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Abstract
To integrate renewable energies with our current energy systems,
we require interaction between gas and electrical networks. The
coupling of networks results in a larger system of equations to
be solved. Henceforth, scalable solvers are more suitable for large
coupled networks. In this paper, a preliminary research is done,
by investigating Krylov solvers on gas networks from the GasLib
library. The networks are simulated with steady-state models. The
models yield a nonlinear system, which is solved with the Newton-
Raphson method. The corresponding Jacobian is non-symmetric,
indefinite and sparse. We have considered the following Krylov
solvers: GMRES, Bi-CGSTAB and IDR(s). We compare the perfor-
mance with a direct solver, which is the LU factorisation. Our results
show that basic Krylov solvers are ineffective in solving the net-
works, because most networks have a large condition number and
an unfavourable distribution of the eigenvalues. Hence, we have
explored several preconditioners, such as Jacobi, Gauss-Seidel and
ILU methods. Only the ILU preconditioner with the use of the CO-
LAMD reordering scheme leads to convergence of all networks.
For this preconditioner, the fill ratio has to be taken large enough,
otherwise the ILU factorisation breaks down due to a zero pivot.
The minimum required fill ratio leads to a similar amount of work
as the direct solver. Thus the combination of ILU and Krylov solver
does not perform better than direct solvers for these medium sized
problems.
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1 Introduction
Large projects related to windfarms are ongoing in the North Sea.
Connecting farms with on-shore networks is challenging. One of
these challenges is to assure stability to the power grid. Instability
arises when supply and demand of electricity does not match. We
can stabilise this by incorporating electrolysers. This leads to an
integrated energy network with interaction between electricity and
gas. If one is interested in modelling the effect of electrolysers, one
can look at steady-state load flow analysis. This analysis requires a
vast amount of scenarios to be computed for an energy network.
The analysis involves many solves of linear systems. Moreover, the
linear systems become larger, because future energy systems will
become larger through coupling networks. For the steady-state
load flow analysis to be practical, it has to be done in a fast way.
Numerical solvers suited for this job are Krylov solvers [14]. To
use Krylov solvers efficiently, we require knowledge of each single-
carrier involved in an integrated energy network.
Performance of Krylov solvers for steady-state electrical networks
have been extensively studied in [3]. The coupling between distri-
bution and transmission networks has been investigated in [16]
and [7].
For steady-state gas networks, there is still a lot to uncover for
Krylov solvers. The closest research covers Krylov solvers for the
time-dependent gas flow problem, which is discussed in [13]. Fur-
thermore, an effective preconditioner for the time-dependent gas
flow problem is proposed. However, there are some main differ-
ences compared to our study. We assume a steady-state flow, the
compressibility factor is constant and the friction factor is constant.
This results in a different system of equations to be solved, where
the Jacobian does not satisfy the condition of a generalised saddle-
point matrix.
Other strategies for solving gas networks involves changing the
outer solve. In [4], a model order reduction method based on the
network topology is proposed. In [19], a semi implicit method to
solve the gas networks is applied resulting in a robuster method.
The complexity of modelling gas transport is increased by allowing
mixing, which is described in [18]. For more recent advances and
applications, see [5]. In our study, we do not take into account
mixing of gas and assume that the gas is homogeneous throughout
the network.
Furthermore, research of solving integrated energy network usu-
ally involves, solving each single-carrier network sequentially, see
[19][12][11][2]. However, this cuts the network in smaller parts,
where Krylov solvers are less interesting. Since we are interested
in Krylov solvers, we want to solve the integrated energy network
all at once, this still remains an open challenge.
From the the current body of literature, there is a lack of knowledge
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of Krylov solvers applied on steady-state gas flow. Henceforth, we
focus on investigating the performance of Krylov solvers on gas
networks. The key contributions in this paper are the following:

• The performance of Krylov solvers is analysed by investigat-
ing the singular values and eigenvalues of the Jacobian from
several gas networks obtained from the GasLib library [15].

• A similar analysis is applied with preconditioners: Jacobi,
Gauss-Seidel and ILU.

