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This study extends the Kampmann–Wagner-Numerical model for the nucleation and growth of precipi-
tates. We introduce a multi-component theoretical framework for the value of the frequency of atomic
attachment to a growing particle, which compares well with literature. The growth of precipitates is
modelled using Zener approximations and the Gibbs–Thomson effect, where all chemical elements influ-
ence the growth rate. The model is discretised using finite-volume and time-integration techniques and
subsequently applied under isothermal conditions to an industrial HSLA steel containing Nb(C,N)-, AlN-
and MnS-precipitates. The simulations show the importance of the multi-component and multi-phase
approach as some of the secondary phases have significant effects on other phases.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Steels with higher strength and better formability are increas-
ingly required by the automotive industry because they can pro-
vide higher safety, reduce energy consumption and thus lead to a
better environmental protection. To meet these requirements, it
is a sustainable effort for steel industry to develop high strength
formable steels. One of the commonly used methods for such a
development is micro-alloying, that is, the addition of micro-
alloying elements such as niobium, vanadium and titanium at a le-
vel of only a few hundredths of a weight percent results in a very
pronounced strength-enhancing effect on the steels, provided that
an appropriate heat treatment is applied. It is understood that the
strength-enhancing effect primarily arises from a strong reduction
in the average grain size of the ferrite, originating from the grain-
refining effect during the austenisation treatment. The reason for
the grain-refining effect is that the micro-alloying elements have
a very strong affinity for the interstitial elements such as carbon
and nitrogen, leading to the precipitation of extremely fine and dis-
persively distributed precipitates. The existence of the precipitates
prevents the growth of austenite grains by means of Zener pinning
[19]. Therefore it is an essential issue for steel industry to have an
accurate control of the nucleation and growth of the precipitates
during thermo-mechanical processing of the steels.

The modelling of the nucleation and growth of secondary
phases in the last two decades has resulted into several distinct ap-
proaches, originating from different physical origins. One of these
approaches is modelling the nucleation and accompanying growth
using the statistical movement of atoms within a diffusive phase,
leading to a Monte Carlo method, see for example [33]. In [5] an-
other approach is taken, which considers the time evolution of
the number density of precipitates and the mean precipitate ra-
dius. Next to the first two approaches, in [15] Kampmann and
Wagner introduced the modelling of a size distribution function
of precipitates, which evolves using growth and nucleation laws.
Within this approach two major directions can be determined:
the first direction considers the time evolution of the size distribu-
tion based on Zener growth laws [39] and classical nucleation the-
ory (CNT), see for example [24]. The second approach [35] uses also
CNT for the nucleation of precipitates, but models the growth of
precipitates using the thermodynamic extremum principle
[21,22]. Next to the approaches modelling the simultaneous nucle-
ation and growth, several models exist that describe the growth or
dissolution of a single precipitate within a matrix [10,14,23,38].
Although these models accurately describe the growth/dissolution
of a precipitate, describing the nucleation of the precipitates and a
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high number density of precipitates (with mutual influence) is dif-
ficult within these models.

The present paper will present a novel extended Kampmann–
Wagner-Numerical (KWN) model for nucleation and growth of
precipitates by Robson’s formalism [28], which incorporates mul-
ti-component precipitates. These goals will be achieved by extend-
ing the formulae proposed by Robson [28] such that they account
for the presence of multiple elements. A new model for the
frequency of atomic attachment to a growing particle using
Continuous-Time Markov-Chains will be introduced. Furthermore
a multi-component growth rate description is proposed. We re-
mark that the present paper has a theoretical and computational
nature. Therefore, an experimental validation is omitted now,
despite its importance on the longer term.

In the present work we will describe the model for the nucle-
ation and growth of precipitates. Subsequently, the model will be
discretised using finite-volume methods. The model and its new
features will be demonstrated and compared to other models by
an application to an HSLA alloy.

2. The model for multiple precipitate types, multiple elements

Nucleation and growth of precipitates can be modelled by the
KWN model [28], which in the present paper will be extended in
such a manner that all formulae are based on the assumption that
multiple elements drive nucleation and growth of the precipitates.
The main features of the standard KWN model are:

� All precipitates are spherical and classified by their radius in
metres (m).
� The number balance of the model is described by the partial dif-

ferential equation [12,32]:
@/
@t
¼ � @ v/½ �

@r
þ S; ð2:1Þ
in which / � /ðr; tÞ in m�4 represents the number density distribu-
tion of precipitates with radius r and at time t;v � vðr; tÞ in ms�1

represents the growth rate of precipitates with radius r and at time
t. Further S � Sðr; tÞ in m�4s�1 is a source function representing
nucleation for the number density distribution of newly appearing
precipitates with radius r at time t.
� The value of the source function S is calculated from CNT and is

given by [12,32]
Sðr; tÞ ¼ dðr � r�ðtÞÞIðtÞ: ð2:2Þ
Here IðtÞ is the nucleation rate of the precipitates following from
CNT, r�ðtÞ the critical radius following from CNT and d the Dirac del-
ta distribution function.
� The first-order upwind method [17] is applied to Eq. (2.1), com-

bined with a time integration method [13].

Note that the partial differential equation given in [20], who
were the first to apply the KWN-model to aluminium alloys, is gi-
ven for the integrated quantity Nðr; tÞ, where N represents the
number density of precipitates with radius between r � Dr=2 and
r þ Dr=2 at time t. Myhr and Grong [20] express the relation be-
tween N and / as

Nðr; tÞ ¼ /ðr; tÞDr; ð2:3Þ

with r being taken from a set of discrete points within the range
½0;1Þ. The right-hand side in the relation above is an approximation
to the integral

Nðr; tÞ ¼
Z rþDr=2

r�Dr=2
/ð~r; tÞd~r: ð2:4Þ
Using Eq. (2.3), N remains a discrete quantity, whereas / re-
mains continuous. This is why we have chosen to use Eq. (2.1),
which is more accurate than the partial differential equation in
[20]. The use of Eq. (2.1) in combination with the source function
in Eq. (2.2) furthermore has the benefit that no artificial interval
has to be defined in which the nucleating precipitates are added.

