
On the performance of a 2D unstructured computational rheology code on a GPU
Simão P. Pereira, Kees Vuik, Fernando T. Pinho, and João M. Nóbrega

Citation: AIP Conference Proceedings 1526, 72 (2013); doi: 10.1063/1.4802604
View online: http://dx.doi.org/10.1063/1.4802604
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1526?ver=pdfcov
Published by the AIP Publishing

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=Sim�o+P.+Pereira&option1=author
http://scitation.aip.org/search?value1=Kees+Vuik&option1=author
http://scitation.aip.org/search?value1=Fernando+T.+Pinho&option1=author
http://scitation.aip.org/search?value1=Jo�o+M.+N�brega&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4802604
http://scitation.aip.org/content/aip/proceeding/aipcp/1526?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

On the Performance of a 2D Unstructured
Computational Rheology Code on a GPU

Simão P. Pereiraa, Kees Vuikb, Fernando T. Pinhoc, João M. Nóbregaa

aI3N-Institute for Polymers and Composites, University of Minho, Campus Azurém,
Guimarães 4800-058, Portugal

bDelft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Department of Applied Mathematics, Mekelweg 4, 2628 CD, Delft, The Netherlands

cCEFT, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n,
4200-465 Porto, Portugal

Abstract. The present work explores the massively parallel capabilities of the most advanced
architecture of graphics processing units (GPUs) code named “Fermi”, on a two-dimensional
unstructured cell-centred finite volume code. We use the SIMPLE algorithm to solve the
continuity and momentum equations that was fully ported to the GPU. The benefits of this
implementation are compared with a serial implementation that traditionally runs on the central
processing unit (CPU). The developed codes were assessed with the bench-mark problems of
Poiseuille flow, for Newtonian and generalized Newtonian fluids, as well as by the lid-driven
cavity and the sudden expansion flows for Newtonian fluids. The parallel (GPU) code
accelerated the resolution of those three problems by factors of 19, 10 and 11, respectively, in
comparison with the corresponding CPU single core counterpart. The results are a clear
indication that GPUs are and will be useful in the field of computational fluid dynamics (CFD)
for rheologically simple and complex fluids.

Keywords: Graphics processing units, Computational fluid dynamics, Parallelization, Finite
volume method, Unstructured meshes.
PACS: 46.15.-x, 47.11.Df

INTRODUCTION

The demands to solve more complex and large dimensional problems has led to the
development of parallel computing methodologies, aiming to solve the problems of
interest within acceptable computational times. Traditionally, scientific computations
are performed on Central Processing Units (CPU) either on sequential [1] or parallel
[2,3] approaches, however the enhanced performance offered by the Graphics
Processing Units (GPUs) is decisively contributing to its adoption in highly intensive
scientific computations, with concomitant reductions of computation times [4,5].
Considering the fact that a couple of years ago GPUs were mainly targeted to the
games industry, nowadays, performing heavy computations on GPUs has been defined
as a new trend in computational science fields, due to the massively parallelism
available on such devices [5].

Over the past five years, the number of non-graphical applications that use GPUs to
perform heavy computations has significantly increased in a variety of fields [6,7].
However, as reported recently [4] there are some performance limitations in regard to

Novel Trends in Rheology V
AIP Conf. Proc. 1526, 72-89 (2013); doi: 10.1063/1.4802604

© 2013 AIP Publishing LLC 978-0-7354-1151-7/$30.00

72
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

Computational Fluid Dynamics (CFD). Nevertheless, several implementations of CFD
codes on GPUs have been reported and are briefly outlined hereafter.

Regarding the solution of the Euler or Navier-Stokes equations on GPU, one of the
first implementation for compressible fluids can be found in Hagen et al. [8],
indicating speed-ups of up to 25x, when compared with the corresponding single core
CPU code. Brandvik and Pullan [9] reported speed-ups of 29x (2D) and 16x (3D)
when solving the Euler equations using structured grids. Elsen et al. [7] also solved the
Euler equations for hypersonic flows with speed-ups of 40x (simple geometries) or
20x (complex geometries). However, all these performances were attained by using
single precision (SP) codes, because the first generation of GPU hardware did not
allow double precision (DP) computations. Mixed precision techniques were used to
compensate this problem as reported by Goddeke et al. [10], without major loss of
precision.

