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Abstract: We propose a linear electrolyzer model for steady-state load flow analysis of
multi-carrier energy networks, where the electrolyzer is capable of producing hydrogen gas
and heat. For our electrolyzer model, we show that there are boundary conditions that lead
to a well-posed problem. We derive these conditions for two cases, namely with a known
and unknown heat efficiency parameter. Furthermore, the derived conditions are validated
numerically. Moreover, we investigate the extensibility of our model by including nonlinear
models from electricity, gas, and heat. In this setting, we derived boundary conditions based
on our previous findings. Due to the involvement of nonlinearity, it is a challenge to prove
that the boundary conditions lead to a well-posed problem. Therefore, we simulated the
electrolyzer connected with an electricity, gas, and heat system. Additionally, we considered
a known and unknown heat efficiency parameter. The numerical results support that the
linear electrolyzer model is solvable in a multi-carrier energy network.

Keywords: electrolyzer; integrated energy system; steady-state load flow analysis

1. Introduction
The current level of greenhouse gas emissions leads to a significant contribution

towards global warming [1,2]. A straightforward solution to global warming is to reduce
the level of emissions. This can be achieved by partly replacing fossil fuels with renewable
energy sources, such as solar and wind energy [3,4]. A problem with renewables is that
this can lead to an unstable power system [5–7]. This instability is caused by a variable
energy production, due to the dependence on the weather. One way to prevent such
instabilities is using electrolyzers in the energy system. An electrolyzer can convert a
surplus of electricity into hydrogen gas and heat [6,8]. Conversely, when an insufficient
amount of energy is produced, the hydrogen gas produced by electrolyzers can be utilized
to offset the deficiency. However, utilizing an electrolyzer efficiently requires a careful
analysis of the placement and quantity of electrolyzers in the energy network. This analysis
is usually achieved by modeling the energy transport, also known as a load flow analysis.
Therefore, we are interested in modeling an electrolyzer for load flow analysis, as part of a
multi-carrier energy system.

One way to model multi-carrier energy systems is by using a graph-based framework [9–11].
Within this framework, single-carrier energy systems are coupled through conversion units.
In this paper, we propose a simplified electrolyzer model that interacts with electricity,
gas, and heat for steady-state load flow. The simplified model allows us to analyze well-
posedness in an algebraic way. From this analysis, we are able to derive conditions to
implement an electrolyzer within this framework. The analysis is performed in a generic
way, such that any feasible load profile can be considered.
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In the current body of literature, one can find steady-state electrolyzer models that
interact with gas and electricity in [12]. To include the interaction with heat, one can model
an additional unit, which is an electrical boiler model, as seen in [13]. Whilst this is an
alternative to modeling an electrolyzer with two units, it will be more convenient in our
analysis to consider modeling it as one unit. In [8], the authors utilized an electrolyzer model
that interacts with the three relevant energy carriers. Moreover, they proposed a model
that takes into account degradation, which influences the efficiency of the electrolyzer. For
long-term planning, this is an important feature, but in steady-state load flow analysis,
we can assume a constant value for a given time frame. A different electrolyzer model
interacting with all relevant carriers was introduced in [14]. The model takes time into
consideration. Other models that include transient effects for real-time simulation can be
found in [6,15]. In steady-state load flow analysis, we assume that the transient effects have
stabilized. Therefore, we do not require these effects. A factor that plays a role in energy
conversion is the time lag. For example, a heat network operates on a different time-scale
than an electrical network. E.g., heat takes more time to be transported than electricity. A
model that considers this effect is proposed in [16]. This effect is more suitable for market
matching purposes and real-time simulations. Table 1 shows an overview of the carriers
included in the electrolyzer models.

Table 1. A comparison between relevant works and the method proposed in this paper. Electricity,
gas, and heat are the energy carriers included in the model. Time corresponds to a time-based model.

Reference Purpose Electricity Gas Heat Time

[12] Design ✓ ✓

[6] Operational ✓ ✓ - ✓

[15] Operational ✓ ✓ - ✓

[8] Cost analysis ✓ ✓ ✓ ✓

[14] Operational ✓ ✓ ✓ ✓

Proposed Design ✓ ✓ ✓ -

Our key features in this paper concern the following:

• We introduce a simplified model of an electrolyzer with conversion to gas and heat
for steady-state load flow analysis. We simplify the model to its core, which is the
conversion of electricity into gas and heat.