2.1. Extension to multiple precipitate types

In any HSLA steel, various types of precipitates can occur (see
for example [6]). Consider a set of precipitate types P, where
p 2 P stands for a type of precipitate that can occur in a specific
HSLA steel. The classification of precipitate types is based on the
(stoichiometric) precipitate compositions. Furthermore, let E be
the set of elements within the HSLA steel, where e 2 E denotes a
chemical element that occurs within the HSLA steel. Then we can
define the following quantities:

Nominal concentration: As the nominal concentration of an ele-
ment does not depend on a precipitate type, we denote the
nominal mole fraction for each element e 2 E with x0;e.
Mean concentration within the matrix: As the mean concentra-
tion of an element within the matrix does not depend on a spe-
cific precipitate type, we denote the mean mole fraction for
each element e 2 E by xm;e.
Concentration within a precipitate: Within a single precipitate of
type p 2 P, for each element e 2 E; xp;e denotes the mole fraction
within the precipitate of type p 2 P. The related stoichiometric
composition within the precipitate of type p 2 P is denoted by
np;e for each element e 2 E. We stress that xp;e is assumed to
be constant in time and position within a precipitate.

We assume that each precipitate of type p 2 P is spherical and
that it has a number density distribution /pðr; tÞ. Therefore we
have for each precipitate type p 2 P a specific form of Eq. (2.1):

@/p

@t
¼ �

@½vp/p�
@r

þ Sp; ð2:5Þ

where Sp is a source function defined as:

Spðr; tÞ ¼ dðr � r�pðtÞÞIpðtÞ: ð2:6Þ

In the above equations the subscript p refers to the precipitate
type p. The critical radius r�p and nucleation rate Ip will be defined
in Section 2.2 and the growth rates vp will be defined in
Section 2.3.

2.2. Nucleation of precipitates

Following [28], we assume that the time-dependent nucleation
rate Ip for precipitates of type p 2 P, as used in Eq. (2.6), is given by

Ip ¼ Nv;pZpb
�
p exp �

DG�p
kBT

� �
exp � sp

t

h i
; ð2:7Þ

where kB and T represent the Boltzmann constant and temperature.
Furthermore, Nv ;p is the number density of potential nucleation
sites for precipitate type p; Zp the Zeldovich factor, b�p the frequency
of atomic attachment to a growing precipitate and sp the incubation
time for precipitation, all for precipitate type p. The term DG�p is the
free-energy barrier for nucleation which must be overcome before
precipitation of type p occurs. The variable Zp can be expressed by

Zp ¼
Va

p
ffiffiffiffiffi
cp

p
2p

ffiffiffiffiffiffiffiffi
kBT

p 1
r�p

 !2

; ð2:8Þ

which agrees with the equation given in [31] for spherical
precipitates. In these equations Va

p is the molecular volume of the
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precipitate type p; r�p the critical radius of precipitate type p and cp

the effective precipitate/matrix interface energy for precipitate type
p. The incubation time sp is given by [31]

sp ¼
1

2Z2
pb
�
p

: ð2:9Þ

In the classical nucleation theory, the free-energy change due to
a nucleation event of an incoherent spherical precipitate of type
p;DGp, is assumed [27] to be of the form

DGp ¼
4
3
pr3Dgv;p þ 4pr2cp: ð2:10Þ

In this equation, Dgv ;p is the chemical free-energy change upon
precipitation of precipitate type p, which has negative sign. Differ-
entiation with respect to r and equating to zero gives the critical
radius

r�p ¼
�2cp

Dgv ;p
; ð2:11Þ

with the corresponding nucleation energy barrier

DG�p ¼
4
3
pcpðr�pÞ

2
: ð2:12Þ

Following [1] and assuming a dilute solution approximation,
the chemical free-energy change upon nucleation of precipitate
type p can be expressed by [7]

Dgv;p ¼ �
RgT

Vmole
p

X
e2Ep

xp;e ln
xm;e

xp=m
m;e

 !
; ð2:13Þ

where Vmole
p is the molar volume of the precipitate, xp;e the mole

fraction of element e in the precipitate, xp=m
m;e the equilibrium mole

fraction of element e in the matrix at the precipitate/matrix inter-
face and Rg the gas constant. Further, Ep � E denotes the set of all
chemical elements that are present in precipitate type p, that is:

Ep ¼ e 2 Ejxp;e > 0
� �

: ð2:14Þ

Appendix A shows the physical background of Eq. (2.13), which
is based on the original derivation in [1] for binary systems. The
mole fractions xp=m

m;e can be derived from the molar solubility
product

KpðTÞ ¼
Y
e2Ep

xp=m
m;e

� �xp;e

; ð2:15Þ

which, in turn, is related to the commonly used solubility product

K%
p ðTÞ ¼

Y
e2Ep

e½ �np;e ; ð2:16Þ

with e½ � the weight percent of element e in the matrix at
equilibrium.

With respect to the value of Nv ;p, the number density of poten-
tial nucleation sites for an incoherent precipitate type p, see Eq.
(2.7), various theories exist. One of the earliest theories by Russell
[30], uses the total number of atoms per unit volume in the matrix.
In [28] it is suggested to use the number of solute atoms per unit
volume in the matrix, i.e. the value from [30] multiplied by the
mean mole fraction of solute in the matrix. The latter approach
gives a better agreement between simulations and experiments
[28]. In [28] it is also suggested to replace the mole fraction of sol-
ute with an empirical parameter to match predicted and measured
results. Within the computational software MatCalc [18], the num-
ber of substitutional atomic sites is used for the number density of
potential nucleation sites, which is approximated by the number of
substitutional sites within a matrix unit lattice cell divided by the
volume of the matrix unit lattice cell. As we agree with the
argument that a precipitate can nucleate at any substitutional site
in the matrix lattice, we adopt the definition from [18].

