoting local growth conditions. Infiltration rates
in patches with low to no vegetation are much lower, which can
lead to accumulation of water on top of the soil, which induces
exchanges of water between bare and vegetated patches in a pro-
cess called overland flow. A well-known model that provides a
mathematical description of this process is the model presented
by HilleRisLambers et al. (2001) and Rietkerk et al. (2002):

∂P

∂t
= cgmax

W

W + k1
P − dP + DP�P, (2a)

∂W

∂t
=∝ O

P + k2W0

P + k2
− gmax

W

W + k1
P − rW W + DW �W,  (2b)

∂O

∂t
= R− ∝ O

P + k2W0

P + k2
+ DO�O.  (2c)

Here, net plant growth ∂P/∂t is a function of water uptake

gmax·W/(W + k1)·P and losses d·P due to senescence or herbivory.
Net change in soil water content ∂W/∂t is a function of infiltration
˛·O·(P + k2·W0)/(P + k2), water uptake by plants, and seepage rw·W.
The net change in surface water ∂O/∂t is determined by rainfall R

http://www.nvidia.com/
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Fig. 2. Simulation output of (A) the predator–prey model, (B) the arid ecosystem
model, and (C) the mussel disturbance model on grid of 3072 × 3072 nodes. The
cutouts provide a model close-in view of 500 × 500 nodes.
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nd infiltration. The lateral fluxes of plants, soil water and surface
ater are modeled by a diffusion approximation, and are propor-

ional to the Laplacian operators. A description of the parameters
f this model is given in Rietkerk et al. (2002).

In Appendix B we provide a standard implementation of this
odel in CUDA on a flat surface. We  have also implemented a

eterogeneous landscape with this model of hills and valleys by
arying the advection rate of water from 0 at flat surfaces to a
aximal value on the hillsides. Moreover, we adopt higher water

eepage into the deep soil (rw·W)  on the hills than in the valleys,
ssuming a higher depth of the aquifer on the hills.

.3. Disturbance driven self-organization in mussel beds

The last implementation of a spatial model that we provide is not
ased on partial differential equations, but on a cellular automa-
on. We implement the mussel disturbance model developed by
uichard et al. (2003),  which describes the large-scale dynamics
f mussel beds as a function of wave disturbance and recolonisa-
ion. At a small scale, each location can be in one of three states,
eing either filled with mussels, bare, or disturbed. The transitions
etween these states are described as a stochastic process, in which
he chances of wave disturbance and recolonisation are a function
f the presence of disturbed edges or other mussels in the direct
eighborhood, respectively. For a detailed treatment see Guichard
t al. (2003).

To compare CPU and GPU implementations of the above mod-
ls, we used a HP z800 workstation with 2 Intel Xeon quad-core
5540 processors equipped with an NVidia Tesla C1060 computing
rocessor with 240 cores and 4 GB of GDDR3 memory. The second
ystem was a more modest Sony Vaio VPCF11Z1E Laptop with an
ntel Core i7 720QM quadcore processor and an NVidia Geforce GT
30M with 48 cores and 1 GB of DDR3 memory. Comparisons were
ased on implementations of the above models, where the grid
izes were set to fit the memory of the Geforce GT 330M graphics
ard. All systems ran on Windows 7 with Microsoft Visual Studio
008.

. Results

Implementation of three classical ecological models revealed
ome clear advantages of the use of graphics processors for spatially
xplicit ecological models. The first advantage is the ability to run
he models on extensive spatial grids. We  present an example solu-
ion for each model in Fig. 2 at a grid size of 3072 × 3072 nodes. The
utouts in this figure demonstrate that a large spatial field can be
imulated without losing detail at small spatial scales. The second
dvantage is that these simulations can be performed efficiently
n a matter of seconds. We  have made a comparison of the time
t takes to solve the arid systems model on a grid of 1024 × 1024
odes for 1000 timesteps, using MatLab as a baseline. Fig. 3 presents
he simulation time, in s, of this model in MatLab and in C, both
sing only a single core, in Fortran using multiple cores, in CUDA
n the low-end GPU, and in CUDA on the Tesla processor. A simu-
ation which lasted 5400s in MatLab (1.5 h) on the HP z800 lasted
nly 15 s on the Tesla processor in the same machine, a 360 times
peed increase. When more efficient use is made of the CPU using
tandard C or Fortran, a 200- (single-core C code) and 18 (multi-
ore Fortran code)-fold speed increase is obtained still. This reveals
he advantage that graphics processors provide over standard CPU
rocessors. The advantage results from the many cores that GPU