• The simplification enables an algebraic approach, to verify if the model is mathemati-
cally sound. We achieve this by analyzing well-posedness for different use cases.

• The findings are supported numerically.

The paper is structured as follows. In Section 2, the electrolyzer model is introduced.
Section 3 shows that boundary conditions exist that lead to a well-posed problem. Section 4
includes some numerical experiments to illustrate our approach. We conclude with remarks
in Section 5.

2. Model
We model an electrolyzer that can convert electricity into gas and residual heat, where

we are interested in two cases. The first case considers an electrolyzer that converts gas and
heat with a known output ratio. The second case considers a situation where the output
ratio has to be determined depending on the energy transport surrounding the electrolyzer.

Before we start with the model equations, we need a graph representation of an
electrolyzer. Therefore, we describe how an energy network can be transformed into a



Energies 2025, 18, 729 3 of 16

graph. A graph consists of nodes connected by links. Each node and link corresponds to
an energy network element. For example, a node can represent a source, and a link can
represent a transmission line. Moreover, each node and link corresponds to a physical law.
Explicitly, the nodes are associated with conservation laws and the links are associated
with the physical model of the underlying network element. Table 2 shows an overview of
the conservation laws and common models for each single-carrier. The models for each
single-carrier represent the following: the electrical network is an AC three-phase balanced
system [10,17], the gas network is a low-pressure system [10,18], and the heat network is
a closed-loop system [10]. An analogous analysis can be performed with a DC system or
high-pressure gas system.

Table 2. Models for electricity, gas, and heat networks.

Network Element Description Model

Electricity Node Kirchhoff’s law for active power Pi = −∑j Pij
Node Kirchhoff’s law for reactive power Qi = −∑j Qij
Link Short transmission line (send, P) Pij = gij|Vi|2 − |Vi||Vj|

(
gij cos δij + bij sin δij

)
Link Transmission line (send, Q) Qij = −bij|Vi|2 − |Vi||Vj|

(
gij sin δij − bij cos δij

)
Link Transmission line (receive, P) Pji = gij|Vj|2 − |Vi||Vj|

(
gij cos δij − bij sin δij

)
Link Transmission line (receive, Q) Pji = −bij|Vj|2 + |Vi||Vj|

(
gij sin δij + bij cos δij

)
Gas Node Conservation of mass qi = ∑j qij

Link Pipe pi − pj = (Cg)−2 f |qij|qij

Heat Node Conservation of mass mi = ∑j mij
Node Conservation of energy (supply) ∑l mi,lTs

i,l = ∑j mijTs
ij

Node Conservation of energy (return) ∑l mi,lTr
i,l = ∑j mijTr

ij
Link Pipe pi − pj = (Ch)−2 f |mij|mij

Link Pipe heat loss (supply) Ts
ji = Ta + e

= hπDL
Cpm

(
Ts

ij − Ta
)

Link Pipe heat loss (return) Tr
ij = Ta + e

= hπDL
Cpm

(
Tr

ji − Ta
)

Terminal link Total heat power ∆φi,l = Cpmi,l(Ts
i,l − Tr

i,l)

Since an electrolyzer interacts with different energy-carriers, it is modeled as a node
connected with links of the relevant energy carriers. We assume that these links have no
energy losses. The coupling node, that represents an electrolyzer, has a model that governs
the energy balance, given by Equation (1):

ηP = HHVq + ∆φ, (1)

where η ∈ [0, 1] is the efficiency, P is the active power, q is the gas flow, HHV is the higher
heating value of gas, and ∆φ is the heat power (Appendix A). This model is based on the
combined heat and power (CHP) model from [19,20], where we have adjusted our model
based on the input and output energy. However, a CHP can generate electricity and heat in
a flexible manner, whilst for an electrolyzer, only residual heat is available. This behavior is
reflected by Equation (2):

ηhηP = ∆φ, (2)

where ηh ∈ [0, 1] is the heat efficiency. In other words, Equation (2) tells us that a fraction of
the available energy is converted to heat. Henceforth, we require two equations to model
an electrolyzer that converts electricity into gas and heat.