The factor b� is introduced by Robson [28] as the frequency of
atomic attachment to a growing precipitate for a binary alloy with
a precipitate containing a single element using the equation

b� ¼ 4pDxm

a4
m

r�ð Þ2; ð2:17Þ

where D equals the bulk diffusion coefficient of the element, xm the
atomic fraction of that element in the matrix and am the lattice con-
stant of the matrix. The CNT is based on the principals of nucleation
theory of liquid droplets forming from a gas solution, which defines
b� as the product of the area of a spherical nucleating droplet at crit-
ical radius r�p and the attachment frequency of a molecule per unit
area of the droplet [31]. Based on this original definition, b�p for a
spherical precipitate type p, has the form

b�p ¼ 4p r�p
� �2

ka
p; ð2:18Þ

with ka
p the effective attachment frequency of a molecule of precip-

itate type p per unit area. Assuming the effective attachment fre-
quency of a precipitate molecule to be given by km

p ;b
�
p can be

reshaped to

b�p ¼
4p r�p
� �2

a2
p

km
p : ð2:19Þ

To be able to evaluate the latter equation, we need a definition
for the effective frequency km

p .
A first approach that often is employed, is to apply Eq. (2.17) to

the slowest diffusing element, indicating that km
p is defined as

km
p ¼

Df xm;f

a2
m

; ð2:20Þ

where f 2 Ep such that

Df ¼min
e2Ep

De: ð2:21Þ

In [35] another approach is taken, in which km
p is defined as

km
p ¼

1
a2

mX

X
e2Ep

ðcke � c0eÞ2

c0eDe

" #�1

; ð2:22Þ

where the cke and c0e are concentrations and X is the partial molar
volume.1 This approach is based on the solution of their evolution
equations based on the thermodynamic extremum principle (see
[21,22]) and comparison with a dilute binary system with a unary
precipitate.

In the present paper, we take an atomistic approach, which will
reduce to Eq. (2.17) for a binary system with a unary precipitate.
Consider a precipitate type p which contains n elements, of which
the first s elements are located on the substitutional lattice of the
precipitate and the last n� s elements are located on the intersti-
tial lattice of the precipitate. To create an atomic unit on the sur-
face of the precipitate, one atom of the substitutional set and one
atom of the interstitial set should jump from their position in the
matrix lattice to their position on the precipitate lattice. The pres-
ence of an atom of element e can be described by the state variable
ve, which is given by

ve ¼
0 if atom type e is not present;
1 if atom type e is present;

	
ð2:23Þ

for e ¼ 1; . . . ; n. These variables are captured in the state vector
~v ¼ v1; . . . ; vsjvsþ1; . . . ; vn


 �
, which can assume 2n different values



Fig. 2.1. A graphical representation of the Continuous-Time Markov chain with
n ¼ 3 and s ¼ 1 as discussed in Section 2.2.
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at maximum. We further assume that at any time, the presence of a
single element type e can change, but not simultaneously with the
change of another element type. This indicates that if the state ~v of
the system changes, only one ve changes from 0 to 1. If one of the s
substitutional elements is present near the interface and simulta-
neously one of the n� s interstitial elements is present near the
interface, we assume strong bonds are created and both atoms can-
not jump back to the matrix. We furthermore assume that if the
system is at a state such that one substitutional and one interstitial
element are present, this state cannot be left. It follows that ~v can
only assume S ¼ ðsþ 1Þðn� sþ 1Þ different values under these
assumptions.

To model the change in the state ~v, we assign to each element
type e a change of energy DUe when ve changes from 0 to 1:

DUe ¼ xp;eDgv;pVmole
p : ð2:24Þ

These energies are based on Eq. (2.13). Now the total energy
Uð~vÞ of the state ~v can be calculated as

Uð~vÞ ¼ U0 þ
Xn

e¼1

veDUe; ð2:25Þ

where U0 is the energy of the state 0; . . . ; 0j0; . . . ; 0ð Þ. The energy
difference due to the transfer from state~v to state~1 can now be cal-
culated as

DU~1
~v ¼ Uð~1Þ � Uð~vÞ ¼

Xn

e¼1

ð1e � veÞDUe: ð2:26Þ

If the system is in a given state~v, we assume that it can transfer
to a state~1 within time t~1~v, which is exponentially distributed with
rate parameter k

~1
~v if only a single element changes from 0 to 1 or

vice versa. Following [3], we assign to such elementary state
changes from ~v to ~1 a change rate k

~1
~v given by

k
~1
~v ¼ wðf Þm~1~v

z
6

exp �
Q~1
~v þmaxðDU~1

~v; 0Þ
RgT

0
@

1
A; ð2:27Þ

where f is the element that changed from 0 to 1 or vice versa and Q~1
~v

is the activation energy for atomic jumps. The function wðf Þ is given
by

wðf Þ ¼ 1
2

xm;f up;f � 1

 �

ð1f � vf Þ þ
1
2

xm;f up;f þ 1

 �

; ð2:28Þ

note that

wðf Þ ¼
xm;f up;f if 1f � vf ¼ 1;
1 if 1f � vf ¼ �1:

(
ð2:29Þ

The variable up;f is defined as the relative particle-lattice molar
fraction of element f, given by

up;f ¼

xp ;fXs

e¼1

xp;e

if 1 6 f 6 s;

xp ;fXn

e¼sþ1

xp;e

if sþ 1 6 f 6 n:

8>>>>>>><
>>>>>>>:

ð2:30Þ

We have included the function wðf Þ in the change rate to ac-
count for the amount of element f present in both the matrix and
the precipitate. The pre-exponential frequency m~1~v, the vacancy con-
centration z, the activation energy for atomic jumps Q~1