rocessors contain, as demonstrated by the Tesla computing card.

A possible use of the increased speed at which large spatial
rids can be implemented on graphics cards is the possibility to
imulate the effect of landscape heterogeneity on the process of
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C - 1 core

Matlab

Simulation duration per platform/language

302 4

541 8

NVidia Tesla C106 0

Nvidia Geforce 330M

Fortr an - 8 cores

15

47
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Duration (s)

1 10 100 100 0

Fig. 3. Simulation times needed for the arid systems model on a grid of 1024 × 1024
nodes, implemented in MatLab (single thread), in C (single thread), in Fortran (8
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Fig. 4. Simulation of pattern formation in an arid ecosystem, positioned on a hilly
landscape. The rounded shapes represent hills. In the valleys, no patterns develop
as  sufficient water is available, while on the hills, increased drainage reduces water
availability which in turn causes pattern formation. On the hill slopes, this results

rence of patches of a particular size declines as a function of patch

F
s
e
o

hreads), C-CUDA on NVidia Geforce 330M (48 threads), and in CUDA-C on NVidia
esla C1060 (240 threads).

patial self-organization. We  imposed a gently sloping landscape
hape on the arid systems model. In this model, the advection rate
f surface water is linearly related to the slope of the landscape.
his affects patch formation in this landscape, which varies from
ound-shaped patches of limited size that are mostly caused by
iffusion-approximated surface water movement on flat land, and

arger, banded patches that occur on hillsides (Fig. 4). So far, the
ffects of changing slope have mostly been addressed in separate
imulations. Using GPU processing, self-organization within het-

rogeneous landscapes can be studied efficiently, which greatly
mproves the possibility to compare the results of model simula-
ions with real-world self-organized patterns.
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ig. 5. The effects of scale on the predicted cluster size distribution in the mussel-disturb
patial  pattern was  used at scale 107, which was  cut into pieces to obtain the lower scale
ntire  grid. The remaining smaller patches follow a power law distribution. At smaller gri
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in  vegetation bands, as water flows directionally down to the lower parts. On the
hilltops, labyrinth patterns develop, as water flows in all directions. This simulation
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5.1. Studying scaling relations

Cellular automaton models have formed the technical basis for
the concept of criticality in ecology. This concept advances that spa-
tially extensive ecosystems can exhibit threshold behavior when
environmental conditions are changed. Near this threshold, the sys-
tem is characterized by a scale-invariant mosaic of occupied and
bare patches. Scale-invariance implies that the frequency of occur-
size itself, and appears as a linear relation when size and frequency
are expressed on a logarithmic scale. Depending on the structure
and assumptions of the models, scale-invariance of patch sizes is
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er Size

ance model published by Guichard et al. (2003). For all 4 scales, a single predicted
s. Note that in the largest spatial scale, a single large cluster is found that spans the
d sizes, this spanning cluster is cut into pieces, forming a deviation at the high end
ollow the above paper.
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bserved near the critical threshold (Malamud et al., 1998), is found
or a broad range of conditions (Pascual and Guichard, 2005), or is
ctually absent near the threshold (Kefi et al., 2007a).

