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ABSTRACT

The dissolution of an Al2Cu particle is considered. A characteristic property is that initially the particle

has a non-smooth boundary. Furthermore the dissolution may be controlled by an interface reaction. The

mathematical model of this dissolution process contains a description of the particle interface, of which the

position varies in time. Such a model is called a Stefan problem. We use the finite element method to solve this

problem numerically. The displacement of the free boundary is computed by a method based on the balance

of atoms. This method leads to good results, also for non-smooth boundaries. Some numerical experiments

are given for the dissolution of an Al2Cu particle in an Al-Cu alloy, with a varying rate of the interface

reaction.
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1. Introduction

Heat treatment of metals is often necessary to optimize their mechanical properties. During
the heat treatment, the metallurgical state of the material changes. This change can either
involve the phases being present or the morphology of the various phases. One of these pro-
cesses, which is both of large industrial and scientific interest and amenable to modeling, is
the dissolution of second phase particles in a matrix with a uniform initial composition.

To describe this particle dissolution in rigid media several physical models have been de-
veloped, incorporating the effects of long-distance diffusion [9], [2], [6] and non-equilibrium
conditions at the interface [3], [1]. The long-distance diffusion models imply that the processes
at the interface between particle and matrix proceed infinitely fast. Therefore, these models
provide an upper bound for the dissolution rate.

Nolfi’s model [3] did not include the interface migration, but as far as we know, it is the first
model which incorporated non-equilibrium conditions at the interface. In the Nolfi model non-
equilibrium conditions at the interface were incorporated by the introduction of a Robbins
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condition, which relates the concentration gradient with the concentration at the interface.
The semi-analytical solution consists of an infinite series solution for the concentration profile.
Their method, however, is only accurate in the early stages of the dissolution process.

Aaron and Kotler [1] incorporated the non-equilibrium conditions at the interface too. How-
ever their approach is only applicable for those situations in which the inter-particle distance
is sufficiently large, i.e. the diffusion fields do not impinge. They transformed the Robbins
problem of Nolfi into a Dirichlet problem, in which the concentration is fixed at all stages of
the dissolution process. Combining Whelan’s [9] analytical approach for the interface veloc-
ity as a function of the annealing time, with a relation between the interface concentration
and the interface position, they evaluated the interface position using a Picard-type iteration
method. In their model both the interface position and the interface concentration were taken
momentarily stationary during the evaluation of the interface position as a function of time.

The effects of interfacial reactions on the rate of the dissolution of spherical particles in both
infinite and finite media was examined by Vermolen and Van der Zwaag numerically [7]. Us-
ing a finite difference method it was shown, that interfacial reactions can have a significant
effect on the dissolution rate and hence on the concentration profiles in the matrix during
particle dissolution.

All solution methods presented in the references given above are only applicable to one-
dimensional problems. In [5] a method is described by Segal, Vuik and Vermolen to compute
a numerical solution of a two-dimensional Stefan problem with a conserving discretization of
the free boundary. This method is applied for an infinite rate of the interface reaction.

In this paper we generalize the method presented in [5] to a Stefan problem with a finite rate
of reaction at the interface. The boundary conditions at the free boundary are derived in
Section 2 and compared with the literature. In Section 3 the numerical method presented
in [5] is summarized. The numerical discretization of the interface reaction is investigated in
Section 4. In Section 5 some results are shown.

2. A model for dissolution with an interface reaction

Consider an Al2Cu particle in an Al-Cu alloy at a given temperature. The initial concen-
tration of Al2Cu in the Aluminum phase is equal to c0 (mol/m3), whereas cpart denotes
the concentration of Al2Cu in the particle. When the temperature is increased, dissolu-
tion of the Al2Cu particle sets in. The equilibrium Al2Cu concentration in the alloy is csol

(cpart > csol > c0).