~v and the
average inter-atomic spacing a are related to the diffusion coeffi-
cient Df via the approximation [27]

m~1~v
z
6

exp �
Q~1
~v

RgT

 !
� Df

a2 : ð2:31Þ
The description of the jump process fits the definition of a Con-
tinuous-Time Markov chain [29], with transition rates from Eq.
(2.27). A graphical representation of this process for n ¼ 3 and
s ¼ 1 is given in Fig. 2.1. The entire process can be captured by a
transition rate matrix Q, if we assign to each state~v a state number

rð~vÞ ¼ ðiþ 1Þ
Xs

e¼1

veeþ
Xn

e¼sþ1

veðe� sÞ þ 1: ð2:32Þ

For two different states ~v and ~1 and associated state numbers
rð~vÞ and rð~1Þ the transition matrix Q has at position ðrð~vÞ;rð~1ÞÞ
the value

k
~1
~v if ~v!~1 is possible;

k
~1
~v if ~v!~1 is not possible:

8<
: ð2:33Þ

The diagonal of Q is such that the sum of each row of Q is zero.
Using this transition matrix Q, we can express the probabilities

of being in state i ¼ 1; . . . ; S at time t with the vector
~pðtÞ ¼ p1ðtÞ; p2ðtÞ; . . . ; pSðtÞ½ �, which is given by the function

~pðtÞ ¼~pð0ÞeQt; ð2:34Þ

with ~pð0Þ ¼ 1; 0; . . . ; 0½ �. We now approximate the effective attach-
ment frequency km

p by

km
p ¼

1
t�p
; ð2:35Þ

where t�p is the expected time at which we are at any of the states
where one substitutional and one interstitial element are present.
It can be shown that the value of t�p is given by

t�p ¼
Z 1

0
t

d
dt

X
j2T

pjðtÞ
 !

dt; ð2:36Þ

where T is the set of state where one substitutional and one inter-
stitial element are present. If n ¼ 1, so a single element e within the
precipitate, we can derive the following expressions for t�p and b�p:

t�p ¼
a2

Dexm;e
; ð2:37Þ

b�p ¼
4p r�p
� �2

a2
p

Dexm;e

a2 ; ð2:38Þ

which for ap ¼ am and a � am gives the same values as Eq. (2.17).
Comparison of Eq. (2.22) with Eq. (2.35), we see that although

both definitions use an effective frequency, the definition provided
by [35] uses a formula related to the harmonic mean, which is fre-
quently used to determine average frequencies. Our formulation
also considers the effects of atoms jumping back and forth between
the two phases, which cannot be captured correctly by assuming a
harmonic mean of jump frequencies.
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2.3. Growth of precipitates

In the previous section, the nucleation rates Ip, which are incor-
porated in the source functions Sp of Eq. (2.5), were discussed. The
other factor influencing the time evolution of the precipitate distri-
bution /p is the growth rate vp of each precipitate with radius r. As
we assume that a precipitate consists of multiple elements, we
must have, following [39]

vp ¼
De

r
Cm;e � Cp=m;r

m;e

Cp;e � Cp=m;r
m;e

; 8e 2 Ep; ð2:39Þ

in which Cp=m;r
m;e is the concentration2 of element e in the matrix at the

precipitate/matrix interface for precipitate type p with radius r;Cm;e

the mean concentration 2 of element e in the matrix and Cp;e the con-
centration 2 of element e in the precipitate. Since a single precipitate
can only grow at one defined rate, we should have

De

r
Cm;e � Cp=m;r

m;e

Cp;e � Cp=m;r
m;e

¼ Df

r

Cm;f � Cp=m;r
m;f

Cp;f � Cp=m;r
m;f

; 8ðe; f Þ 2 E2
p : ð2:40Þ

The above system contains jEpj � 1 unique nonlinear equations
per precipitate type p, in which Cp=m;r

m;e ; e 2 Ep are the jEpj unknowns.
Given a growth rate vp, we must also have

De

r
Cm;e � Cp=m;r

m;e

�Cp=m;r
m;e

¼ vp; 8e 2 E n Ep; ð2:41Þ

from which the concentration Cp=m;r
m;e for an element e not present in

the precipitate can be obtained. Define the mole fraction xp=m;r
m;e by

xp=m;r
m;e ¼

Cp=m;r
m;eX

f2E
Cp=m;r

m;f

8e 2 E: ð2:42Þ

If we assume that Cp=m;r
m;e is influenced by surface effects, all

Cp=m;r
m;e ; e 2 Ep are indirectly described by the Gibbs–Thomson effect

2cpVa
p

kBT
1
r
¼
X
e2Ep

xp;e ln
xp=m;r

m;e

xp=m
m;e

 !
; ð2:43Þ

as was derived in [25]. Here xp=m
m;e is the local equilibrium concentra-

tion of element e in the matrix at the precipitate/matrix interface
for precipitate type p. Eq. (2.43) can be recast in the form

Y
e2Ep

xp=m;r
m;e

� �xp;e

�KpðTÞ exp
2cpVa

p

kBT
1
r

 !
¼ 0; ð2:44Þ

where we used Eq. (2.15). The problem now reduces to finding
Cp=m;r

m;e ; e 2 Ep such that Eqs. (2.40) and (2.44) hold for all r 2 ½0;1Þ
and Cp=m;r

m;e ; e 2 E n Ep are determined by Eq. (2.41). After solving this
nonlinear problem, we obtain the concentrations xp=m;r

m;e as functions
of r, then we compute vpðr; tÞ for one of the elements e 2 Ep, which
is now the unique growth rate of a precipitate of type p with radius
r at time t.

