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The Netherlands

(Received 11 September 2015; accepted 5 November 2015; published online 24 November 2015)

The charging of insulating samples degrades the quality and complicates the interpretation of

images in scanning electron microscopy and is important in other applications, such as particle

detectors. In this paper, we analyze this nontrivial phenomenon on different time scales employing

the drift-diffusion-reaction approach augmented with the trapping rate equations and a realistic

semi-empirical source function describing the pulsed nature of the electron beam. We consider

both the fast processes following the impact of a single primary electron, the slower dynamics

resulting from the continuous bombardment of a sample, and the eventual approach to the steady-

state regime. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936201]

I. INTRODUCTION

The charge dynamics during the bombardment of dielec-

tric samples by the primary electrons (PE) in a Scanning

Electron Microscope (SEM) can be studied with different

methods. One is the Monte Carlo (MC) technique,5,12,20,30–32

whose main advantages are the rigorous semi-classical

account of the microscopic physics and the ability to con-

sider non-equilibrium dynamics (by this we mean the dy-

namics of particles with their energies not yet distributed as

in thermal equilibrium). However, the MC approach is

known to suffer from the increase of computational com-

plexity in the case of long-range potentials, such as those of

the electrostatic field.2 Moreover, in an inhomogeneous sam-

ple, the required potentials can only be obtained by numeri-

cally solving a large electrostatic problem with a very high

and non-uniform spatial resolution at each step of the MC

algorithm. Also, for a reliable estimate of the particle flux

through a part of the sample boundary, one needs to consider

a sufficiently large statistical ensemble, which is computa-

tionally expensive.

For these and other reasons, an alternative and in many

ways a much simpler self-consistent approach originating in

semiconductor physics has been proposed.4,6,8–11,28,34 This

so-called Rostoc Program takes the current density point of

view, considering currents rather than charge densities to be

the fundamental quantities. Some of the advantages of the

current-based approach are: the possibility to model the

sample-vacuum interface via a reflection-transmission coeffi-

cient formalism and to include the tertiary electrons return-

ing to the sample into the model. On the other hand, it is

more difficult to describe proper ohmic contacts in this way,

and it is hard to extend this approach to two and three spatial

dimensions.

The traditional self-consistent approach of the semicon-

ductor physics26 considers the charge densities obeying the

drift-diffusion-reaction (DDR) system of equations to be the

fundamental quantities. This approach is particularly suited

for modeling the equilibrium charge transport in inhomoge-

neous semiconductor devices (e.g., junctions). Some parts of

the DDR model have already been applied to the SEM prob-

lem.13,22–24,38,39 However, these previous studies have omit-

ted the trapping rate equations thereby missing an important

feature of the charging dynamics. Also, the model employed

relies on an MC treatment of the PE, their initial scattering,

and the emission of the secondary electrons (SE) through the

sample-vacuum interface. Hence, the question remains

whether a fully self-consistent continuum DDR model with-

out any MC parts can adequately describe the charging of

dielectric samples by a focused electron beam.

The main challenges one faces in developing a fully

self-consistent DDR model for the SEM problem are: the

non-equilibrium charge injection mechanism followed by

the generation of secondary particles via ionization, the fact

that secondary electrons may leave via the vacuum-sample

interface, the back-coupling effect of the accumulated

charges on the primary beam, and the multi-scale nature of

the problem (spatial as well as temporal). Here, we show that

all these problems can be successfully solved and that the

traditional DDR approach represents a viable alternative to

MC simulations.

There are obvious limitations to the classical equilib-

rium continuum picture of the particle dynamics inside

dielectrics. For example, one does not expect the DDR

approach to be applicable on the level of a single PE or in

the first moments following its impact. Yet, the MC simula-

tions indicate that the cloud of secondary particles created by

ionization contains sufficiently many particles so that their

subsequent evolution can indeed be described on the level of

densities. Moreover, the MC simulations and the many con-

trolled experiments provide sufficient information to con-

struct a semi-empirical source function that mimics the

impact and its immediate aftermath for each PE.8

As far as the exit of SE’s through the sample-vacuum

interface, the concept of the surface recombination velocity
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(SRV) appears to be sufficiently robust to describe this pro-

cess.3 This SRV, roughly speaking, determines the rate at

which particles are allowed to leave and depends on the

materials adjacent to the interface. Due to the virtual absence

of data for dielectric-vacuum interfaces, however, the SRV

remains a tuning parameter in our method.

In our approach, a set of equations is employed for the

recombination and trapping rates, whereas, previous DDR

studies13,22–24,38,39 simply use fixed values for these rates.

We show that the trapping of particles introduces a large-

scale (slow) dynamics into the picture and determines not

only the main features of the charge density distribution

inside the sample but also the abrupt changes in the surface

charge density prior to the establishment of the steady state.

