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Abstract

In this paper, some theoretical results on the eigenvalue analysis of the SIM-

PLER preconditioning for incompressible flow is presented. Some formulations have

been derived to characterize the spectrum of the preconditioned matrix. These re-

sults could be helpful for the practical use of the SIMPLER preconditioning. Some

numerical tests are reported.
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1 Introduction.

In this paper, we will analyze the spectrum of the SIMPLER preconditioned matrix which
is resulted from the SIMPLER preconditioning collaborated with some Krylov subspace
iterative methods solving the large sparse linear algebraic system

(
Q G

GT O

)(
u

p

)
=

(
b1

b2

)
, (1.1)

where Q ∈ R
n×n, G ∈ R

n×m, m 6 n, det(Q) 6= 0, rank(G) = m. This large linear system is
often obtained from discretization and linearization of incompressible Navier-Stokes equa-
tions, for which, u ∈ R

n and p ∈ R
m in (1.1) are the velocity vector and the pressure vector

respectively.
In [6, 7], Vuik et al. proposed GCR-SIMPLE and GCR-SIMPLER algorithms for

solving the large linear system (1.1). The algorithm can be considered as a combination of
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the Krylov subspace method GCR [3] with the SIMPLE(R) algorithm[5]. In these combined
algorithms, the inner iterations of SIMPLE and SIMPLER algorithms are preconditioners
for the GCR method. In our numerical tests, we have observed that the SIMPLE and
SIMPLER preconditioning are effective and competitive for practical use. Some theoretical
results on the eigenvalue analysis for the SIMPLE preconditioning had been given in our
former technical report [4]. We have also observed that the SIMPLER preconditioning is
even more efficient than SIMPLE preconditioning in terms of the iteration number and the
eigenvalue distributions.

In this paper, we are concentrated to the spectral analysis for the SIMPLER precondi-
tioning, which might be helpful to the theoretical explanation of the observation. Several
formulations are derived to describe the spectrum of the SIMPLER preconditioned matrix.
Some numerical tests are reported.

In the remaining parts of this paper, the linear system (1.1) is abbreviated as Ax = b,
where A ∈ R

(n+m)×(n+m), b ∈ R
n+m. Notations have the same meaning with references

[7, 6] and [4]. σ(A) represents the set of all eigenvalues of matrix A, for example. Besides,
we assume that the matrix Q, its diagonal matrix D := diag(Q), and its Jacobi iteration
matrix J (J := D−1(D − Q)), are all nonsingular in this paper.

2 Description of the spectrum of the SIMPLER pre-

conditioned matrix.

Consider the right preconditioning to the linear system (1.1)

AP−1y = b, x = P−1y. (2.1)

When the SIMPLER algorithm is used as preconditioning, it is equivalent to choose the
preconditioner P−1 as[7, 8]

P−1 = BRM−1
R

− BRM−1
R

AM−1
L

BL + M−1
L

BL, (2.2)

where,

BR =

(
I −D−1G

O I

)
, MR =

(
Q O

GT R

)
,

BL =

(
I O

−GT D−1 I

)
, ML =

(
Q G

O R

)
,

and
D = diag(Q), R = −GT D−1G.

We can get easily that

B−1
R

=

(
I D−1G

O I

)
, M−1

R
=

(
Q−1 O

−R−1GT Q−1 R−1

)
,
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B−1
L

=

(
I O

GT D−1 I

)
, M−1

L
=

(
Q−1 −Q−1GR−1

O R−1

)
.

We call this preconditioning as SIMPLER preconditioning, and the preconditioner P−1 as
SIMPLER preconditioner.

It is not very difficult to verify that

ABRM−1
R

=

(
I − (I − QD−1)GR−1GT Q−1 (I − QD−1)GR−1

O I

)
, (2.3)

AM−1
L

BL =

(
I O

GT Q−1(I + GR−1GT D−1) −GT Q−1GR−1

)
,

and hence

ABRM−1
R

AM−1
L

BL =(
I + (I − QD−1)GR−1GT Q−1GR−1GT D−1 −(I − QD−1)GR−1GT Q−1GR−1

GT Q−1 + GT Q−1GR−1GT D−1 −GT Q−1GR−1

)
.