The paper is structured as follows. In Section 2, we briefly explain
the model and describe the numerical methods to solve the nonlin-
ear systems resulting from themodels. In Section 3, the performance
of Krylov solvers with and without preconditioners are discussed.
Section 4 concludes the paper and presents recommendations.

2 Model and Solver
We model a gas network as a graph. Each node and link is gov-
erned by an equation. At each node we have conservation of mass.
Each link consists of a steady-state equation of the corresponding
network element. Furthermore, we assume that pipes are homoge-
neous in diameter and the pipe is not on a slope. As pipe model
we take the Weymouth equation [6], 𝑝2

𝑖𝑛𝑙𝑒𝑡
− 𝑝2

𝑜𝑢𝑡𝑙𝑒𝑡
= 𝐶−2 𝑓 |𝑞 |𝑞

with 𝐶 = 𝜋
8

√︃
𝑆𝐷5

𝑇𝑅𝑎𝑖𝑟𝐿𝑍
, where 𝑞 is the gas flow, 𝑝 denotes the pres-

sure, 𝑆 is the specific gravity, 𝐷 is the diameter of the pipe, 𝑇 is
the gas temperature, 𝑅𝑎𝑖𝑟 is the specific air constant, 𝐿 is the pipe
length and 𝑍 is the compressibility factor. The Weymouth friction
factor is 𝑓 = (20.642𝐷

1
3 𝐸2)−1, where 𝐸 is the pipe efficiency. For

more details on pipe and compressor models see [9]. The following
model is used for resistors 𝑝2

𝑖𝑛𝑙𝑒𝑡
− 𝑝2

𝑜𝑢𝑡𝑙𝑒𝑡
= 𝐶−2

𝑟 |𝑞 |𝑞, where 𝐶𝑟 is
a constant.

2.1 System of Equations
Using the models leads to a nonlinear system of equations. Let there
be𝑛 nodes and 𝑙 links. This leads to𝑛+𝑙 equations and 2𝑛+𝑙 variables
from 𝑛 nodal pressures, 𝑛 injected flows and 𝑙 link flows. For steady-
state load flow analysis, we need to specify 𝑛 known variables such
that the system has an equal amount of unknown variables and
equations. In practice, the in-takes, off-take and reference pressures
are given. Resulting in a square system. We define the following
notations:

• 𝑞𝐿 is a vector containing the flow on the links,
• 𝑞𝑁 is a vector with the injected flows,
• 𝑞 is defined as a vector of all the flows (𝑞𝐿, 𝑞𝑁 )𝑇 ,
• 𝑝 is a vector of the the nodal pressures,
• 𝐹𝑁 is a vector function corresponding to the nodal equations,
which corresponds to the mass conservation equations,

• 𝐹𝐿 is a vector function corresponding to the link equations.
This leads to the nonlinear system of equations shown below:

𝐹 (𝑞, 𝑝) =
(
𝐹𝑁 (𝑞, 𝑝)
𝐹𝐿 (𝑞, 𝑝)

)
= 0

This system is solved with the Newton-Raphson (NR) method. The
next iterate is updated with 𝑥𝑘+1 = 𝑥𝑘 +Δ𝑥𝑘 . The update is obtained
by solving:

𝐽 (𝑥𝑘 )Δ𝑥𝑘 = −𝐹 (𝑥𝑘 ) (1)

The NR method terminates when it satisfies the stopping criterion.

2.2 Krylov Solver
The Jacobian J described in Equation (1) is sparse, non-symmetric
and indefinite. To solve Equation (1), we use the following Krylov
solvers suitablewith ourmatrix properties: GMRES [14], Bi-CGSTAB
[14] and IDR(s) [17]. To improve the performance of Krylov solvers
a preconditioner can be applied. We opt for left preconditioning:

𝑀−1 𝐽Δ𝑥 = 𝑀−1𝐹

where the preconditioner𝑀 is a non-singularmatrix.We investigate
the following preconditioners:

(1) Jacobi:𝑀 is a diagonal matrix with the same diagonal entries
as 𝐽 . If the entry is 0, then it is replaced by 1. This guarantees
that the preconditioner stays nonsingular and no scaling is
applied to the corresponding row.