The first DP incompressible Navier-Stokes solver for structured grids, achieved
speed-ups of 8.5x when compared to the CPU implementation [11]. Corrigan et al.
[12] reported speed-ups of 7.4x using DP with an unstructured cell-centred mesh finite
volume code (FVM), for solving the Euler equations. The most relevant speed-ups
were obtained on the implementation of an unstructured mesh vertex-based FVM code
developed by Kampolis et al. [13], where maximum speed-ups of 28x (single
precision), 25x (mixed precision) and 20x (double precision) for 2D and 3D Navier-
Stokes solvers, were achieved. Subsequent work by the same group [14] improved
their code and a maximum speed-up of 46x was achieved with the mixed precision
technique, when solving unsteady laminar and turbulent flows.

In this work, we present a parallel Navier-Stokes type solver on GPU able to model
generalized Newtonian fluids targeted to computational rheology applications. The
aim is to evaluate its performance with inelastic models to move towards more
complex constitutive equations. This will enable to tackle current computationally
demanding viscoelastic fluids problems. Regarding the code implementation, no sort
of optimization was introduced in the implementation with the purpose of evaluating if
graphics cards required such robust programming skills. The parallel code was
compared with a CPU version running on a single core.

GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing equations for isothermal flow of an incompressible fluid are the
continuity and momentum equations of motion written in vector form as

 0��� u (1)

 ��� ���������
	
	 puu

t
u (2)

where � is the fluid density, u the velocity vector, p the pressure and � the extra stress
tensor. The simplest constitutive equation for incompressible fluids is the purely
viscous generalized Newtonian fluid model of Eq. 3. If this equation is substituted into

73
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

in the momentum equation the Navier-Stokes equation for variable viscosity fluids is
obtained [15].

 �gg�� � (3)

In Eq. 3 � is the viscosity and g is the rate of strain tensor defined in Eq. 4. This

model is valid for Newtonian and generalized Newtonian fluids, i.e., fluids with
variable viscosity without any elastic effects. For Newtonian fluids the function �(g)
takes on a constant value, while for the generalized Newtonian fluids the shear
viscosity depends on an invariant rate of strain tensor [16], such as the shear rate of
equation Eq. 5.

 Tuu ����g (4)

2
:gg

g � (5)

The Bird-Carreau viscosity equation is a commonly employed model to account for

the shear-thinning behaviour of polymer melts and solutions, and is given by

 �

 �
 �

T

2
1

2

0

1
uun ���

�

�
�� �

g

g

�

���� (6)

which uses four empirical parameters. The model accounts for the low and high shear
rate Newtonian plateau (�0 and ��, respectively), along with the variable viscosity
quantified by the power law exponent (n) and its onset at a shear rate of �-1 [16].

The numerical solution of the governing equations are obtained by employing the
finite volume method, used to solve flow problems with Newtonian and
non-Newtonian fluids. In this method the computational domain is mapped onto
control volumes over which the governing equations are initially integrated in space
and time and benefiting from the application of the Gauss’ Divergence Theorem.
Then, the ensuing exact solutions are discretized to form a system of algebraic
equations that can be solved using an iterative method [15,17], which includes a
procedure to ensure the coupling between velocity and pressure fields. At the end, any
of the discretized governing equations can be written in the following general linear
form at any cell P for the property � (u for instance)

���� Saa nb
nb

nb��PP (7)

in which contributions to the central and neighbour cells are carried out through the
corresponding coefficients. The specific expressions depend on the adopted
differencing scheme. In this work, the discretization of the governing equations was
made using an unstructured two-dimensional mesh based on triangular control
volumes [17]. We adopt the cell-centred scheme, in which all variables are computed

74
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

at the centre of the control volume, also known as collocated arrangement. The
advantage of using unstructured meshes, in comparison with structured meshes, lays
on the fact that more complex geometries can be mapped without the need for
unnecessary mesh refinements elsewhere [17,18].

Considering the discretization of the momentum equation we use a
central-difference scheme to determine the diffusive term, a first-order upwind or a
second-order MUSCL scheme [19] to compute the convective term and the pressure
gradient is computed explicitly based on the least-square gradient technique [17]. The
time discretization is by the first-order Euler implicit scheme. When performing
steady state calculations we use this term to march the computation along time, but
without converging at each time step (pseudo-transient approach), as an alternative to
under-relaxation [17].

To overcome the nonlinearities of the governing equations, their coefficients are
always computed on the field data obtained in the previous iteration. To satisfy both
the mass and momentum equations, and since there is no specific equations for the
pressure, the SIMPLE algorithm [20] is adopted, in which the continuity equation is
transformed into an equation for a pressure correction. The idea behind this algorithm
is to start with a guessed velocity field in order to compute the convective fluxes at the
cell faces, and a guessed pressure field to solve the momentum equations, obtaining a
new velocity field. The new velocity field does not satisfy continuity, but the pressure
correction equation, derived from the continuity equation, is then solved to correct
both the pressure and velocity fields, thus obtaining a mass conservative velocity field.
Since pressure and velocities are computed and stored at the cell centres, a special
interpolation scheme has to be used when calculating the mass fluxes at cell faces in
order to ensure complete coupling between the two fields. The Rhie and Chow method
[21] is used for this purpose. The algorithm employed is illustrated in Figure 1 along
with details regarding the flow chart of the parallel (GPU) implementation that will be
mentioned later.