It follows that the SIMPLER preconditioned matrix is

Ã := AP−1 = ABRM−1
R

− ABRM−1
R

AM−1
L

BL + AM−1
L

BL =(
I − (I − QD−1)GR−1GT Q−1(I + GR−1GT D−1) (I − QD−1)GR−1(I + GT Q−1GR−1)

O I

)
.

(2.4)
For SIMPLER preconditioning, we get a result concerning with its spectrum:

Proposition 2.1. For the SIMPLER preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity at least of m, and

2. the remaining eigenvalues are 1 − µi, i = 1, 2, · · · , n, where

µi ∈ σ(C), C := (I − QD−1)GR−1GT Q−1(I + GR−1GT D−1). (2.5)

Remark 2.1. The matrix (I−QD−1)GR−1GT Q−1 in equation (2.5) is closely related with
the SIMPLE preconditioned matrix. We refer to the equation (2.3) in [4] for reference.

For nonsingular matrices A and P , P−1A has the same spectrum with AP−1 (see
reference [1]). So, we can derive another formulation for the spectrum of the SIMPLER

preconditioned matrix Ã. Since that

BRM−1
R

A =

(
I (I + D−1GR−1GT )Q−1G

O −R−1GT Q−1G

)
, (2.6)

M−1
L

BLA =

(
I + Q−1GR−1GT (D−1Q − I) O

R−1GT (I − D−1Q) I

)
,
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and

BRM−1
R

AM−1
L

BLA =(
I + D−1GR−1GT Q−1GR−1GT (I − D−1Q) (I + D−1GR−1GT )Q−1G

R−1GT Q−1GR−1GT (D−1Q − I) −R−1GT Q−1G

)
.

It follows that

P−1A = BRM−1
R

A − BRM−1
R

AM−1
L

BLA + M−1
L

BLA =(
I + (I + D−1GR−1GT )Q−1GR−1GT (D−1Q − I) O

R−1GT (I + Q−1GR−1GT )(I − D−1Q) I

)
.

(2.7)

Remark 2.2. In the equation (2.6), the matrix BRM−1
R

A = P−1
S

A is the (left) SIMPLE

preconditioned matrix. It has the same spectrum as AP−1
S

:= ÃS. From equation (2.6),
we get to know that

σ(ÃS) = {1} ∪ σ(R−1S), (2.8)

in which, S = −GT Q−1G is the Schur complement of the original matrix A. This result
had been obtained in [4] by a different derivation.

3 More Formulations for the the spectrum of the SIM-

PLER Preconditioned Matrix Ã

In this section, we will give some different formulations of the spectrum of Ã by using the
singular value decomposition.

For matrix D−
1

2 G ∈ R
n×m, making the singular value decomposition for it, we have

D−
1

2 G = UΣV T , (3.1)

in which,U ∈ R
n×n, V ∈ R

m×m are unitary matrices, and

Σ =




σ1

σ2

. . .

σm

O




∈ R
n×m,

σi, i = 1, 2, · · · , m, are the singular values of the matrix D−
1

2 G, which are all positive
numbers since rank(D−

1

2 G) = m. So,

G = D
1

2 UΣV T ,

R = −(UΣV T )T (UΣV T ) = −V ΣT ΣV T ,

R−1 = −V (ΣT Σ)−1V T ,

GR−1GT = (D
1

2 UΣV T )(−V ΣT ΣV T )−1(D
1

2 UΣV T )T

= −D
1

2 UΣ(ΣT Σ)−1ΣT UT D
1

2 .
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It follows that matrix C as given in (2.5) can be written as

C = (I − QD−1)GR−1GT Q−1(I + GR−1GT D−1)

= (I − QD−1)(−D
1

2 UΣ(ΣT Σ)−1ΣT UT D
1

2 )Q−1(I − D
1

2 UΣ(ΣT Σ)−1ΣT UT D−
1

2 )
(3.2)

If we take the notation N := Σ(ΣT Σ)−1, then

N = Σ(ΣT Σ)−1ΣT

=




σ1

σ2

. . .