Our model allows the electrolyzer to produce gas and heat in a flexible manner by
letting ηh be unknown. Hence, our model is capable of modeling both cases we mentioned
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at the beginning of this section. From a mathematical point of view, we seek to know
when the model is well-posed for these cases. Hence, in Section 3, we show the necessary
conditions for when this holds.

3. Boundary Conditions
In general, integrated energy networks lead to a system of nonlinear equations. These

systems are usually solved numerically. Solving a nonlinear energy system is conventionally
carried out with the Newton–Raphson (NR) method. In this method, a linearization of the
system of equations is involved, where one has to solve a linear system in order to solve the
original system. With regards to linear systems, a necessary condition for well-posedness is
that the system of equations is square. Usually, energy network models have more variables
than equations, unless we allow additional conditions in the form of specifying variables.
In this paper, we denote these as boundary conditions. In literature related to electrical
networks, nodes with different types of boundary conditions are known as node types, e.g.,
PQ, PV, and slack nodes.

To understand which conditions need to be met for a well-posed system including an
electrolyzer, we start with a simple network. We investigate an electrolyzer with one node
of each single-carrier attached to it. The graph representation is shown in Figure 1.

0e

P0e Q0e

0g

q0g

0h

m0h , Ts
0h ,l , Tr

0h ,l ∆φ0h ,l

0c
P0e0c

Q0e0c

q0c0g

m0c0h

Ts
0c0h , Tr

0c0h ∆φ0c0h

Figure 1. A graph representation of an electrolyzer. Node 0c and the connecting dummy links
represent the electrolyzer. Node 0g is a node of the gas network. Node 0h is a node of the heat
network. Node 0e is a node of the electrical network. For each node, except node 0c, a terminal link is
connected to it. This link represents energy flowing in or out of the network.

Well-posedness conditions must hold for elementary cases, such as an electrolyzer only
generating one of the energy outputs, gas or heat. This reduces down to a Power-to-Gas
(P2G) unit or an electrical boiler. Leading to an analysis of two networks, which are shown
in Figures 2 and 3.

0c0g

q0g
q0c0g

0e
P0e0c

Q0e0c

P0e Q0e

Figure 2. A coupling between an electrical and a gas network with an electrolyzer. This is equivalent
to modeling a P2G unit.

Based on our initial model, we can model a P2G unit or an electrical boiler by setting
the heat efficiency to 0 or 1. Alternatively, the mass flow m0c0h or the gas flow q0e0g is set
to 0.

In the remainder of this section, we derive boundary conditions for two cases, a known
heat efficiency and a unknown heat efficiency.
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0c

0h

m0c0h

Ts
0c0h , Tr

0c0h ∆φ0c0h

m0h , Ts
0h ,l , Tr

0h ,l ∆φ0h ,l

0e
P0e0c

Q0e0c

P0e Q0e

Figure 3. A coupling between an electrical and a heat network with an electrolyzer. This is equivalent
to modeling an electrical boiler

3.1. Known Heat Efficiency

In this section, we assume that the heat efficiency ηh of the electrolyzer is given.
Furthermore, we are interested in the production of gas and heat based on a given active
power. It is also possible to specify the gas flow or heat power instead of the active power,
which gives us a similar analysis. Henceforth, we focus on one case, which is the case
with a specified active power. We start by deriving the boundary conditions for the P2G
unit, then the electrical boiler. Finally, we combine the boundary conditions, leading to
well-posedness conditions for the electrolyzer.

3.1.1. P2G

A P2G unit has the following model [21,22]:

ηP = HHVq, (3)

where η ∈ [0, 1]. One can obtain an equivalent model with the electrolyzer model (1) and (2)
by assuming that ηh = 0. The system of equations corresponding to the network shown in
Figure 2 is represented as

P0e + P0e0c = 0 (4)

Q0e + Q0e0c = 0 (5)

q0c0g − q0g = 0 (6)

ηP0e0c − HHVq0c0g = 0. (7)

We require a square system for well-posedness. HHV is a known parameter, so we have
four equations and six unknown variables. To obtain a square system we must specify
two variables.