FIGURE 1. Flow chart of the implemented SIMPLE algorithm. The coloring scheme routine signed
with (�), is used just for the parallel implementation with evidence of the SIMPLE algorithm. The grey

boxes correspond to the routines that were ported to the GPU, in the parallel of the code.

75
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

The process converges when sufficient velocity and pressure corrections are
performed, in order to satisfy the chosen stopping criteria for the SIMPLE algorithm.
The convergence criterion of SIMPLE is based on the normalized residuals of the
momentum and pressure equations, where the maximum residual is taken to be the
maximum of the first 5 iterations. The normalized residuals must fall below 10�4 for
momentum and pressure-correction equations.

IMPLEMENTATION ON THE GPU

In this section the GPU computing environment is briefly introduced and
implementation details of the developed numerical modelling code are presented.

Graphics Processing Units

GPUs are now considered to be highly parallel multi-core processors with large
floating point performance peak (GFLOPS) and higher memory band- width (GB/s)
than CPUs. Recent developments on the architecture of graphics cards introduced the
Fermi architecture, considered to be the first GPU suitable for scientific computations,
since the previous generations of GPU architectures lacked some important features
(e.g. double-precision support, extended memory hierarchy, handling of algorithms
with irregular patterns, among others) in order to be suitable for a wide range of
scientific computations [22].

Basically, the Fermi architecture features up to 512 CUDA cores or Streaming
Processors (SPs) organized in Streaming Multiprocessors (SMs) each containing 32
cores. The GPU has its own DRAM memory that can be as large as 6 GB depending
on the graphic card, and exchanging data between the host (CPU) and the device
(GPU) memories is done via a PCI-Express interface. On the device (GPU) there are
different types of memories, from fast to slow, that can be used and controlled by the
programmer. The main advantage of the Fermi architecture is the existence of an
extended memory hierarchy that caches memory accesses to global memory
automatically, i.e. without the programmers’ intervention, a feature that enables
algorithms with random memory accesses to be suitable for GPUs, as opposed to
previous architectures [23].

Execution Model

The Compute Unified Device Architecture (CUDA) introduced by NVIDIA [23] is
a general purpose parallel computing architecture that provides a C/C++ language
interface to the hardware, based on a scalable programming model and on an
instruction set architecture. In other words, CUDA is simultaneously a hardware and a
software architecture that enables the execution of parallel programs on GPUs [22,24].
The device (GPU) is considered to be a host (CPU) co-processor and device function
calls for device memory allocation, data transfer between host and device and kernel
calls are controlled by the host. Kernels are device functions that execute the same
instruction in parallel for a set of threads organized in blocks, which compose a grid of
one or more blocks. Essentially each block is an amount of work that is assigned to

76
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

each SM and the threads within the block are executed simultaneously by all SPs in
each SM. Increasing the number of cores and of SM allows to solve more blocks of
work concurrently, enabling an automatic scalability with the number of CUDA cores
[23]. In the Fermi architecture, each SM schedules threads in groups of 32 parallel
threads called warps, which are the minimum size of the data processed. The
interested reader should consult [23,24] for more details on GPU architecture and
programming.

Implementation Issues

The parallel implementation of the code on a GPU is not a hard task, but getting
performance benefits from the parallel implementation is not so straightforward. The
most basic strategy is to remove the bottlenecks of the serial code, by porting to the
GPUs the most time consuming routines. This must be done carefully to avoid
unnecessary memory transfers between host and device. Sometimes it compensates to
run part of the code on the GPU rather than on the CPU, even if that does not show
performance gains, just to avoid data transfer between host and device.

The flow chart of the code implemented on the GPU is shown in Figure 1 which
indicates the routines that run on the GPU and on the CPU. As shown, some
lightweight routines are executed only once, hence it is not worth to port them into the
device. These are the mesh generation, the data structuring arising from the mesh and
the colouring scheme that will be detailed later. These routines are required along the
code and are all computed on the CPU, and the data copied to the GPU global
memory.