For successful identification of scale-invariance, it is crucial that
 sufficiently large number of patches are included in the sample, in
articular in the larger size classes. Most theoretical studies have
herefore used a large number of simulations on relatively small
rids of about 500 × 500 nodes to avoid problems with low sam-
le sizes. Although this solves the problem of low sample sizes,
he problem remains that the small size of the grid affects the
resence of large patches, affecting the accuracy of the power law
elation at the right of the curve. We  illustrate this in Fig. 5. Using
he GPU implementation of mussel disturbance model, we simu-
ated the extensive field of 107 nodes (3162 × 3162), and analyzed
he patch size frequency distribution following the procedure in
uichard et al. (2003).  We  then cut our grid into 9 parts of 106

odes (1000 × 1000), and performed a patch size analysis on the
ombined grids. We  repeated this procedure for two more times
ith grids of 105 and 104 nodes each. The results reveal that for

his particular set of model parameter values, the results are sig-
ificantly affected by the size of the grid. While grids of 104 to 106

odes show a clear deviation from a straight curve, the grid of 107

eveals a clear power law relation. Hence, this result emphasizes
he need for simulation of extensive spatial grids for accurate iden-
ification of scale-invariance in models of the spatial dynamics of
cosystems.

. Discussion

In this paper, we demonstrate the use of graphics processors
or simulation of spatial models of ecological self-organization.
raphics processing units, or GPUs, are processors that offload the

endering of 3D graphics from the computer’s central processing
nit (CPU). GPUs are specialized in floating point calculations. They
ontain many cores that can process calculations in parallel, and
re therefore particularly suited for simulation of spatially explicit
cological models where the same calculation is repeated on a
arge spatial grid. This can lead to significant acceleration of the

odel, where spatial models are solved from 10- to over a 100-fold
aster compared to calculations on the central processor unit (CPU).
his acceleration makes it possible to simulate ecological models
t large spatial scales while maintaining manageable simulation
uration.

One of the leading themes in the field of spatial ecology is
he ability of communities and ecosystems to self-organize. Two
urrent developments in research on spatial-self-organization can
enefit from GPU based techniques; the first being the use of
elf-organized spatial patterns as indicators of imminent catas-
rophic shifts (Rietkerk et al., 2004; Kefi et al., 2007a; Solé, 2007;
cheffer et al., 2009), and the second being the emergent prop-
rties of self-organized spatial patterns for ecosystem functioning
Van de Koppel and Rietkerk, 2004; Van de Koppel et al., 2005). Self-
rganized patterns are predicted to undergo a specific sequence of
hanges in response to changing environmental conditions before
rossing a tipping point that leads to a dramatic and possibly
rreversible shift. An important indicator is the disappearance
f scale-invariance patchiness due to facilitation failure. As we
emonstrate in this paper, identification of scale-invariance in
heoretical studies can dependent critically on simulating the
ynamics of spatial models at large spatial scales (Burroughs and
ebbens, 2002). When simulations are performed on small scales,

eviations from power laws are found to be significant, while sim-
lations at sufficiently large scale would point at scale-invariance.

We have introduced the use of CUDA in spatially explicit ecolog-
cal models using examples of self-organized systems. Studies on
delling 222 (2011) 3011– 3019

spatial self-organization typically apply simulations within small
spatial domains and homogeneous conditions (Rietkerk et al.,
2002; Van de Koppel et al., 2005). Within many ecosystems, how-
ever, there are large-scale gradients in environmental conditions
that are caused by the physical landscape, for instance on hill-
sides or mountainous terrain, or in intertidal ecosystems where
fluxes of nutrients are not homogeneously spread over the area
(as in case of rainfall) but enter from the boundaries via tidal
flow, and are gradually depleted as the water moves off the tidal
flat. These external or intrinsic gradients could significantly affect
how ecosystems respond to sudden or gradual changes in envi-
ronmental conditions, and hence affect the impact of emergent
phenomenon on ecosystem functioning. To study the impact of
these underlying or intrinsic gradients, models need to be simu-
lated within extensive spatial domains with large grid sizes. Hence,
using GPU-based techniques for solving spatially explicit models
will provide a fast, cheap and relatively simple method (compared
to the use of extensive computing clusters) for predicting the large-
scale response using more realistic, heterogeneous ecosystem
models.