We assume that the input energy, P0e , is known. We let Q0e ,0c = 0. This choice is
motivated from a physical point of view. Note that we have an AC model for the electrical
network. The electrolyzer model (3) does not depend on the reactive power, because we
assume that an electrolyzer requires a DC input [6]. We also assume that there are no energy
losses from converting AC to DC. Hence, the reactive power can be any arbitrary constant.
We have chosen 0 for convenience. With these assumptions, we now have a square system
and the boundary conditions are presented in Table 3.
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Table 3. Known heat efficiency: boundary conditions for a P2G unit.

Node Known Unknown

0g q0g

0e P0e Q0e

0c Q0e0c = 0 q0c0g , P0c0e

Note that the system is linear. The chosen boundary conditions lead to a non-singular
matrix. Therefore, a unique solution exists. Thus, our boundary conditions lead to a
well-posed problem.

3.1.2. Electrical Boiler

An electrical boiler is modeled with [23]:

∆φ0c0h = ηP0e0c , (8)

This model is equivalent to the electrolyzer model (1) and (2) whenever ηh = 1, because
this results in q0c0h = 0. We consider the model described in Equation (8) for the sake of
brevity. The network shown in Figure 3 results in the following system of equations:

P0e + P0e0c = 0 (9)

Q0e + Q0e0c = 0 (10)

m0c0h − m0h = 0 (11)

m0c0h Ts
0c0h − m0h Ts

0h ,l = 0 (12)

−m0c0h Tr
0c0h + m0h Tr

0h ,l = 0 (13)

Cpm0h(Ts
0h ,l − Tr

0h ,l)− ∆φ0h ,l = 0 (14)

ηP0e0c − ∆φ0c0h = 0 (15)

Cpm0c0h(Ts
0c0h − Tr

0c0h)− ∆φ0c0h = 0. (16)

Equation (16) is a new addition compared to the P2G case. This equation is required,
because it describes how the heat consumption is related to the mass flow and temperature
for a heat sink and source.

We assume that the specified heat constant Cp is known. It follows that our system
has eight equations and 12 unknowns. To obtain a square system, we have to specify four
variables. We let the electrolyzer generate heat with a specified active power P0e . Resulting
in node 0e being a load node. From Equations (14) and (16), it follows that a reference
temperature is required for a unique solution. Thus, we assume that the return temperature
Tr

0h ,l is specified. The third variable to be specified is the supply temperature of the electrical
boiler Ts

0c0h , because we assume that the provided heat comes out at a set temperature. The
last variable we specify is the reactive power, Q0e0c = 0. This choice is made with the same
reasoning as for the P2G unit. The assumptions are summarized in Table 4.

Table 4. Known heat efficiency: boundary conditions for an electrical boiler.

Node Known Unknown

0h Tr
0h ,l m0h , Ts

0h ,l , ∆φ0h ,l

0e P0e Q0e

0c Q0c0e = 0, Ts
0c0h m0c0h , Tr

0c0h , ∆φ0c0h , P0c0e
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These boundary conditions lead to a unique solution. The derivation is shown below.

1. The reactive power Q0e is obtained from Equation (10):

Q0e = −Q0e0c .

2. From Equation (9) we obtain the active power P0e :

P0e = −P0e0c .

3. Equation (15) yields the heat power ∆φ0c0h :

∆φ0c0h = ηP0e0c .

4. The supply temperature Ts
0h ,l is obtained from Equation (12):

Ts
0h ,l =

m0c0h

m0h
Ts

0c0h
(11)
= Ts

0c0h .

5. From Equation (13), we express the return temperature Tr
0c0h as:

Tr
0c0h =

m0h

m0c0h
Tr

0h ,l
(11)
= Tr

0h ,l .

6. Applying the results provided in steps 4 and 5 of Equations (14) and (16) yields the
total heat power ∆φ0c0h :

∆φ0c0h = ∆φ0h ,l .

7. The mass flow m0c0h is obtained from Equation (16):

m0c0h =
∆φ0c0h

Cp(Ts
0c0h − Tr

0c0h)
.

8. The mass flow m0h is derived from Equation (11):

m0h = m0c0h .

Thus, all variables can be uniquely determined. Henceforth, we can conclude that the
conditions shown in Table 4 lead to a well-posed problem.