An important issue regards the assembly of the algebraic system of equations on
parallel architectures. The system of equations is assembled by sweeping through all
edges of the computational mesh in order to collect contributions from each edge to
both triangular control volume straddling that edge. However in parallel architectures
it is necessary to adopt a special scheme to avoid the occurrence of race conditions
[13,26], which occur when two or more threads (running in parallel) try to access
simultaneously the same memory address, leading to information loss. One way to
avoid this problem in parallel architectures is to adopt a colouring scheme when
assembling the system of equations [13,26]. In this work we coloured those edges that
have independent diagonal contribution to the matrix which guarantees that each
triangle receives only one contribution from each edge colour, i.e. this assumes that
implicit contributions to the diagonal are not carried out in the same assembly step. In
the case of triangular control volumes, six colouring steps (3 per cell) are necessary to
assemble the system of equations, since every edge has two adjacent cells. The routine
to colour the edges is per- formed once on the host and the information is further
copied to the device memory.

The iterative methods for solving sparse linear systems used in this work were the
point-iterative Jacobi and the conjugate-gradient, which use a matrix stored in the
compressed sparse row (CSR) format [27]. Whenever possible, the GPU parallel code
uses the CUBLAS and CUSPARSE libraries from NVIDIA’s toolkit [23], in routines
such as sparse matrix-vector multiplication (y = Ax + y), vector-scalar multiplications
and vector update or dot product. The convergence criteria or accuracy of the iterative

77
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

solvers was defined by the ratio of the current and initial normalized residuals

 �

202
AxbAxb �� . The key feature of sparse matrix-vector multiplication operations

is the large number of load instructions relative to the floating point instructions and
this is the reason why they are considered to be a memory bound operation.

CODE ASSESSMENT

In this section the numerical solution of the benchmark problems used to assess the
implementation of the GPU parallel code are presented. All computations were
performed with double-precision and meshes were generated with the open source
software Gmsh [28].

Poiseuille Flow between Parallel Plates

In Poiseuille flow, the flow is driven by a streamwise pressure gradient in
equilibrium with the viscous drag. For Newtonian and some non-Newtonian fluids
there is a full analytical solution for the fully developed velocity and pressure fields,
which depends on the shear viscosity of the fluid. In the case of a 2D parallel plate
flow, the length L and width of the channel are assumed to be much larger than the
thickness H of the channel as depicted in Figure 2(a). Figure 2(b) shows one of the
meshes used (PF01) having a cell thickness of the order of 0.033H , since a variety of
computational meshes (detailed in Table 1) were used to evaluate how the
performance scales with the number of cells, as will be shown in the next section. All
meshes are unstructured with a “quasi-uniform” distribution of cell sizes, i.e., no
attempt was made to refine them (see Figure 2). The ratio between length (L) and
thickness (H) of the channel was defined to be 5.

FIGURE 2. Poiseuille flow problem (a), boundary conditions and representative mesh (b).

78
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

TABLE 1. Computational meshes used for the Poiseuille flow case study.
Meshes PF01 PF02 PF03 PF04 PF05 PF06 PF07 PF08

Cells 1.0·104 2.8·104 5.6·104 7.2·104 1.4·105 2.0·105 3.3·105 4.6·105

(�x/H)min 0.033 0.02 0.014 0.013 0.0091 0.0077 0.0059 0.005

The problem was solved considering a Newtonian fluid flow at Re = 0.1, where the

Re is computed based on the mean fluid velocity, channel thickness and the kinematic
viscosity (�). A fully developed velocity profile was used as inlet boundary condition
and as outlet a zero normal gradient for all flow variables was assumed. In this
problem, the first-order UDS scheme was used to estimate the convective fluxes and
both the momentum and pressure-correction were solved with an accuracy of 10�2. A
time-step of 10�4 s was used for the time-marching computations and pressure
corrections were relaxed with a constant value of 0.1.

The non-Newtonian model used in this test is that of a purely viscous fluid, the
generalized Newtonian fluid model, with the viscosity law given by the Bird-Carreau
equation (Eq. 6). In this case the zero shear viscosity is used to compute the Reynolds
number. The computations were carried out with different values for the power index
n (0.4 � 1.0) and the parameters used for the Bird-Carreau model were:
�0 = 1.3·104 Pa.s, �� = 1.0·10�3 Pa.s and � = 5.4·10�2 s. The dimensionless velocity
profiles computed with the GPU code and using the computational mesh PF01
(see Table 1) for both Newtonian and generalized Newtonian fluids are presented in
Figure 3. Since there is no analytical solution for the Bird-Carreau constitutive
equation, the numerical predictions by the developed GPU code were compared with
results from a reliable and well-verified finite volume code [1], that uses structured
meshes.