2.4. Coupling of the multiple precipitate types

Although in Sections 2.2 and 2.3 nothing was said explicitly
about the manner in which different precipitate types influence
each other, one can see the matrix mole fractions xm;e in Eqs.
(2.13) and (2.28) and the matrix concentrations Cm;e in Eqs.
(2.39) and (2.41). The mole fraction within the matrix xm;e is related
to the matrix concentrations Cm;e by
2 In moles per cubic metre.
xm;e ¼
Cm;eX

f2E
Cm;f

: ð2:45Þ

Given the nominal molar fractions x0;e; e 2 E, we can determine
the nominal concentrations C0;e; e 2 E in moles per cubic metre by

C0;e ¼
x0;eqX

f2E
x0;f Mf

; ð2:46Þ

with Mf the molar mass of element f and q the nominal density of
the system. Then the matrix concentrations Cm;e are given by

Cm;e ¼
C0;e �

X
p2P

Cp;ef V
p

1�
X
p2P

f V
p

; ð2:47Þ

with f V
p ¼

Z 1

0

4
3
pr3/p dr; ð2:48Þ

and Cp;e ¼
np;e

Vmole
p

: ð2:49Þ
3. Numerical methods

To be able to simulate the time evolution of the solution of Eq.
(2.5) for each precipitate type p, we discretise Eq. (2.5) in the pre-
cipitate radius domain and integrate in time, respectively, with the
finite-volume upwind method and the Euler Implicit scheme on a
fixed set of size classes. Although these two methods are theoret-
ically first order in both time and place, we have chosen these
methods as they are simple methods and they are known to
preserve positivity and stability of the numerical solution uncondi-
tionally [13]. We combine these methods with a variable time-step
selection, of which the details can be found in [37]. The non-linear
system of equations obtained by application of the upwind method
and the Euler Implicit time integration are solved using Picard’s
Fixed Point method.

Each Picard step requires the determination of the growth rates
of each precipitate. Since the growth of the precipitate should be
defined by each chemical element that is present in the precipitate,
we can use Eq. (2.39) for each chemical element. This implies that
Eq. (2.40) should hold for each combination of chemical elements
in the precipitate. Thereby, we can express all interfacial concen-
trations by chosing one of them and herewith by combining Eqs.
(2.40), (2.41) and (2.42), we obtain Eq. (2.44). Hence, Eq. (2.44) is
solved as a single nonlinear equation for one unknown only using
a quasi-Newton method.

Since we use a Picard method, combined with the aforemen-
tioned quasi-Newton method to solve the scalar Eq. (2.44), to solve
the multi-variate problem arising from discretisation of Eq. (2.5)
and an implicit time integration method, no numerical instabilites
occured. Furthermore, we observed good convergence for both the
inner quasi-Newton method and the outer Picard method at each
time-step.

In [20], the size at which particles nucleate, the critical radius r�p,
is increased by a small amount to 1:05r�p, during the discretisation,
to avoid numerical instability of the algorithm. A similar approach
is taken within the software MatCalc [18]. The increase is physi-
cally justified as a precipitate with radius r�p is unlikely to grow,
so it will nucleate if it is slightly larger than r�p. In our opinion
the value with which r�p is increased should tend to zero as the size
class length tends to zero. To this end, we determine the size class
ri��1=2; ri�þ1=2

� 

, in which r�p is located, and replace the source func-

tion in Eq. (2.6) with

Spðr; tÞ ¼ dðr � ri�þ1ÞIpðtÞ; ð3:1Þ
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where rj represents the centre of the jth size class. If we let the size
class length tend to zero, the difference between the radii r�p and
ri�þ1 will tend to zero, indicating that the solution of the discrete
system will tend to the solution of Eq. (2.5) with the source function
from Eq. (2.6). For the simulations in this paper we use a geometric
mesh containing 200 size classes between the lattice parameter of
each precipitate and 0.1 lm, i.e. Dri ¼ ð1þ �ÞDri�1; i ¼ 2; . . . ; 200
with � > 0.
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Fig. 4.1. Comparison of the effective frequencies defined by Eqs. (2.35) and (2.22)
relative to Eq. (2.20) for a precipitate with stoichiometry NbCxN1�x for variable
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4. Results

In this section we simulate the precipitation kinetics in an
industrial HSLA steel, of which the composition can be found in Ta-
ble 4.1. Using the TCFE6 database of ThermoCalc Software AB [36]
and restricting ourselves to the temperature 900 �C, we see that
the primary phase is austenite and three types of precipitates occur
in this steel. The precipitate types are niobium-carbonitride, alu-
minium-nitride and manganese-sulphide. The mole fraction for
niobium in the Nb(C,N)-precipitates is given by TCFE6 database
of ThermoCalc Software AB [36] as 0:5, for carbon as 0:466 and
for nitrogen as 0:034. The mole fraction for aluminium and nitro-
gen in the AlN-precipitates as well as the mole fractions for man-
ganese and sulphur in the MnS-precipitates are taken as 0:5. We
note that xNbðC;NÞ;C depends on the solute content. However, due
to the lack of the possibility to couple our code to thermodynamic
databases, we take xNbðC;NÞ;C constant under isothermal conditions.

The solubility of each precipitate type is modelled using solubil-
ity products [11,9,4,34]:

K%
NbðC;NÞ ¼ xK%

NbC


 �x ð1� xÞK%
NbN


 �1�x
; ð4:1Þ

log10K%
NbC ¼ 3:2� 7690

T
; ð4:2Þ

log10K%
NbN ¼ 3:57� 9660

T
; ð4:3Þ

log10K%
AlN ¼ 1:03� 6770

T
; ð4:4Þ

lnKMnS ¼ �0:01� 1
2

logð2Þ � 11282:5
T

; ð4:5Þ

where x equals 2xNbðC;NÞ;C ¼ 0:932. We choose the effective interfa-
cial energies of the precipitate types as cNbðC;NÞ ¼ 0:19 J=m2,
cAlN ¼ 0:20 J=m2 and cMnS ¼ 0:33 J=m2. These values differ from
those found in literature [2,8,16], however, they fall within the
range as specified in [27], and are chosen such that the simulations
show the qualitative aspects of our model.

The main new features of our model are the multi-component
definition of the frequency of atomic attachment, the multi-
component growth rates and the coupling between the various
precipitate types. First we will focus on the value of b�p for different
approaches. Thereafter we will show the results obtained for the
multi-component growth rates, in comparison with the other used
growth rates (see for example [28]). Finally results from full simu-
lations at 900 �C will be shown and discussed.