3.1.3. Electrolyzer

We have derived boundary conditions for the P2G unit and electrical boiler, which
can be seen as special cases of the electrolyzer with one output energy. Now we consider
the electrolyzer with both its output capabilities. The system of equations is given below:

P0e + P0e0c = 0 (17)

Q0e + Q0e0c = 0 (18)

q0c0g − q0g = 0 (19)

m0c0h − m0h = 0 (20)
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m0c0h Ts
0c0h − m0h Ts

0h ,l = 0 (21)

−m0c0h Tr
0c0h + m0h Tr

0h ,l = 0 (22)

Cpm0h(Ts
0h ,l − Tr

0h ,l)− ∆φ0h ,l = 0 (23)

Cpm0c0h(Ts
0c0h − Tr

0c0h)− ∆φ0c0h = 0 (24)

ηP0e0c − HHVq0c0g − ∆φ0c0h = 0 (25)

ηhηP0e0c − ∆φ0c0h = 0. (26)

Recall that ηh is known. This leads to a system with 10 equations and 14 unknowns.
Therefore, we have to specify four variables. We combine the boundary conditions derived
for the P2G unit and electrical boiler to obtain boundary conditions for the electrolyzer.
This results in the conditions shown in Table 5.

Table 5. Known heat efficiency: boundary conditions for an electrolyzer.

Node Known Unknown

0e P0e Q0e

0g q0g

0h Tr
0h ,l m0h , Ts

0h ,l , ∆φ0h ,l

0c Q0e0c = 0, Ts
0c0h q0c0g , P0c0e , m0c0h , Tr

0c0h , ∆φ0c0h

A unique solution can be obtained in a similar fashion as for the electrical boiler. We
conclude that the boundary conditions lead to a well-posed problem.

3.2. Unknown Heat Efficiency

Our model allows the electrolyzer to output gas and heat with any arbitrary ratio,
which is equivalent to an unknown heat efficiency ηh. Compared to the case with a known
heat efficiency, we have to specify an additional variable. Otherwise, there are an infinite
amount of choices for the output ratio of gas and heat. We model a case where both
output energies are known, so that we have to compute the required input energy for the
electrolyzer. This leads to the active power being unknown and the gas flow and heat
power being known. We note that other cases with two specified energy streams can be
chosen, but these lead to a similar analysis.

We have the same set of equations as in the case with a known heat efficiency. With an
unknown heat efficiency, the system has 10 equations and 15 unknowns, so five variables
have to be specified. Since we want the output energies to be known, we let node 0g be
a load node and node 0h be a sink. Hence, we specify q0g and ∆φ0h ,l . The reactive power
Q0e0c , the coupling supply temperature Ts

0c0h , and the return temperature Tr
0h ,l are known.

These variables follow the same reasoning as for the case with a known heat efficiency. The
boundary conditions are shown in Table 6.

Table 6. Unknown heat efficiency: boundary conditions for an electrolyzer.

Node Known Unknown

0g q0g

0h ∆φ0h ,l > 0, Tr
0h ,l m0h , Ts

0h ,l

0e P0e , Q0e

0c Q0e0c = 0, Ts
0c0h q0c0g , P0c0e , m0c0h , Tr

0c0h , ∆φ0c0h
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Applying these boundary conditions for our system of equations and solving it in a
similar fashion as we have seen in Section 3.1 for the electrical boiler, we obtain a unique
solution. Thus, the boundary conditions result in a well-posed problem.

3.3. Electrolyzer Coupled with Single-Carrier Systems

In the previous sections, we investigated a network with one electrolyzer without any
physical links connected to it, so energy losses from the connected single-carrier networks
were not modeled. To show the effect of an electrolyzer in a more realistic energy network
setting, we simply extend the network shown in Figure 1 with one physical link for each
single-carrier network. The extended link of the gas and heat network represents a pipe.
The link for the electrical network represents a transmission line. The network is shown
in Figure 4. To add some context, this network can be seen as a simplified rendition of an
electrolyzer connecting an off-shore wind farm with an on-shore gas and heat network.

0e

|V0e |, δ0e

1e

|V1e |, δ1e

P0e

Q0e

P1e

Q1e

0g

p0g

1g

p1g

q0gq1g

0h p0h1hp1h

m0h∆φ1h ,l m1h , Ts
1h ,l , Tr

1h ,l

Ts
0h1h , Tr

0h1hTs
1h0h , Tr

1h0h

0c
P0e0c

Q0e0c

q0c0gq0g1g

m0c0h

m0h1h

Ts
0c0h , Tr

0c0h ∆φ0c0h

Figure 4. The network shown in Figure 1 is extended with physical links for each energy carrier.
Nodes 0e, 0g and 0h act as junctions. Whilst nodes 1e, 1g, and 1h are sources or sinks.