(2) Gauss-Seidel:𝑀 is a lower triangular matrix with the same
lower triangular entries as 𝐽 . The same procedure is followed
for the diagonal entries to ensure a nonsingular matrix.

(3) ILUTP: an approximation of the LU factorisation. For the
sake of brevity, we refer to this algorithm as ILU(𝛾 ), where
𝛾 ∈ [1,∞) is the fill ratio. The algorithm makes use of partial
pivoting and a dual threshold criterion, see [8] for more
details. For the dual threshold, we have chosen to drop values
lower than a tolerance 𝜏 and keep the𝑚 largest values per
row.
In this paper, we choose a fill ratio of 𝛾 = 5. This is the
minimum integer value where ILU does not breakdown for
the presented gas networks. Moreover, we apply a COLAMD
reordering to improve the robustness of the ILU factorisation.

3 Numerical Experiments
We apply a steady-state load flow computation for several networks
found in the GasLib dataset [15]. We have applied simplifications
to the data, which are described in Section 3.1. To see whether
the networks are solvable, we solve the steady-state load flow of
each gas network with a direct solver, see Section 3.3. In Section
3.4, we compare 3 Krylov solvers, which are GMRES, Bi-CGSTAB
and IDR(s). After the initial investigation on the Krylov solvers, we
focus on investigating several preconditioners, which are Jacobi,
Gauss-Seidel and ILU, which are discussed in Section 3.5.

3.1 Data
GasLib is an open-source database containing gas transmission
networks based on the German gas network [15]. Networks are
named with the number of nodes as a postfix. We consider the fol-
lowing networks for the numerical experiments: GasLib-11, GasLib-
24, GasLib-40, GasLib-135, GasLib-582 and GasLib-4197. GasLib
networks contain the following node elements: source, sinks and
junctions. Furthermore, the following link elements are present:
pipe, compressor, resistor, short pipe, valve, and control valve.
For our numerical experiments we have made assumptions that
simplify the networks. There is only 1 type of gas flowing in the
networks, which is natural gas (methane). The temperature and
compressibility of the gas is constant in the whole network. Fur-
thermore, each pipe has the same pipe efficiency. The default values
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corresponding to these assumptions are shown in Appendix A, Ta-
ble 5. All compressors are turned off, which means the pressure
coming out of the compressor remains unchanged. Furthermore,
we assume that all valves are open. Valves and short pipes are link
elements that create a relatively small pressure drop, where we
model it as a resistor with a coefficient of 𝐶𝑟 = 103.
GasLib does not provide a slack node and reference node, which
are essential for our steady-state load flow computations to obtain
a unique solution. The first source node present in the GasLib data
is changed to a slack node. Thus the injected gas flow variable is
set to unknown. In addition, the first source node is also set to a
reference node, which means the pressure is known at this node.
The reference pressure is set to the largest gas pressure found in the
data, see Appendix, A Table 6. Smaller reference pressure values
can lead to an unsolveable system.

3.2 Set-up
We apply a per unit scaling as described in [10]. Without this scaling
the gas networks do not converge with the NR method. For the
NR method, we have chosen the residual as a stopping criterion
∥𝐹 ∥2 < 10−6. The maximum number of iterations is set to 20.
For all Krylov solver we use the relative residual as a stopping
criterion ∥𝐹− 𝐽 Δ𝑥 ∥2

∥𝐹 ∥2 < 10−8. We use the following settings for each
Krylov solver:

• GMRES: At most 100 restart cycles where each restart cycle
consists of a maximum of 20 iterations.

• Bi-CGSTAB: At most 100 iterations.
• IDR(s): At most 100 iterations and we choose 𝑠 = 4.

3.2.1 Initial guess. A flat start is taken for the mass flow. We as-
sume that the gas flows in the defined direction. Thus all mass flows
start with positive values. In addition, the mass flow is set to 10%
of the largest absolute mass flow value from the in-take or off-take.
The initial nodal pressures are chosen from a linear profile based on
the ordering of the pressure values. The values start from 95% of the
reference pressure and decreases to 90% of the reference pressure.