The results in Figure 3 show a good agreement between both codes. As expected,
by decreasing the power index (n) the velocity profile tends to a plug shape, the
typical behaviour for a shear-thinning fluid.

FIGURE 3. Dimensionless velocity profiles for Newtonian and Bird-Carreau fluids at Re = 0.1,
obtained both with a previously assessed code [1] (struct.) and the developed code (unstruct.).

79
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

Lid-Driven Cavity Flow

The lid-driven cavity flow is a benchmark problem usually employed to verify the
Navier-Stokes equations solvers and for the assessment of numerical techniques and
accuracy. The problem considers incompressible flow in a square cavity with side
length H, where an upper lid moves with a known velocity (U), as illustrated in
Figure 4.

FIGURE 4. Description of lid-driven cavity flow problem.

This test problem is well documented in the literature [29,30,31], using different

solution procedures and Reynolds numbers ranging from 100 to 10,000. The major
difficulty with this problem is to capture the flow near the corners, where vortices
appear. Here, numerical solutions for the cavity flow at Re = 1,000, are presented and
compared with steady state benchmark quality data from the literature. The solutions
were obtained by using the MUSCL scheme to estimate the convective fluxes. All the
computations were performed using the pseudo-transient approach, considering that
the fluid was initially at rest. The square cavity height was set to H = 0.1 m and the top
wall moves at a speed of U = 0.01 m.s�1, corresponding to flow at Re =1,000. The
time-step of 0.005 s and a constant value of 0.5 were used for the time-marching
computations and relaxation of pressure correction, respectively. Furthermore, the
accuracy of the iterative solvers was defined to be of 10�1.

The assessment work was performed using mesh LD01 (see Table 2). The
numerical results obtained were assessed by means of velocity plots and streamlines.
The computed u-velocity along the central vertical centre line and the v-velocity along
the horizontal centre line are compared with the values reported in [29]. The velocity
profiles are plotted in Figure 5 and match very well with the reference values reported
in the literature. For assessment purposes it is also useful to present the flow field
using streamlines, because it enables the visualization of the global flow field. They
are plotted in Figure 6, and were obtained using the Paraview’s [32] implementation
of the fourth-order Runge-Kutta scheme on the Stream Tracer filter.

80
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

TABLE 2. Computational meshes used in the lid-driven cavity flow case study.
Meshes LD01 LD02 LD03 LD04 LD05 LD06 LD07 LD08
Cells 5.40·103 2.39·104 5.17·104 9.53·104 1.43·105 2.10·105 3.69·105 6.91·105

(�x/H)min 0.02 0.01 0.0067 0.005 0.004 0.0033 0.0025 0.0018

FIGURE 5. Velocity profiles for Re = 1,000 using mesh LD 01, for the lid-driven cavity problem.

FIGURE 6. Streamlines for the lid-driven cavity problem at Re = 1,000: a) this code, b) adapted from

Ghia et al. [29].

81
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

The streamlines predicted by the code match very well the literature data [29]
including the shape and location of the vortices.

Sudden Expansion

The last problem employed for assessment purposes was the planar sudden
expansion, whose geometry is illustrated in Figure 7. It consists of an upstream
channel of thickness H followed by a downstream channel of thickness 4H. For this
problem a Newtonian fluid was considered, assuming fully developed flow at the
channel inlet. Due to the very long downstream channel (300H), the gradient of flow
variables at the outlet is null, except for the pressure that is linearly extrapolated from
the domain. This benchmark problem has been extensively used to verify numerical
solutions and schemes [33,34,35] used in incompressible laminar flow of Newtonian
and non-Newtonian fluids. At low Reynolds numbers the flow is symmetric and at a
critical Reynolds number, that depends on expansion ratio, the flow becomes
asymmetric [34], but remains steady. Using the developed code we solve numerically
the plane sudden expansion following the geometry used by Drikakis [34] at Reynolds
numbers of 55 and 80. As done in [34], the Reynolds number was computed based on
the maximum velocity in the fully developed profile in the upstream channel. For this
problem the meshes described in Table 3 were considered, and in particular mesh
SE01 was employed here for assessment purposes. The numerical results obtained are
presented as streamlines shown in Figure 8 for Re = 55, where the flow is still
symmetric, and at Re = 80, where the transition from symmetric to asymmetric flow
has already taken place. The similarity of these results with those of Drikakis by [34]
for the same flow conditions, also shown in Figure 8, are an additional verification of
the developed code.

FIGURE 7. Geometry employed for the sudden expansion problem.