Nodes 0e, 0g, and 0h are junctions. The junctions are modeled in a conventional way by
assuming that no energy can enter or escape the network. This forces the load nodes from
our previous network (0e, 0g, and 0h) to move to nodes 1e, 1g, and 1h in the current network.
The resulting system of equations is shown in Appendix B, which has 18 equations and
30 unknown variables whenever the heat efficiency is known.

For these systems, the same well-posedness conditions derived in Section 3.1 with
a known heat efficiency and Section 3.2 with an unknown heat efficiency are applied for
loads 1e, 1g, and 1h, because the junctions have basically moved the load nodes. The gas
and heat network require reference pressures. The reference pressure can be placed on a
junction or a load node in their respective networks. We have chosen to place them on the
loads. In addition, the coupling node 0c has the same boundary conditions that we derived
before. The resulting boundary conditions that lead to well-posedness for a known and
unknown heat efficiency are shown in Tables 7 and 8.

Table 7. Known heat efficiency: boundary conditions for an electrolyzer with physical links.

Node Known Unknown

0e P0e = 0, Q0e = 0 V0e , δ0e

1e P1e , V1e , δ1e Q1e

0g q0g = 0 p0g

1g p1g q1g

0h m0h = 0 p0h

1h p1h , Tr
1h ,l p1h , Ts

1h ,l , ∆φ1h ,l

0c Q0e0c = 0, Ts
0c0h q0c0g , P0e0c , m0c0h , Tr

0c0h , ∆φ0c0h
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Table 8. Unknown heat efficiency: boundary conditions for an electrolyzer with physical links.

Node Known Unknown

0e P0e = 0, Q0e = 0 V0e , δ0e

1e V1e , δ1e P1e , Q1e

0g q0g = 0 p0g

1g q1g > 0, p1g

0h m0h = 0 p0h

1h p1h , ∆φ1h ,l > 0, Tr
1h ,l m1h , Ts

1h ,l

0c Q0e0c = 0, Ts
0c0h q0c0g , P0e0c , m0c0h , Tr

0c0h , ∆φ0c0h

An analytical solution is not easy to derive, due to the nonlinear equations in our
system. Therefore, we validate our results numerically.

4. Numerical Results
In this section, we numerically solve the system representing an electrolyzer with

physical links shown in Figure 4. We do this with a known and unknown heat efficiency.
Recall that there are certain assumptions that hold for this energy network. Firstly, the
electrical network is modeled as an AC system. Secondly, we assume a low-pressure
system for the gas network. Lastly, the heat network is modeled as a closed-loop system
with a supply and return line. Specification of the transmission lines, gas, and pipes are
summarized in Appendix C. Additionally, the efficiency parameters of the electrolyzer are
specified in the same section.

The system of equations has 18 equations and variables. By substitution, we are
able to reduce the system to 15 equations and variables. We solve the system with the
Newton–Raphson (NR) method, where the stopping criterion is defined as

∥F∥2 ≤ 10−6

For the inner solve, we use an LU factorization from the SuperLU package version 6.0.1 [24].
The initial guess for the NR method is given in Table 9. Our choices are motivated as

follows. The mass flows are chosen such that they are nonzero, otherwise the Jacobian is
singular. The supply and return temperatures are determined such that the average of these
temperatures equals the temperature of the boundary condition for the supply temperature
Ts

0c0h . The pressure in the gas network p0g is chosen such that the pressure drop is nonzero,
because a pressure drop of zero leads to a singular Jacobian, likewise for the pressure p0h in
the heat network. The voltage magnitude |V0e | is based on a flat start with the same value
as the boundary condition. The other variables are set to 0 out of convenience.

With this initial guess, the NR method converges in five iterations. The numerical
solution is shown in Table 10.