In this paper, we  have addressed how to implement reaction-
diffusion models cellular automata on the GPU. However, it is well
possible to implement other types of models, such as individual-
based models (IBMs) or networks of meta-communities. The
requirement for implementation of these models on the GPU is
that on each individual or metacommunity, the same calculation is
performed in parallel (e.g., not sequential). Individual-based mod-
els of schools of fish or migratory organisms have successfully
been implemented on GPUs, as a similar movement algorithm is
applied to all individuals (Erra et al., 2009; Guttal and Couzin, 2010).
It is most efficient from computational viewpoint if individuals
that interact with each other in the simulated group (e.g., are in
each other’s neighborhood) are also in proximity in the computer’s
memory, the individuals need to be continuously reordered in the
computer’s memory to match changes in the organisms coordinates
(Erra et al., 2009). This required a complex reordering algorithm,
and hence implementation of these IBM models on GPUs is far more
complex that the grid models that we discussed here.

As it is a new development, programming an ecological model
to run on the GPU requires some knowledge of low-level pro-
gramming in C, as was described in this paper. As the use of
GPUs is becoming more commonplace, high-level language sup-
port is rapidly expanding. Specialized computing algorithms, for
instance for calculating a Fast-Fourier-Transformation of a exten-
sive grid of data, can be executed on the graphics processor from
programming environments like MatLab and Python using lan-
guage extension packages. Moreover, high-level support for the
use of GPUs within program languages like MatLab and PGI  For-
tran and in mathematical applications such as Mathematica has
recently become available. Hence, although current use of GPUs
in ecological modeling requires in-depth understanding the CUDA
programming model, GPU programming is likely to become more
accessible to ecological modelers in the near future.

Another recent development is the adoption of OpenCL as a com-
mon  standard for writing programs that run across heterogeneous
platforms consisting of CPUs, GPUs, and other processors. OpenCL,
also based on C, can be used to implement models on GPUs of both
NVidia and AMD  (or ATI), and can be used on both windows-based
and Apple computers. Drawbacks of OpenCL are that it requires
more extensive coding, is currently less mature (e.g., less tools are
available) and requires the programmer to put more effort in mem-
ory management. We  therefore consider CUDA to be a better choice

for ecological modelers that take their first steps in GPU program-
ming, but this may change in the future.

The CUDA implementations that we  present in Appendix B have
been optimized for clarity, not for efficiency. Further improvements
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n efficiency can be obtained using shared memory algorithms,
here thread blocks that are copied from global memory into

aster shared memory are reused efficiently before global mem-
ry is accessed again (see the NVidia CUDA programming guide on
ww.nvidia.com/cuda). This can lead to a further 10–20% speed

ncrease in the models we presented here. GPU programming can
urther be combined with more traditional solving techniques such
s Runge–Kutta integration to further improve efficiency, as long as
hese techniques use explicit iterations to approximate the model’s
olution. Discussing these methods in detail is beyond the scope of
he current paper.

It is now common knowledge that most properties of ecologi-
al and biological systems depend strongly on the scale at which
hey are studied. This has led to a broad theory that considers how
patial scale affects observations and how changes in the character-
stics of ecological systems with spatial scale can reflect ecological
rocesses (Peterson and Parker, 1998). When modeling the dynam-

cs of spatially explicit ecosystems, however, the effects of scale
re often ignored, and the range of scales at which ecological pro-
esses are modeled is typically limited. This has mostly been caused
y technical limitations, as simulating large spatial grids requires
xtensive computing facilities. GPU based techniques allow math-
matical ecologists simulate the dynamics of ecological systems
n large spatial grids, allowing for a range of spatial scales to be
ddressed. These techniques will significantly facilitate mecha-
istic understanding of scale-dependence and scale-invariance in
cological systems.
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