82
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

TABLE 3. Computational meshes used in the sudden expansion flow case study.
Meshes SE01 SE02
Cells 1.28·105 3.85·105
(�x/H)min 0.045 0.033

FIGURE 1. Streamline for the sudden expansion case study: results obtained with the developed code

- (a) Re = 55 and (c) Re = 80 - and results adapted from Drikakis [34] - (b) Re = 55 and (d) Re = 80.

PERFORMANCE ANALYSIS

In this section a performance comparison between the serial and parallel
implementations of the developed codes is carried out, based on mesh refinement
scalability for the three benchmark flow problems presented before.

Methodology Employed for the Performance Evaluation

A performance comparison between the developed GPU numerical code and a quite
similar CPU code running in a single core is presented in this section, with the goal of
exploring the benefits of porting code to GPUs. The performance comparison is
carried out in terms of the computational time consumed as a function of the number
of computational cells (problem dimension).

Both numerical codes have a set of routines to solve flow problems which include
the implementation of the SIMPLE algorithm, along with other pre- and post-
processing routines essential to the developed numerical codes, such as mesh
generation, handling of mesh data, computing geometrical properties, among others,
which are not analyzed here because they are exactly the same in both codes. Instead,
our focus is to those routines that are essential to the parallel implementation and
which are listed in Table 4. The circles are used to indicate the routines that run fully
on the GPU, whereas the crosses refer to those running on the CPU even on the GPU
code. Note that the GPU implementation requires 3 additional routines that are
executed only once, and do not exist in the CPU code. The routines for solving the
momentum equation, the pressure-correction equation and the velocity corrections are
invoked several times during the SIMPLE iterative process, and were programmed to
run fully on the GPU. During this study it was also found that it is crucial to

83
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

implement the complete algorithm on the GPU, in order to minimize data transfers
between host and device.

TABLE 4. Most important code routines for each code implementation.

Routine CPU GPU
Coloring scheme — X
Copy to Device — X
Solve momentum equations X �
Solve pressure-correction equation X �
SIMPLE corrections X �
Copy to Host — X

Time measurements of the most relevant routines presented later on were obtained

with the command gettimeofday(), both for the CPU and GPU implementations. Since
kernel calls are asynchronous to host threads, in the case of the GPU implementation
the command cudaThreadSynchronize() must precede the timing command in order to
guarantee that the GPU has finished the computations [23].

Poiseuille Flow between Parallel Plates

The details of the computational meshes were introduced in Table 1, thus we
present in Table 5 the computational times taken by the SIMPLE algorithm for both
CPU and GPU implementations, along with the duration of data transfers between host
and device memories. The results show that the parallel implementation accelerates
the SIMPLE algorithm up to 19x, which corresponds to a reduction of the
computational time from 23 hr 22 min to 1 hr 12 min for the finest mesh.

As can be concluded from the data shown in Table 5 increasing the amount of work
increases the speed-up of the parallel implementation, which emphasizes the
advantages of GPU parallelization.

TABLE 5. Computational times and speed-up for the SIMPLE algorithm and data transfers, in the

Poiseuille flow case study, for the CPU and GPU implementations.
Meshes PF01 PF02 PF03 PF04 PF05 PF06 PF07 PF08

CPU (s)
SIMPLE CPU 63.1 400.8 1343.7 2202.8 7807.5 16704.7 52015.0 84120.2

GPU (s)

Copy to Device 0.0025 0.0054 0.0088 0.012 0.018 0.026 0.042 0.06

SIMPLE GPU 25.3 79.0 192.1 267.1 702.8 1243.9 3119.5 4334.7
Copy to Host 0.0003 0.0006 0.0011 0.0013 0.0025 0.0035 0.0057 0.0078

Speed Up
Newtonian 2.5 5.1 7.0 8.2 11.1 13.4 16.7 19.4
GNF(n = 0.8) 2.4 5.0 6.9 7.9 11.1 13.7 - -

It is well known that solving the system of equations is always the bottleneck of

computational fluid mechanics codes. However, solving only the system of equations
on the GPU is not the correct strategy, since data transfers between host and device are

84
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

very slow and easily kill the application performance. This justifies the complete
implementation of the SIMPLE algorithm in the parallel architecture, in order to avoid
data transfers between host and device at every iteration of the algorithm. Copying
data to the device memory is performed once at the beginning of the SIMPLE
algorithm and only again at the end of the algorithm, after convergence. This
minimizes the impact of the data transfer, which can be neglected with respect to the
computations, since its relative contribution varies from 0.01% to 0.001% for the
problems studied.