We observe reasonable energy losses caused by the physical links. In the electrical
network, the transmission line shows a loss in active power. In absolute value, it drops
by 0.066 MW. For the gas network, we observe a small pressure drop of ∆p = 0.003 bar.
Similarly, for the heat network, a pressure drop of ∆p = 0.048 bar is noted. For the supply
temperature from node 0h to 1h, the temperature drops by 0.27 K. The return temperature
in the direction from node 1h to 0h drops by 0.208 K. Thus, our model behaves as expected.
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Table 9. Known heat efficiency: the initial guess.

Electricity Gas

|V0e | δ0e p0g q0g1g

690√
3

V 0 rad 1.05 bar 0 kg
s

Heat

Ts
0h1h Tr

1h0h p0h Ts
1h ,l m0h1h

353.15 K 313.15 K 6.3 bar 353.15 K 1 kg
s

Coupling

P0e0c q0c0h m0c0h Tr
0c0h ∆φ0c0h

0 MW 0 kg
s 1 kg

s 313.15 K 0 MW

Table 10. Known heat efficiency: solution of an electrolyzer with physical links. The values of the
boundary conditions are in bold.

Electricity

|V0e | δ0e P0e Q0e |V1e |
375 V −0.259 rad 0 MW 0 MW 398 V

δ1e P1e Q1e P0e1e Q0e1e

0 rad −2.5 MW −0.662 MW −2.434 MW 0 MW

P1e0e Q1e0e

2.5 MW 0.662 MW

Gas

p0g q0g p1g q1g q0g1g

1.003 bar 0 kg
s 1 bar 0.013 kg

s 0.013 kg
s

Heat

p0h m0h Ts
0h1h(Ts

0h) p1h m1h

6.048 bar 0 kg
s 338.15 K 6 bar 5.74 kg

s

Ts
1h ,l(T

s
1h) Tr

1h ,l Tr
1h0h(Tr

1h) ∆φ1h m0h1h

337.88 K 323.15 K 323.15 K 0.354 MW 5.74 kg
s

Coupling

P0e0c Q0e0c q0c0h m0c0h ∆φ0c0h

2.434 MW 0 MW 0.013 kg
s 5.74 kg

s 0.365 MW

Ts
0c0h Tr

0c0h(Tr
0h)

338.15 K 322.942 K

For the case with an unknown heat efficiency, we have chosen boundary condition
values, such that we have the same numerical solution as for the known heat efficiency
case. Compared to the known case, we observe a similar convergence behavior with the
NR method.

With the given boundary conditions, the results for the electrolyzer with physical links
support the idea that the problem is well-posed. Hence, we have shown numerically that
the electrolyzer can be solved in a multi-carrier energy network.
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5. Conclusions
We introduced a linear model for an electrolyzer. This model was used for the steady-

state load flow analysis of multi-carrier energy networks. Furthermore, we focused on
energy networks that consist of three different energy carriers, electricity, gas, and heat.
In this context, we were interested in when the inclusion of the electrolyzer model led
to a well-posed problem. For the linear model, see Equations (1) and (2), we derived
conditions that led to well-posedness and showed that this held analytically by solving
the linear system of equations. We extended our analysis to a system with an electrolyzer
connected with an electrical, gas, and heat network. The connected networks introduced
nonlinear models, which resulted in a nonlinear system of equations. We derived boundary
conditions based on the conditions found for the linear case. Since, we have a nonlinear
system of equations, proving that it leads to a well-posed problem is a challenge. Hence,
we validated the conditions by simulating the aforementioned network with a known and
unknown heat efficiency. For both cases, we solved the nonlinear system with the Newton–
Raphson method and obtained consistent solutions. Our numerical results support the idea
that the problem is well-posed.

The results of the electrolyzer connected with physical links suggest that the links can
be replaced with networks, since the boundary conditions connected with the electrolyzer
are the determining factor for well-posedness. In other words, if these boundary conditions
are chosen such that they coincide with a known or unknown heat efficiency case, then well-
posedness is expected for a broader set of network topologies. Therefore, our electrolyzer
model can be used in a broader setting than just one physical link per energy carrier.

We have showcased that one can couple different energy carriers in a simple way that
is mathematically sound. However, further investigation is needed to evaluate the model’s
performance when applied to real-world data from operating energy systems.
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Appendix A

Table A1. A list of symbols and definitions.