3.2.2 Negative pressure values. The NR method can converge to
negative pressure values, which is physically not possible. This
is caused by the pressure drop, Δ𝑝 = 𝑝2

𝑖𝑛𝑙𝑒𝑡
− 𝑝2

𝑜𝑢𝑡𝑙𝑒𝑡
, containing

quadratic values of the pressure. In other words, the pressure drop
is an even symmetric function. Hence, the pressure drop value
remains the same if we change the negative pressure value to posi-
tive. Therefore, if the solution of the NR method contains negative
pressure values, we take the absolute value after each NR iteration.

3.3 Direct solver
We use an LU factorisation with a forward and backward substitu-
tion to solve the system in Equation (1). A COLAMD reordering has
been applied to reduce the bandwidth of the matrix. We make use
of the superLU package [1]. The direct solver manages to converge
for all networks. The number of NR iterations until convergence is
shown in Table 1.

Table 1: Number of iterations until convergence for each
GasLib network of the Newton-Raphson (NR) method with a
direct solver. The NR method requires more iteration when
the network grows in size.

Network System size Iterations
GasLib-11 21 4
GasLib-24 48 4
GasLib-40 84 5
GasLib-135 304 8
GasLib-582 1190 17
GasLib-4197 8662 11

3.4 Without Preconditioner
Using a Krylov solver instead of a direct solver yields poor results.
GMRES and Bi-CGSTAB only converge for the smallest available
network, GasLib-11. IDR(s) converges up to GasLib-24. To explain
this performance, it is informative to look at the condition number
of the Jacobian defined by, 𝜅 (𝐽 ) =

𝜎1
𝜎𝑛

, where 𝜎1 is the largest
singular value and 𝜎𝑛 is the smallest singular value. Generally, if
the condition number is large, then it is quite likely that the iterative
method will converge slowly. Table 2 only shows the conditions
number at the start of NR, because the condition number changes
at most with one order of magnitude throughout all NR iterations.

Table 2: The condition number and extreme singular values
of each network.

Network Condition Number Smallest 𝜎 Largest 𝜎
GasLib-11 2.32 · 102 1.73 · 10−2 4.03 · 100
GasLib-24 3.79 · 103 1.10 · 10−3 4.18 · 100
GasLib-40 4.08 · 102 1.11 · 10−2 4.52 · 100
GasLib-135 5.47 · 103 1.11 · 10−3 6.07 · 100
GasLib-582 7.97 · 1010 2.90 · 10−9 2.31 · 102
GasLib-4197 4.58 · 1010 6.98 · 10−10 3.20 · 101

The condition number for GasLib-582 and GasLib-4197 are sig-
nificantly larger compared to the other networks by at least a factor
of 106. Note that the condition number for GasLib-40 is in the same
order of magnitude as GasLib-11, but the Krylov methods do not
converge. The condition number does not explain this behaviour.
Therefore, we extend our analysis by investigating the distribution
of the eigenvalues. We have observed complex eigenvalues for all
networks. The eigenvalues are scattered, which leads to bad perfor-
mance of Krylov solvers. Furthermore, with increasing size of the
network, we see that the eigenvalues are contained in a disc, see
Appendix B, Figure 5. Moreover, a cluster of eigenvalues is forming
around the origin.

3.5 With Preconditioner
To deal with the problematic singular values and eigenvalues, we
use preconditioning methods that can change these values. Also,
in this section, we focus on the results from the preconditioned
GMRES method, because the results from Bi-CGSTAB and IDR(s)
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are similar. The ILU preconditioning is used, which leads to conver-
gence for all networks. The other preconditioners do not improve
the performance. For GMRES+ILU(5), the number of iterations re-
quired for convergence at the first and last NR iterations are shown
in Table 3. The number of iterations remained nearly constant for
all networks, except for GasLib-582 and GasLib-4197. For GasLib-
582, throughout the 17 NR iterations, the Krylov solver remained
between 7 and 13 iterations. For GasLib-4197, the last two NR it-
erations required twice as much iterations from the Krylov solver
compared to the other NR iterations. The performance is not sur-
prising when we investigate the condition number and eigenvalues
of the preconditioned system. In Table 4, we show the condition
number of each network.