To describe the mathematical model we use the geometry as given in Figure 1. The domain
filled with Aluminum is denoted by Ω(t). The boundary of this domain consists of the in-
terface S(t) and the outer boundaries Γi, i ∈ {1, 2, 3, 4}. The outer boundaries are fixed in
time, except the intersections of Γ1 and Γ4 with S(t). In the Aluminum-rich phase Ω(t), the
Cu concentration c(x, y, t) satisfies the (linear) diffusion equation

∂c

∂t
= D∆c, (x, y) ∈ Ω(t), t ∈ (0, T ]. (2.1)



3

S(t)

Γ Γ

Γ

Γ

Al-Cu
1

4

3

2

Ω (t)

Al Cu2
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The diffusion coefficient D (m2/s) is supposed to be independent of concentration. As the
initial condition we use

c(x, y, 0) = c0(x, y), (x, y) ∈ Ω(0), (2.2)

where Ω(0) is prescribed. We assume no flux of Cu through the outer boundaries, so

∂c

∂n
(x, y, t) = 0, (x, y) ∈ Γi, i ∈ {1, 2, 3, 4}, t ∈ [0, T ]. (2.3)

To determine the position of the interface two conditions are necessary. To derive these con-
ditions for a spatially three dimensional problem, we consider a small part of the interface.
Suppose that the interface is smooth, which means that it can locally be described by differen-
tiable functions. For a small time step ∆t the interface moves in the direction perpendicular
to the interface. The x-axis is chosen along the normal. With this choice the position of the
interface is locally described by the relation x = S(t). We consider a control volume of width
∆y and ∆z. The intersection of the control volume with the surface y = 0, z = 0 is shown in
Figure 2. The balance of Cu atoms leads to the following equation (Stefan condition):

(S(t + ∆t)− S(t)) ∆y∆z · cpart = D
∂c

∂x
∆y∆z∆t + (S(t + ∆t)− S(t)) ∆y∆z · cS ,

(2.4)

where cS is the limit of the concentration in Ω in the neighborhood of the interface. The left-
hand side of (2.4) is equal to the amount of atoms transferred from the particle to the alloy.
Assuming a first order reaction at the interface the second equation is (Robbins condition):

K (csol − cS)∆y∆z∆t = D ∂c

∂x
∆y∆z∆t + (S(t + ∆t)− S(t)) ∆y∆z · cS , (2.5)

where K (m/s) is a measure of the rate of the interface reaction. For K large the problem is
diffusion controlled, whereas for K small the problem is reaction controlled. Dividing (2.4)
and (2.5) by ∆y∆z∆t and taking the limit ∆t→ 0 one obtains

cpartvn(x, y, t) = D ∂c

∂n
(x, y, t) + cSvn(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ] , (2.6)
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K (csol − cS) = D
∂c

∂n
(x, y, t) + cSvn(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ] . (2.7)

where n is the unit normal vector on the interface pointing outward with respect to Ω(t) and
vn is the normal velocity of the interface.

In the references [3], [7] and [8] comparable boundary conditions are used. In [3] and [7] the
final term in (2.7) is not taken into account. This approximation is reasonable because in
their applications csol � cpart, which implies that the neglected term is small.

3. A conserving computation of the free boundary for infinite rate of reac-

tion

In the literature (see [5] for a short overview) one can find various numerical methods to
solve Stefan problems. These methods can be distinguished in the following categories: front-
tracking, front-fixing and fixed-domain methods. We shall restrict ourselves to front-tracking
since it allows first order reaction at the interface.

The algorithm for an infinite rate of reaction can be described as follows. In each time-step
we solve the (ALE) convection-diffusion equation

Dc

Dt
−D∆c− umesh · ∇c = 0, (3.1)

with Dc
Dt the so-called material derivative and umesh = x(t+∆t)−x(t)

∆t the mesh velocity.
After that, the boundary is updated according to

x(t + ∆t) = x(t) + vn∆t n = x(t) +
D

cpart − csol

∂c

∂n
∆t n. (3.2)

The straight-forward way to update the free boundary is to compute the gradient of the con-
centration in the elements connected to the free boundary (normal velocity method). Using
an averaging procedure for the gradient as well as an averaging procedure to compute the
normals in the vertices of the boundary, equation (3.2) can be evaluated.