σm

O




n×m




1
σ2

1
1
σ2

2
. . .

1
σ2

m




m×m




σ1

σ2

. . . O

σm




m×n

=




1
1 O

. . .

1
O O




n×n

=

(
Im O

O O

)
∈ R

n×n.

So, the matrix C can be simplified as

C = (I − QD−1)(−D
1

2 UNUT D
1

2 )Q−1(I − D
1

2 UNUT D−
1

2 ). (3.3)

The matrix C is spectral equivalent to

F : = UT D−
1

2 CD
1

2 U

= −NUT D
1

2 Q−1D
1

2 U(I − N) + UT D−
1

2 QD−
1

2 UNUT D
1

2 Q−1D
1

2 U(I − N).
(3.4)

If we denote
M := UT D−

1

2 QD−
1

2 U ∈ R
n×n,

then
M−1 = UT D

1

2 Q−1D
1

2 U ∈ R
n×n.

So,
F := UT D−

1

2 CD
1

2 U = −NM−1(I − N) + MNM−1(I − N),

that is
F = (M − I)NM−1(I − N). (3.5)

We partition the matrix M according to the structure of N to the sub-block form

M =

(
M11 M12

M21 M22

)
,
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where M11 ∈ R
m×m and M22 ∈ R

(n−m)×(n−m) are square matrices, and denote its inverse
M−1 with the same structure

M−1 := M̂ =

(
M̂11 M̂12

M̂21 M̂22

)
,

where M̂11 ∈ R
m×m and M̂22 ∈ R

(n−m)×(n−m) are also square matrices, then, we get

NM−1(I − N) =

(
Im O

O O

)(
M̂11 M̂12

M̂21 M̂22

)(
O O

O In−m

)
=

(
O M̂12

O O

)
.

So,

F =

(
M11 − Im M12

M21 M22 − In−m

)(
O M̂12

O O

)
=

(
O (M11 − Im)M̂12

O M21M̂12

)
(3.6)

Notice that the relation

M21M̂12 + M22M̂22 = In−m

holds since that MM−1 = I. Finally, we have derived the following expression for F :

F =

(
O (M11 − Im)M̂12

O In−m − M22M̂22

)
. (3.7)

The characteristic polynomial of F is

det(λI − F ) = λm det(λIn−m − In−m + M22M̂22). (3.8)

This equation together with proposition 2.1 lead to the following proposition concerning
with the spectrum of the SIMPLER preconditioned matrix Ã:

Proposition 3.1. For the SIMPLER preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity of 2m, and

2. the remaining n − m eigenvalues are 1 − µi, i = 1, 2, · · · , n − m, where µi , i =
1, 2, · · · , n − m, are the roots of the polynomial defined by (3.8).

Remark 3.1. If the matrix M22M̂22 is close to In−m in some sense, say, M22M̂22 = In−m+E,
where ‖E‖2 < δ, then according the matrix perturbation theory, see reference [2, pp.97]
and [9], we have

maxi |1 − (1 − µi)| = maxi |µi| 6 α(n − m)
1

n−m (2β)
n−m−1

n−m δ
1

n−m , (3.9)

where, β = max(1, ‖In−m + E‖), α = n−m or n−m−1. We have seen frequently that the
eigenvalues of the SIMPLER preconditioned matrices are clustered in a quite small region
around 1 in the complex plane.
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Remark 3.2. From the definition of matrix M , it can be observed that D−
1

2 QD−
1

2 is
just the symmetric diagonal scaling of the matrix Q, and that the matrix M is unitary
equivalent to this scaled matrix. It is obvious that both M and M−1 are symmetric if the
matrix Q is symmetric.