4.1. Frequency of atomic attachment

Given the composition of the steel, the solubility product and
the effective interfacial energy for Nb(C,N)-precipitates, we have
computed the effective frequency km

p for an NbCxN1�x-precipitate
at 900 �C, where the amount of carbon x in the precipitate is varied
Table 4.1
The composition of the HSLA steel in weight percent used in this article.

Element C Nb N Al Mn S

wt.% 0.06 0.017 0.004 0.03 0.25 0.005
from zero to one. Fig. 4.1 shows the results of these computations,
where the horizontal axis represents the amount of carbon on the
interstitial lattice and the vertical axis the ratio between the com-
puted effective frequencies, Eqs. (2.35) and (2.22), and the effective
frequency defined by the slowest element, i.e. niobium in this
example, Eq. (2.20). The approach in Eq. (2.20) is referred to as
the ‘‘single element approach’’.

From Fig. 4.1, one can see that the effective frequencies defined
by [35] and defined in this paper are close to the ‘‘single element
approach’’ which uses the slowest diffusing element, Eq. (2.20).
The effective frequency calculated by the model in [35] is slightly
higher than the ‘‘single element approach’’, whereas our approach
stays below the value obtained with the single element approach.
The effective frequency in [35] is strangely also less dependent on
the parameter x, whereas for lower values of x, i.e. nitrogen being
the more abundant element, we have a relative reduction between
5% and 15% with respect to Eq. (2.20). It is the authors’ believe that
the presence of any other element besides the slowest diffusing
element in a precipitate should reduce the effective frequency of
Eq. (2.20) by an amount, as each element should influence the
effective attachment frequency of a growing precipitate. The re-
sults obtained with Eq. (2.35) reflect this property, whereas Eq.
(2.22) does not. As x! 0þ and x! 1� we should arrive at two
10−9 10−8 10−7 10−6 10−5−2
Critical radius

r (m)

Fig. 4.2. Comparison of the various growth rate models available for an Nb(C,N)-
precipitate at 900 �C.
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Fig. 4.3. Comparison of simulation results at 900 �C between our model and the models from [26,35].
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different limits, which is not reflected by applying Eqs. (2.22) and
(2.20).

As our value for x equals 0:932 the different models for b�p will
not differ more than two percent, as can be seen from Fig. 4.1. Any
simulation using these values will have approximately the same
quantitative results. Our model however has a richer theory than
the two previously published models, which could be important
in some applications.
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Fig. 4.4. The saturation as a function of time at 900 �C. A superscript s refers to a
single-precipitate simulation, a superscript m to a multi-precipitate simulation. On
the vertical axis the species for which this axis holds is given.
4.2. Multi-component growth

Our multi-component model for precipitate growth differs from
those found recently in literature, see [26,35]. The model in [26]
uses Eqs. (2.39) and (2.44), but has replaced the concentrations
in Eq. (2.39) by mole fractions with appropriate weight factors
for the conversions. In this model the mole fractions are the un-
knowns, but do not cause a reduction in the number of unknowns.
A drawback is the possibility that due to numerical errors the cal-
culated mole fractions can be larger than one, leading to unphysi-
cal results. In our model we only have a non-negativity constraint
on the unknowns, the mole fractions will always be between zero
and one at all times and the sum of mole fractions equals unity at
all times. The model in [35] is based on solving their evolution
equations, which are based on the thermodynamic extremum prin-
ciple [21,22]. Their model has an analytical solution for precipi-
tates with constant composition, for which we refer to [35].

Fig. 4.2 shows for an Nb(C,N)-precipitate the obtained growth
rates as a function of the radius at 900 �C when no precipitates
have nucleated in the chosen HSLA steel. In this figure also the crit-
ical radius r�p is indicated. As one can see all three models provide
graphs with the same shape, which all cut the zero-growth axis at
the critical radius, coinciding with the theory. The model from [35]
provides a significantly lower absolute value for the growth rate in
comparison with our model and the model by [26] up to a radius of
approximately 0.1 lm. The model from [26] shows a slightly high-
er value compared to our model, indicating that the model by [26]
is a good approximation of our model, under the assumption that
the approximation given in [39] holds. From Fig. 4.2, it is expected
that the mean radii of a simulation with our model and the model
from [26] increase faster in time than the mean radius obtained
with the model from [35] due to the higher growth rates.

In Fig. 4.3, some results from a simulation at 900 �C for an
Nb(C,N)-precipitate are shown for all three growth models.3

Fig. 4.3(a) shows, as expected, that the mean radius of the precipi-
tates increases faster for our model and the model from [26] than
3 All other formulae and discretisation techniques from this article have been used.
for the model from [35]. The values however have the same order
of magnitude and show the same qualitative behaviour. Due to the
lower growth rates in the model from [35], more solute remains
available for nucleation, which causes a longer increase in the num-
ber of precipitates, as can be seen from Fig. 4.3(b). The lower growth
rates cause the volume fraction to achieve its equilibrium value of
1:4088	 10�4 at a later time with respect to the other two models,
Fig. 4.3(c). All three models show nonetheless the same overall qual-
itative behaviour.

4.3. Interaction of multiple phases

Due to the presence of nitrogen in both the Nb(C,N)-precipitates
and in the AlN-precipitates and as a result of the natural nonlinear
coupling between these precipitate types as discussed in Sec-
tion 2.4, we expect differences to occur in the nucleation and
growth behaviour of the Nb(C,N)-precipitates and the AlN-precip-
itate, however not in the behaviour of the MnS-precipitates. To
investigate these expected differences, we performed four simula-
tions at 900 �C for the chosen HSLA steel, of which three simulate
the nucleation and growth of each precipitate type separately and
uncoupled, and one simulates the nucleation and growth of all
three precipitate types simultaneously and coupled. Some of the
results of these simulations are shown in Figs. 4.4 and 4.5.
Fig. 4.4 shows the saturation level Sp of the matrix with respect
to a precipitate type p, defined by
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Sp ¼
Q

e2Ep
xm;eð Þxp;e

KpðTÞ
: ð4:6Þ

Fig. 4.5 depicts the time-evolution of the volume fraction of
each precipitate type.