Table 3: Overview of iterations until convergence with GM-
RES+ILU(5).

Network First NR Last NR
GasLib-11 4 4
GasLib-24 1 1
GasLib-40 1 1
GasLib-135 1 1
GasLib-582 7 13
GasLib-4197 15 56

Table 4: The condition number and extreme singular values
with ILU(5) as a preconditioner.

Network Condition Number Smallest 𝜎 Largest 𝜎
GasLib-11 9.78 · 103 1.09 · 10−2 1.07 · 102
GasLib-24 1.00 · 100 1.00 · 100 1.00 · 100
GasLib-40 1.00 · 100 1.00 · 100 1.00 · 100
GasLib-135 1.00 · 100 1.00 · 100 1.00 · 100
GasLib-582 5.93 · 101 2.67 · 10−1 1.58 · 101
GasLib-4197 2.96 · 1010 1.08 · 10−5 3.21 · 105

Figure 1: A comparison between the computational time of
the LU factorisaton and GMRES+ILU(5) applied on the inner
solve in the NR method. The LU factorisation is faster than
GMRES+ILU(5).

Figure 2: The number of nonzero elements of the lower tri-
angular part of the LU and ILU(5) factorisation are compared
with the number of nonzero elements of the Jacobian 𝐽 .

The condition number has significantly decreased for most net-
works, except for GasLib-11 and GasLib-4197. GMRES+ILU(5) still
manages to solve the aforementioned networks, because the eigen-
values are mostly clustered around 1. See Appendix C for figures.
Figure 1 shows the computational time of the inner solve compared
with LU and GMRES+ILU(5). The computational time of the direct
solver is at least an order lower than the iterative solver. This is
not surprising, because the number of nonzero elements in the ILU
factorisation is close to the number of nonzero elements in the LU
factorisation, see Figure 2. Note that the preconditioned Krylov
solver requires a solve with the preconditioner on top of its regular
algorithm, which results in a larger computational time.
Motivated by our observations, it is not worth the effort to solve
the linear systems resulting from the presented GasLib network
formulations with a preconditioned Krylov solver where ILU is the
preconditioner. However, the systems of equations are small, where
direct solvers remain the better choice. Moreover, future energy
systems deal with decentralised energy sources, which requires
modelling both transmission and distribution networks. This leads
to larger systems of equations of an order of at least 106. At this
size we might see better performance from Krylov solvers. Hence,
it is premature to end on a definite conclusion with our results.

4 Conclusion and Recommendations
We have investigated several Krylov solvers, because these solvers
scale well with the problem size. Our numerical results show that
Krylov solvers without preconditioning are ineffective in solving
the presented gas transmission networks from the GasLib dataset.
The condition number is large and the eigenvalues are unfavourably
distributed. Hence, we applied several preconditioning techniques,
where only the ILU factorisation leads to convergence for all net-
works. However, the ILU preconditioner requires nearly the same
amount of work as an LU factorisation. Thus the ILU factorisation
is not a suitable preconditioner if one has to recompute the factori-
sation at every NR iteration.
For further research, we suggest to keep the same ILU factorisa-
tion until the nonlinear system has changed sufficiently based on a
quantifier (Inexact-Newton method). Furthermore, this work serves
as a precursor for solving multi-carrier energy networks. In the
future, insight of preconditioning methods shown in this paper will
be compared with GasLib networks coupled with a different energy
carrier such as electricity.
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B Eigenvalues without Preconditioner

Figure 3: Eigenvalues of GasLib-11 The eigenvalues are scat-
tered.

Figure 4: Eigenvalues of GasLib-135. The eigenvalues are
scattered.

Figure 5: Eigenvalues of GasLib-4197. It becomes more dis-
tinct that the eigenvalue are contained in a disc.

C Eigenvalues with Preconditioner

Figure 6: Eigenvalues of the preconditioned system with
ILU(5) of GasLib-11. Most eigenvalues equal 1.

Figure 7: Eigenvalues of the preconditioned system with
ILU(5) of GasLib-135. All eigenvalues equal 1.

Figure 8: Eigenvalues of the preconditioned system with
ILU(5) of GasLib-4197. Most eigenvalues equal 1.
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