Next, we derive another formulation by only using the sub-blocks of the matrix M

(without using any blocks of M−1).
We assume that the block matrix M11 is nonsingular. Then the Schur complement of

M with respect to M11 is defined as

SM := M22 − M21M
−1
11 M12. (3.10)

We can verify that (see [1, pp.93])

M̂ = M−1 =

(
I −M−1

11 M12

O I

)(
M−1

11 O

O S−1
M

)(
I O

−M21M
−1
11 I

)

=

(
M−1

11 + M−1
11 M12S

−1
M

M21M
−1
11 −M−1

11 M12S
−1
M

−S−1
M

M21M
−1
11 S−1

M

)
.

Comparing this expression with that of the matrix M̂ , we see that

M̂22 = S−1
M

.

It follows that

In−m − M22M̂22 = In−m − M22S
−1
M

= (SM − M22)S
−1
M

.

So, the non-zero eigenvalues of the matrix F is the solution of the following generalized
eigenvalue problem

(SM − M22)v = λSMv, (3.11)

which is equivalent to
M22v = (1 − λ)SMv. (3.12)

Remark 3.3. If matrix Q is symmetric, then both the matrix M (see remark 3.2) and
its Schur complement SM are also symmetric [1]. So, the eigenvalues of the SIMPLER
preconditioned matrix are the solution of a symmetric generalized eigenvalue problem
(3.11). This observation might be helpful to obtain some more practical eigenvalue bounds
for Stokes equations.

4 Numerical Tests.

We report some numerical test results here.

Example 4.1. In this example, the coefficient matrix is taken from a discretized Navier-
Stokes equations on a 24 × 24 grid [7](lengthy = 2, ν = 1).The dimensions are n =
1200, m = 576, and n + m = 1776. A ∈ R

1776×1776 is a nonsymmetric matrix.
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The eigenvalues of the preconditioned matrix Ã were computed by both proposition
2.1 and proposition 3.1. The computing results were the same, which coincided with the
theoretical analysis. Spectra of A and Ã are plotted in Fig. 4.1 and Fig. 4.2, and some
comparisons for the numerical performance of GCR (without any preconditioning), GCR-
SIMPLE, and GCR-SIMPLER are listed in Table 4.1.

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig4.1. Spectrum of the SIMPLER preconditioned matrix Ã. ’o’ for the eigenvalues of Ã.

Fig4.2. Spectrum of A and Ã.

The ’+’ represents for the eigenvalues of A, while ’o’ for that of Ã.

Table 4.1. Comparison of Example 4.1.

GCR GCR-SIMPLE GCR-SIMPLER
iterations 907 64 10
CPU (s) 189.45 23.08 18.83

Example 4.2. This test is taken from a discretized Stokes equation on a 24 × 24 grid
(lengthy = 2, ν = 0.0) by removing the Dirichlet boundary conditions. The dimensions are
n = 1008, m = 576, and n + m = 1584. A ∈ R

1584×1584 is symmetric.
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All the eigenvalues of A and Ã are real. Comparisons are listed in table 4.2, and the
extreme eigenvalues are listed in Table 4.3.

Table 4.2. Comparison of Example 4.2.

GCR GCR-SIMPLE GCR-SIMPLER
iterations 229 37 12
CPU (s) 37.07 27.04 23.51

Table 4.3. The extreme eigenvalues of A and Ã for example 4.2.

matrix λmin λmax κ(·)
A 0.0177 5.7453 324.5932

Ã 1.0000 4.4162 4.4162

Both examples indicate that the spectrum could be effectively improved by using the
SIMPLER preconditioner.

5 Concluding remarks.

We have derived several formulations to describe the spectrum of the SIMPLER precon-
ditioned matrix Ã. These results could be useful for practical computations using the
SIMPLER preconditioning. Since that the SIMPLER iteration itself is more complicated
than SIMPLE, theoretical aspects of the SIMPLER preconditioning are more difficult than
those of the SIMPLE preconditioning. One attractive feature of the SIMPLER precondi-
tioning is that the spectrum of the preconditioned matrix is clustered in a small region,
which is relatively far away from the origin. This could be helpful to explain why the
SIMPLER preconditioning needs less iterations in practical use.

Acknowledgments: The first author is grateful to his roommate, Mr. Ariel Almen-
dral, for the fruitful discussions with him.
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