Electricity

δ Voltage angle [rad]
P Active power [W]
Q Reactive power [var]
V Voltage phasor [V]
|V| Voltage amplitude [V]

Gas

f Friction factor
q Gas flow rate [kg · s−1]

Cg Pipe constant [kg2 · m2]

Heat

φ Heat power [W]
∆φ Total heat power[W]
T Temperature [K]
m Mass flow rate [kg · s−1]
Ch Pipe constant [kg · m]
Cp Specific heat [m2 · K−1 · s−2]

General

p Pressure [Pa]

Appendix B
The system of equations is shown below:

P0e + P0e1e + P0e0c = 0 (A1)

Q0e + Q0e1e + Q0e0c = 0 (A2)

P1e + P1e0e = 0 (A3)

Q1e + Q1e0e = 0 (A4)

q0c0g − q0g1g − q0g = 0 (A5)

q0g1g − q1g = 0 (A6)

p0g − p1g − (Cg)−2 f g|q0g1g |q0g1g = 0 (A7)

m0h1h − m1h = 0 (A8)

m0c0h − m0h1h − m0h = 0 (A9)

p0h − p1h −
(

Ch
)−2

f h|m0h1h |m0h1h = 0 (A10)

m0c0h Ts
0c0h − m0h1h Ts

0h1h = 0 (A11)

−m0c0h Tr
0c0h + m0h1h Tr

0h1h = 0 (A12)

m0h1h Ts
1h0h − m1h Ts

1h ,l = 0 (A13)

−m0h1h Tr
1h0h + m1h Tr

1h ,l = 0 (A14)

Cpm1h(Ts
1h ,l − Tr

1h ,l)− ∆φ1h ,l = 0 (A15)

Cpm0c0h(Ts
0c0h − Tr

0c0h)− ∆φ0c0h = 0 (A16)

ηP0e0c − HHVq0c0g − ∆φ0c0h = 0 (A17)

ηhηP0e0c − ∆φ0c0h = 0 (A18)
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Let δij = δi − δj. We use 0 and 1 as a shorthand notation for nodes 0e and 1e. We define the
active and reactive power on the transmission line as

P10 = g10|V1|2 − |V0||V1|(g10 cos δ10 + b10 sin δ10)

P01 = g01|V0|2 − |V0||V1|(g01 cos δ01 − b01 sin δ01)

Q10 = −b10|V1|2 − |V0||V1|(g10 sin δ10 − b10 cos δ10)

Q01 = −b01|V0|2 + |V0||V1|(g01 sin δ01 + b01 cos δ01)

These are substituted into Equations (A3) and (A4). Hence, the active and reactive powers
corresponding to the transmission line are no longer present in the system of equations. In-
stead the voltage magnitude and voltage angle are introduced into the system of equations.

For the heat network, assuming that m0h1h > 0, the temperature at the end of a supply
line and return line are substituted in the relevant equations by

Ts
1h0h = (Ts

0h1h − Ta)e
−λ

Cpm
0h1h

L
+ Ta

Tr
0h1h = (Tr

1h0h − Ta)e
−λ

Cpm
0h1h

L
+ Ta

This leads to a system of 18 equations and 30 unknown variables whenever ηh is known.

Appendix C

Table A2. Physical properties of the electrical system.

Variable Value

Power system AC

Line B (Susceptance) −0.3 S

G (Conductance) 0.03 S

Table A3. Physical properties of the gas system.

Variable Value

Pressure system Low pressure

Gas type Hydrogen gas

HHV 1.418 · 108 J
kg

S (Specific gravity) 0.589

Z (Compressibility factor) 1

pn (Standard pressure) 1 bar

Tn (Standard temperature) 288 K

R (Ideal gas constant) 8.314413 J
molK

M (Molar mass of air) 28.97 · 10−3 kg
mol

Pipe L 500 m

D 0.15 m

f (Friction factor) 6.5 · 10−3
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Table A4. Physical properties of the heat system.

Variable Value

ρ (density of water) 960 kg
m3

Cp (Specific heat of water) 4.182 · 103 J
kgK

g (gravitational constant) 9.81 kg
s2

Ta (ambient temperature) 273.15 K

Pipe L 500 m

D 0.15 m

λ (Heat transfer coefficient) 0.2 W
m2 K

f (Friction factor) 6.5 · 10−3

Table A5. Electrolyzer efficiency.

Variable Value

η 9
10

ηh
1
6
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