Within each code (serial/CPU and parallel/GPU) the relative amount of time spent
on each routine is similar as shown in Figure 9. Note that most of the time is actually
devoted to solving the momentum equations and in particular in the x-direction, since
this problem is mainly a one-dimensional flow. Usually, in this type of algorithms,
solving the pressure-correction equation is more time consuming than solving the
momentum equations, however this was not seen here because of the convergence rate
of the Jacobi iterative solver used for the latter, that is lower than that of the conjugate-
gradient method, used for the former.

FIGURE 9. Relative timings for the Poiseuille flow problem. Full and dashed lines correspond to the

CPU and GPU implementations, respectively.

A performance comparison was also carried out for the Bird-Carreau fluid

computations, although not in such detail as for the Newtonian case. The results in
terms of speed-up are plotted in Figure 10 and show that the generalized Newtonian
model runs as fast as the Newtonian, showing the same performance trends.

85
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

FIGURE 2. Speed-up for the Poiseuille flow for Newtonian and Bird-Carreau model (n = 0.8).

Indeed, these models only require the change of the local viscosity, according to the

rate of deformation by using Eqs. 5 and 6. A maximum speed-up of approximately 14
was attained for the mesh PF06. So far, the performance results are quite impressive
for such a simple implementation without of the usual referred, and time consuming
for the code development, memory optimizations required to achieve impressive
performance speed-ups in GPUs. [23].

Lid-Driven Cavity Flow

For this flow the computational times are those in Table 6 for the SIMPLE
algorithm on the CPU and GPU with the meshes on Table 2. From now on, we ignore
the data transfers between host and device since it was shown in the previous problem
that these operations are relatively small in terms of computational time. This is
mainly because the copying routines are executed only twice, once at the beginning
and then at the end of the calculation.

TABLE 6. Computational time for the calculation with the SIMPLE algorithm and data transfers.

Comparison between the CPU and GPU implementations for the lid-driven cavity flow case study.
Meshes LD01 LD02 LD03 LD04 LD05 LD06 LD07 LD08

timings (s)
SIMPLE CPU 295.6 2050.1 6427.2 17541.9 36643.5 39702.5 77939.8 161107.6

SIMPLE GPU 177.5 509.0 1012.1 2451.6 4884.6 4972.1 8415.4 16444.5

Speed Up
 2.5 5.1 7.0 8.2 11.1 13.4 16.7 19.4

86
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

The maximum speed-up factor obtained for this case study was 10, which is
approximately half those of the previous problems. In a typical computation the most
time consuming routine is devoted to solving the system of equations, but here, we
had to use a small time-step to under-relax properly the momentum equations in order
to achieve convergence. As a result, the iterative solver required less iterations to
achieve the desired accuracy. Smaller time-steps require more outer iterations on the
SIMPLE algorithm and as a result the assembly of the system of equations limits
performance to a maximum speed-up of 10.

Sudden Expansion

For the sudden expansion flow problem, we simply considered the two highly
refined meshes in Table 3, one with 128k cells and the other with 385k cells. The
speed-up factors obtained for the 1:4 planar sudden expansion at Re = 80 were 7.9 and
10.8, for the coarse and finest meshes, respectively, a clear indication that it follows
the performance trend of the previous problem. It is important to note that there is a
dependence of the performance on the simulation parameters or on flow conditions,
since the relative time spent on each routine varies and some routines perform better
than others when parallelized.

CONCLUSION

This work presents and discusses the GPU parallel implementation and
performance scalability of a 2D finite-volume flow solver for unstructured meshes.
The performance assessment is carried out in comparison with a serial version of the
code running on a single CPU core. For the GPU version of the developed numerical
code, the latest Fermi graphics cards architecture was used, which dispenses with the
need for the programmer to devote most of the developing time in memory
optimizations to obtain relevant performance gains. The performance benefits
obtained with the GPU implementation relative to the single core CPU code are
quantified in maximum speed-up factors of 19, 10 and 11, for the Poiseuille channel,
lid-driven cavity and 1:4 planar sudden expansion flows, respectively.

Considering the GPU availability, cost and easiness to program, the results obtained
are an indication that the full exploitation of the capabilities of these devices can be
very useful for future computational fluid dynamics and computational rheology
calculations. Porting numerical code to the massively parallel graphics cards
compensates when the amount of work is large. The parallel code runs considerably
faster that its serial counterpart, even without any memory optimizations that can
speed-up even further the computations.

87
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding by FEDER via Fundação para a
Ciência e Tecnologia through projects FCOMP-01-0124-FEDER-015126 (Ref. FCT
PTDC/EMEMFE/ 113988/2009) and PEst-C/CTM/LA0025/2011 (Strategic Project -
LA 25 2011-2012).