However, in case of sharp corners this may lead to a strange behavior as is shown in Figure
3. In order to get rid of this phenomenon we have developed a new algorithm (Stefan) based
on the integral representation of the Stefan boundary condition. This implies that the area
of the particle that has been dissolved is equal to the amount of diffused material. The flux
through the element (xi−1, xi) is approximately equal to:

D
∂c

∂n
(xi− 1

2
)li∆t, (3.3)

with li the length of the line element (xi−1, xi). Hence the amount of diffused material through
the boundary (xi− 1

2
, xi+ 1

2
) is equal to

∆t

2

(
D ∂c

∂n
(xi− 1

2
)li + D ∂c

∂n
(xi+ 1

2
)li+1

)
. (3.4)

The amount M of material dissolved, is approximately equal to (cpart − csol)O, where O is
the area defined in Figure 5. Due to the balance of atoms M must be equal to the amount
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 Figure 3: Position of free boundary at first 10
time-steps using the normal velocity method
for infinite rate of reaction

 Figure 4: Position of free boundary at first
10 time-steps using the Stefan method for
infinite rate of reaction
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Figure 5: Area occupied by the region defined by the displacement of the vertex

of diffused material given in Equation (3.4). Consider two adjacent line elements (xi−1, xi),
and (xi, xi+1), with length li and li+1 respectively (Figure 5). The mid-side points of these
elements are denoted by xi− 1

2
and xi+ 1

2
. Let the from formula (3.2) computed displacement

in the mid-side points, be equal to δxi− 1
2

and δxi+ 1
2
. The new position of vertex xi is denoted

by x̂i. The length of the displacement is given as ∆xi = ||x̂i−xi||. Once the displacement in
the vertices is computed, also the displacements in the mid-side points change. In order to
get both a local and global equilibrium in the amount of dissolved material, it is necessary,
that the new area is equal to

1
2
liδxi− 1

2
+

1
2
li+1δxi+ 1

2
. (3.5)

The area O depends on ∆xi, ∆xi− 1
2

and ∆xi+ 1
2
, where ∆xi− 1

2
is the adapted length of the

displacement in xi− 1
2
. Since ∆xi− 1

2
and ∆xi+ 1

2
depend on ∆xi−1, ∆xi and ∆xi+1 the relation

is non-linear.

To solve this non-linear system we had to use an under-relaxation parameter. Choosing this
parameter equal to 0.5 gave a fast convergence. The results of the Stefan algorithm are
shown in Figure 4. The results in Figure 4 are more reliable than those in Figure 3 since from
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physical point of view we expect a large diffusion of the atoms at the angular free boundary
point. This gives locally larger free boundary velocities. For more details we refer to [5].

4. The discretization for a finite rate of reaction

The method summarized in Section 3 has been developed for a Stefan problem with an infinite
fast interface reaction, so the concentration at the free boundary is equal to csol. To generalize
this method to a finite rate of reaction one has to discretize the boundary conditions (2.6) and
(2.7). Both conditions contain the normal velocity of the interface. In our implementation
we use the Robbins condition (2.7) to solve the diffusion equation and the Stefan condition
(2.6) to adapt the free boundary. In order to get rid of the normal velocity in (2.7) equation
(2.6) is substituted into (2.7):

K (csol − cS) = D
cpart

cpart − cS

∂c

∂n
(x, y, t), (x, y) ∈ S(t), t ∈ (0, T ] . (4.1)

This equation is linearized by taking cS in the right-hand side of (4.1) at the old time level.

Experiments with boundary condition (4.1) in combination with the Stefan algorithm to
adapt the free boundary, showed inaccuracies for a finite rate of reaction. The computed
shapes of the free boundary resemble the shapes shown in Figure 3. The approximation of
the normal gradient of c used in (3.3) may be the cause of these instabilities. To avoid this
approximation, (2.7) is subtracted from (2.6) which yields:

vn(x, y, t) = K
csol − cS

cpart
, (x, y) ∈ S(t), t ∈ (0, T ] . (4.2)

Note that for K →∞, vn is bounded since cS → csol. However when the difference between
cS and csol is very small it is not practical to use (4.2) because cancellation can occur.

To adapt the free boundary the Stefan algorithm (3.5) combined with (4.2) is used. In this
algorithm the velocities are used in the mid-side points of the element boundaries, whereas the
concentrations are given in the vertices of the elements. Therefore cS(xi− 1

2
) is approximated

by averaging the cS in the vertices and substitute this value into equation (4.2).