From the results in Figs. 4.4 and 4.5 it can be concluded directly
that the nucleation and growth behaviour of Nb(C,N)-precipitates
is sensitive to the presence of AlN-precipitates. The AlN-precipi-
tates show a slight difference due the presence of the other precip-
itate types. The MnS-precipitates show no major changes with
respect to the presence of the two other precipitate types. To inves-
tigate these effects further, Fig. 4.6 shows some results obtained for
the Nb(C,N)-precipitates.

From Fig. 4.6(a) we can clearly see that although nucleation of
Nb(C,N)-precipitates starts at approximately 100 s in both simula-
tions, the maximum nucleation rate is reduced to about a third in
the coupled approach. This reduction is caused by the decrease of
nitrogen in the matrix due to the nucleated AlN-precipitates. Close
inspection of the curve for the coupled simulation also shows a
slight decrease in the time-derivative of the nucleation rate at about
1000 s. This decrease causes the number density of precipitates, see
Fig. 4.6(b), to continue to increase longer, although a lower total
number density is achieved. Due to the lower number density of
precipitates, the growth of precipitates is favoured, leading to a
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higher mean radius, Fig. 4.6(c). We can also see that due to the long-
er nucleation period, no coarsening has started for the coupled
simulation.

Fig. 4.5 also shows a decrease of the volume fraction of AlN after
10,000 s in the coupled simulation, which coincides with the time
at which a significant fraction Nb(C,N) has been formed, Fig. 4.6(b).
Inspection of Fig. 4.7 shows that at 10,000 s the matrix concentra-
tion of aluminium increases, whereas the concentration of nitrogen
in the matrix decreases. The increase of the aluminium concentra-
tion can only be caused by a dissolution of AlN-precipitates, which
is consistent with the decrease in the volume fraction of the AlN-
precipitates. Due to the rise of the aluminium concentration in
the matrix the concentration of nitrogen in the matrix must de-
crease for the saturation with respect to AlN-precipitates to remain
at equilibrium. Since the Nb(C,N)-precipitates have not yet reached
equilibrium, see Fig. 4.4, but nucleation has stopped, see Fig. 4.6(a),
this decrease in nitrogen is balanced by faster growth of the
Nb(C,N)-precipitates, see Fig. 4.6(c).

From the results presented in Figs. 4.4, 4.5, 4.6 and 4.7 and the
above discussion, we conclude that the simultaneous simulation of
multiple precipitate types can reveal the nucleation behaviour that
would not have been simulated if each precipitate type would have
been simulated separately. Furthermore the coupling based on the
elements present within the entire system between the various
precipitate types has to be taken into account.
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5. Conclusions

In this article, we extended the binary KWN-model [15] for the
nucleation and growth of precipitates to a model which describes
nucleation and growth of multiple secondary phases, using nucle-
ation and growth formulae depending on all elements present
within the matrix and the precipitates. The time behaviour of the
number density distribution has been described using a partial dif-
ferential equation, where the nucleation of precipitates is given by
a Dirac delta distribution function.

To incorporate a stronger dependence on the stoichiometry of
the frequency of atomic attachment to a growing precipitate, we
have proposed a theoretical Continuous-Time Markov-Chain based
model. The model furthermore has been successfully applied to the
nucleation of complex precipitates in an HSLA steel. We also note
that different precipitate phases interact, which is accounted for
in our model.

An improved model for the growth of precipitates has been pro-
posed based on a molar balance on all alloying elements using the
concentration in mole/m3and the Gibbs–Thomson effect [25]. Use
of the concentrations in mole/m3 rather than the mole fractions
as in [26] in the definition of the growth rates leads to a more accu-
rate model, as no artificial limits on the mole fractions have to be
imposed during the calculations.

We furthermore have analysed the influence of the introduced
natural coupling between multiple precipitate types by application
to an HSLA steel containing Nb(C,N)-, AlN- and MnS-precipitates.
This analysis has shown that the coupling of the multiple phases
is of importance during modelling and simulating of multiple sec-
ondary phases, as the simulations indicate that there is a mutual
influence between the secondary phases during several stages of
the nucleation and growth of secondary phases.
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Appendix A. Motivation of Eq. (2.13)

In [1] a plausible formula for the volume free energy density
associated with precipitate nucleation in dilute solution binary
alloys:

Dgv ¼ �
RgT

Vmole
p

xp ln
xm

xp=m
m

� ��
þ 1� xp

 �

ln
1� xm

1� xp=m
m

� ��
; ðA:1Þ

in which xp refers to the mole fraction of solute in the precipitate
phase p at the precipitate/matrix interface, xp=m

m to the mole fraction
of solute in the matrix phase m at the precipitate/matrix interface
and xm to the mole fraction of solute in the matrix phase m. R; T
and Vmole

p , respectively, are the gas constant, the absolute tempera-
ture and the molar volume of the precipitate phase. In their motiva-
tion, they restricted themselves to a binary alloy in which
precipitates nucleate at a known composition. The original discus-
sion in [1] can be adapted to calculate the volume free energy
density associated with the nucleation of precipitates in a multi-
component alloy, by making similar assumptions as in [1].

In the discussion in [1], the following three main assumptions
are made:
1. A single precipitate has the same chemical composition as the
entire precipitate phase at equilibrium.

2. The composition of the matrix phase is uniform throughout the
system.

3. Only two species are present in the system, the solute and the
solvent.

We now drop the third assumption, but the first two assump-
tions are maintained. In the remainder of the Appendix, we follow
the derivation of Eq. (A.1) as originally given in [1] to motivate Eq.
(2.13), which provides the multi-component equivalence of Eq.
(A.1).