REFERENCES

1. P. Oliveira, F. Pinho and G. Pinto, J. Non-Newtonian Fluid Mech. 79, 1-43 (1998).
2. P. F. Fischer and A. T. Patera, Annu. Rev. Fluid Mech. 26, 483-527 (1994).
3. H.-S. Dou and N. Phan-Thien, Comput. Mech. 30, 265-280 (2003).
4. J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn and T. Purcell, Comput.

Graph. Forum 26, 80-113 (2007).
5. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, Proceedings of the

IEEE 96, 879-899 (2008).
6. J. A. Anderson, C. D. Lorenz and A. Travesset, J. Comput. Phys. 227, 5342-5359 (2008).
7. E. Elsen, P. LeGresley and E. Darve, J. Comput. Phys. 227, 10148-10161 (2008).
8. T. R. Hagen, K.-A. Lie and J. R. Natvig, Lecture Notes in Computer Science 3994, 220-227

(2006).
9. T. Brandvik and G. Pullan, “Acceleration of a 3D Euler solver using commodity graphics

hardware”, in 46th AIAA Aerospace Sciences Meeting (January 2008).
10. D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, H. Wobker, C. Becker and S. Turek,

Int. J. Comput. Sci. Eng. 4, 36-55 (2008).
11. J. Cohen and J. Molemake, “A fast double precision CFD code using CUDA”, in 21st

International Conference on Parallel Computational Fluid Dynamics (May 2009).
12. A. Corrigan, F. F. Camelli, R. Lohner and J. Wallin, Running unstructured grid–based CFD

solvers on modern graphics hardware, International Journal for Numerical Methods in Fluids 66,
221-229 (2011).

13. I. Kampolis, X. Trompoukis, V. Asouti and K. Giannakoglou, Comput. Method. Appl. Mech. Eng.
199, 712-722 (2010).

14. V. G. Asouti, X. S. Trompoukis, I. C. Kampolis and K. C. Giannakoglou, Int. J. Numer. Meth. Fl.
67, 232-246 (2010).

15. J. Blazek, Computational Fluid Dynamics: Principles and Applications (2nd edition), Amsterdam:
Elsevier Science, 2006.

16. Z. Tadmor and C. Gogos, Principles of Polymer Processing (2nd edition), New Jersey: Wiley-
Interscience, 2006.

17. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics the Finite
Volume Method (2nd edition), Harlow: Pearson Education Limited, 2007.

18. L. Sun, S. Mathur and J. Murthy, Numer. Heat Trans., Part B: Fundamentals 58, 217-241 (2010).
19. M. Darwish and F. Moukalled, Int. J. Heat Mass Tran. 46, 599-611 (2003).
20. S. Patankar, Numerical Heat Transfer and Fluid Flow, New York: Taylor & Francis, 1984.
21. C. Rhie and W. Chow, AIAA J. 21, 1525-1532 (1982).
22. NVIDIA, Fermi compute architecture whitepaper, http://www.nvidia.com/ob ject/fermi-

architecture, 2009.
23. NVIDIA, CUDA C Programming Guide Version 4.0, http://www.developer.nvidia.com/ nvidia-

gpu-computing- documentation, 2011.
24. D. Kirk and W.-M. Hwu, Programming Massively Parallel Processors: A Hands-on Approach

(1st edition), Burlington: Morgan Kaufmann, 2010.
25. NVIDIA, CUDA C Programming Best Practices Guide Version 4.0,

http://www.developer.nvidia.com/nvidia-gpu-computing- documentation, 2011.
26. C. Cecka, A. J. Lew and E. Darve, Int. J. Numer. Meth. Eng. 85, 1-6 (2010).

88
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

27. Y. Saad, Iterative Methods for Sparse Linear Systems (2nd edition), Society for Industrial and
Applied Mathematics, 2003.

28. C. Geuzaine and J. -F. Remacle, Int. J. Numer. Meth. Eng. 79, 1309-1331 (2009).
29. U. Ghia, K. Ghia and C. Shin, J. Comput. Phys. 48, 387-411 (1982).
30. O. Botella and R. Peyret, Comput. Fluids 27, 421-433 (1998).
31. C. Bruneau and M. Saad, Comput. Fluids 35, 326-348 (2006).
32. A. Henderson, ParaView User’s Guide (v3.10), Kitware, Inc, 2011.
33. F. Durst, A. Melling and J. H. Whitelaw, J. Fluid Mech. 64, 111-128 (1974).
34. D. Drikakis, Phys. Fluids 9, 76-87 (1997).
35. N. Panagiotis, J. Non-Newtonian Fluid Mech. 133, 132-140 (2006).

89
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.161.210.1 On: Sat, 01 Feb 2014 21:39:05