5. Numerical experiments

An algorithm has been developed to investigate the dissolution kinetics for a two-dimensional
case with a first order reaction at the interface. This algorithm has been implemented in
our finite element code SEPRAN [4]. As an example we consider the dissolution of a needle
shaped particle in a bar. Due to the symmetry of this two-dimensional problem, we restrict
the simulation to one quarter of the real geometry. First we investigate the influence of the
rate of the interface reaction (K) on the shape of the dissolving particle. Thereafter we
compare the influence of the extra terms used in (2.6) and (2.7). In all our examples we have
chosen the following parameters:

diffusion coefficient D = 0.04858,
concentration in the particle cpart = 54,
initial concentration c0 = 0.0011.
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5.1 The influence of the interface reaction
We consider a square dissolving in a square for csol = 3.88 and various choices of K. In Figure
6 we present the results as given in ([5], Fig. 21) for the Dirichlet condition at the interface.
The next figures contain the results for K = 1000, 10, and 0.1. For K large we expect that

Figure 6: Free boundary of a bar dissolv-
ing in a bar using a Dirichlet boundary
condition

Figure 7: Free boundary of a bar dissolv-
ing in a bar with K = 1000

the solution converges to the solution of the Dirichlet problem. However comparing Figure
6 and 7 it appears that the latter figure shows a more rounded profile of the particle. The
reason for this is that in Figure 6 the fluxes are approximated by the normal derivative of the
concentration in the mid-side points. In the vicinity of the corner these derivatives appear
to be underestimated. For K = 1000 the fluxes are approximated by equation (4.2), which
is based only on the concentration. When the grid is refined we observe that the Dirichlet
solution converges to the solution as given in Figure 7. So we expect that this solution is
more accurate than the solution of the Dirichlet problem for the same grid size.

For small values of K the evolution of the position of the interface is completely determined
by the rate of the interface reaction. Therefore one expects that the particle remains square-
like. This is in accordance with the results as given in Figure 8 and 9. Also the velocity of
the interface decreases when K decreases.

5.2 The influence of the term cSvn

In the derivation of the model we have already noted that in some references the term cSvn is
deleted from equation (2.7). For the problem as considered in Section 5.1 we have compared
the solution with and without this term and it appears that its influence is negligible. On the
other hand when csol is closer to cpart the differences may be large. Therefore we consider
an academic problem where csol is 10 times as large: csol = 38.8 and take K = 0.1. The
results of the correct boundary conditions are given in Figure 10. Since csol is much larger
the velocity of the interface is much higher. Therefore the time-steps used in these problems
are equal to the time-steps of the previous problem divided by 10. The results given in Figure
11 are obtained when the term cSvn is deleted from equation (2.7). There are considerable
differences between both results. Neglecting cSvn leads to an overestimate of the position of
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Figure 8: Free boundary of a bar dissolv-
ing in a bar with K = 10

Figure 9: Free boundary of a bar dissolv-
ing in a bar with K = 0.1

the free boundary.

6. Conclusions

Particle dissolution in binary alloys is investigated by numerical techniques. The mathemat-
ical model used is that of a free boundary problem of Stefan type with a parameter which
allows to switch between ”diffusion controlled” and ”interface controlled” migration. The
problem is solved by a two-dimensional finite element method. It has been shown that this
approach leads to an accurate solution of the problem.

It appears that the solution of the model with a fast reaction on the interface leads to better
results than the model with a Dirichlet condition at the interface. Therefore we recommend
to use the numerical solution of the model with an interface reaction with K sufficiently large
to approximate the solution of the model with the Dirichlet boundary condition. As expected
the influence of the diffusion disappears when the reaction is slow. In such a case the shape
of the dissolving particle remains the same during dissolution.

In some references the boundary conditions are only approximately true. It has been shown
that this approximation is allowed for the problems considered. However in other applications
where csol and cpart have the same order of magnitude all terms should be included in the
boundary conditions.
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Figure 10: Free boundary of a bar dissolv-
ing in a bar with K = 0.1 and csol = 38.8

Figure 11: Free boundary of a bar dissolv-
ing in a bar with K = 0.1 and csol = 38.8
without the term cSvn
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