Assume one mole of the matrix phase m consists of n 2 N ele-
ments with mole fractions xm;e; e 2 E for which

P
e2Exm;e ¼ 1 and E

is the set of atoms present within the system. From this phase, A
moles of the precipitate phase p nucleate, resulting in a system
containing A moles of the precipitate phase and B ¼ 1� A moles
of a new matrix phase m1:

m! Apþ Bm1: ðA:2Þ

The phase p has a known and fixed composition with mole frac-
tions xp;e; e 2 E at the precipitate/matrix interface, for whichP

e2Exp;e ¼ 1, and the phase m1 with resulting mole fractions
xm1 ;e; e 2 E for which

P
e2Exm1 ;e ¼ 1. A simple mass balance gives

Bxm1 ;e ¼ xm;e � Axp;e: ðA:3Þ

The volume free energy change DGv associated with phase
transformation (A.2) is determined by

DGv ¼ AGp þ BGm1 � Gm; ðA:4Þ

in which Gp;Gm1 ;Gm are the molar free energies of the different
phases. For any phase j, the molar free energy can be determined
by the finite sum

Gj ¼
X
e2E

xj;eGj;e; ðA:5Þ

where Gj;e represents the partial molar free energy of element e in
phase j. For j ¼ p these energies are taken, similar to the related
mole fractions, in phase p at the precipitate/matrix interface. Using
the above formula three times in (A.4) gives

DGv ¼
X
e2E

Axp;eGp;e þ Bxm1 ;eGm1 ;e � xm;eGm;e: ðA:6Þ

Due to the assumption on the composition of the precipitate
being in equilibrium composition, we may replace the partial mo-
lar free energy Gp;e with Gp=m

m;e , which is the partial molar free energy
of element e in phase m at the precipitate/matrix (p=m) interface.
Using this substitution and the results from the mass balance
(A.3), formula (A.6) transforms to

DGv ¼
X
e2E

Axp;e
�Gp=m

m;e � Gm1 ;e

� �
þ
X
e2E

xm;e
�Gm1 ;e � �Gm;e

 �

: ðA:7Þ

Based on the used assumptions, we express the partial molar
free energies and the molar free energies of the pure elements in
the various phases in (A.7) in terms of the activities of the elements
in the different phases by using the formula

Gj;e ¼ Gj;e þ RgT ln aj;e

 �

; ðA:8Þ

in which aj;e represents the activity of element e in phase j. A super-
script is introduced for aj;e if a specific location, being a phase or an
interface, is described. Further, we assume that Gm;e � Gm1 ;e. Replac-
ing the partial molar free energies in (A.7) and rewriting gives

DGv ¼ RgTA
X
e2E

xp;e ln
ap=m

m;e

am1 ;e

 !
þ RgT

X
e2E

xm;e ln
am1 ;e

am;e

� �
: ðA:9Þ
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Division by the number of moles A of phase p and the molar vol-
ume Vmole

p of phase p results in the formula

D~gv ¼
RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am1 ;e

 !
þ RgT

AVmole
p

X
e2E

xm;e ln
am1 ;e

am;e

� �
; ðA:10Þ

for the volume free energy density. As A is usually small, we can
take the limit of A to zero of the above formula.

First we need some preliminary calculations. Note that if we let
A, the number of moles of phase p that nucleate, tend to zero, we
have the following limit using (A.3) for arbitrary e:

lim
A!0

xm1 ;e ¼ xm;e: ðA:11Þ

Due to this limit and due to the continuity of the expression, we
will also have that am1 ;e ! am;e as A tends to zero. Using this fact we
now take the limit for A to zero of (A.10):

Dgv ¼ lim
A!0

D~gv ðA:12Þ

¼ lim
A!0

RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !"

þ RgT

AVmole
p

X
e2E

xm;e ln
am1 ;e

am;e

� �#
ðA:13Þ

¼ RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !

þ RgT

Vmole
p

lim
A!0

1
A

X
e2E

xm;e ln
am1 ;e

am;e

� �" #
: ðA:14Þ

The latter limit is of an indeterminate form, but can be evalu-
ated using l’Hôpital’s Rule, provided the limit of the ratio of the
derivatives exists:

¼ RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !
ðA:15Þ

þ RgT

Vmole
p

lim
A!0

d
dA

X
e2E

xm;e ln am1 ;e

am;e

� �( )
d

dA Af g

2
66664

3
77775

¼ RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !
ðA:16Þ

þ RgT

Vmole
p

lim
A!0

X
e2E

xm;e
d

dA
ln

am1 ;e

am;e

� �	 �� �
:

If we differentiate the partial molar free energy of element e in
any phase j, see Eq. (A.8) with respect to A, we get

dGj;e

dA
¼ dGj;e

dA
þ RgT

d
dA

ln aj;e

 �� 


: ðA:17Þ

Applying this to Eq. (A.16), using the definition of the derivative
and pulling the summation within the limits, we get

Dgv ¼
RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !
ðA:18Þ

þ 1

Vmole
p

lim
A!0

lim
DA!0

X
e2E

xm;e DGm;e � DGm1 ;e

� �
DA

2
664

3
775:

The numerator of the fraction inside the double limit can be fur-
ther simplified using the Gibbs–Duhem equation, from which it
follows that
Dgv ¼
RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !
ðA:19Þ

þ 1

Vmole
p

lim
A!0

lim
DA!0

0
DA

� �
; ðA:20Þ

which immediately gives

Dgv ¼
RgT

Vmole
p

X
e2E

xp;e ln
ap=m

m;e

am;e

 !
: ðA:21Þ

On basis of the dilute solution assumption we redefine (A.21) as

Dgv ¼
RgT

Vmole
p

X
e2E

xp;e ln
xp=m

m;e

xm;e

 !
; ðA:22Þ

or equivalently

Dgv ¼ �
RgT

Vmole
p

X
e2E

xp;e ln
xm;e

xp=m
m;e

 !
: ðA:23Þ

Note that Eq. (A.23) reduces to Eq. (A.1) for a binary alloy.
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