The self-consistent DDR approach presented here brings

its own set of unique challenges and questions with it. For

example, one has to take care that the numerical solver is

sufficiently robust and stable and does not produce non-

physical (e.g., negative) values for the particle concentra-

tions. Also, a purely theoretical question arises about the

existence of a steady-state and/or periodic solutions to the

DDR equations.

The remainder of this paper is organized as follows. In

Sec. II, we describe the set of equations pertaining to the

drift-diffusion model. Then, a separate section is devoted to

the model of the charge injection process. Section IV and the

Appendix describe the details of the numerical solution via

the Finite-Element Method. Finally, a series of numerical

experiments is presented followed by the Conclusions.

II. DRIFT-DIFFUSION-REACTION MODEL

A. Basic equations

The DDR model consists of a set of three coupled non-

linear partial differential equations (PDEs) and two nonlinear

ordinary differential equations (ODEs), namely, the potential

equation, two continuity equations (one for the electron and

one for the hole current densities), and two trapping rate

equations for trapped electrons and holes.26 Thus, we moni-

tor the simultaneous space-time evolution of four species of

particles and one potential function.

The electrostatic potential Vðx; tÞ satisfies the Poisson

equation

�r � erVð Þ ¼ q

e0

pþ pt � n� ntð Þ; (1)

where q is the elementary charge, nðx; tÞ is the density of

free electrons, ntðx; tÞ is the density of trapped electrons,

pðx; tÞ is the density of free holes, ptðx; tÞ is the density of

trapped holes, the constant e0 is the dielectric constant of

vacuum, and the function eðxÞ is the (static) relative permit-

tivity of the sample.

The continuity and trap rate equations can be stated as

@n

@t
þr � Jn ¼ U þ Sn �

@nt

@t
; (2)

@nt

@t
¼ rnvth Nn � ntð Þ n� nið Þ � cnnt; (3)

@p

@t
þr � Jp ¼ U þ Sp �

@pt

@t
; (4)

@pt

@t
¼ rpvth Np � ptð Þ p� nið Þ � cppt; (5)

with the constitutive relations for the current densities given by

Jn ¼ �Dnrnþ lnnrV; (6)

Jp ¼ �Dprp� lpprV; (7)

where ln and lp are the electron and hole mobilities, Dn and

Dp are the diffusion coefficients, rn and rp are the electron

and hole trapping cross sections, cn and cp are the detrapping

time constants, Nn and Np are the densities of trapping sites,

vth is the thermal velocity, ni is the intrinsic carrier density,

Sn and Sp are source functions which will be defined in

Section III A, and U is the charge recombination rate given

by formula (8) in Section II C.

B. Trapping and detrapping

The process that causes low-energy charges in dielec-

trics to be transferred to a localized state is called trapping.

Trapping occurs at a trapping site. The charges that have

been trapped at a certain site at one time, due to several

reasons, for instance, the field-induced detrapping, can get

detrapped and become free at a later time. The process can

continue which means, this free charge can get trapped

again somewhere else.19 A detailed analysis of the electron

and hole trapping in dielectrics can be found in Ref. 33. In

the present model, this process is described by the two or-

dinary differential equations (3) and (5). The coefficients

rnvth(rpvth) and cn(cp) specify the rate of electron (hole)

trapping and detrapping, respectively. It is easy to foresee

that initially the terms @nt=@t and @pt=@t in Equations (6)

and (7) will act as time-dependent sink terms. However, as

soon as the density of trapped charges reaches the density

of trapping sites (Nn and Np) or the density of free particles

drops below ni, these terms will act as time-dependent

sources.

C. Charge recombination

There are two basic recombination mechanisms in semi-

conductor physics described by the Auger and the Shockley-

Read-Hall (SRH) models.26 It is known that the Auger model

is more appropriate at higher carrier concentrations caused,

e.g., by heavy doping or high level injection under concen-

trated sunlight. Therefore, in the present case, where the con-

centrations are not that high, we opt for the SRH model.

The function U(n, p) in (2) and (4) is the generation-

recombination rate, in other words, the rate at which electron-

hole pairs are generated minus the rate at which they are

recombined. Since electrons and holes are generated and

recombined in pairs, we have the same rate function for the

two species. In the SRH model,26 this function is given by

U n; pð Þ ¼
n2

i � np

sn nþ nið Þ þ sp pþ nið Þ
; (8)
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where sn and sp are the life time parameters for the electrons

and holes, respectively.

D. Boundary and initial conditions

The SEM chamber consists of two main parts—the vac-

uum and the sample. Considering a cross-section, we assume

a rectangular outer boundary Fig. 1, which can be further

adjusted to take the actual geometry into account. The

domain is further divided into two equal parts, where one

represents the sample and the other the vacuum chamber.

The Poisson equation (1) is considered on the whole domain

(X1 and X2), whereas Equations (2)–(5) are solved on the

lower domain (X2) only.

Depending on the material in contact with the sample,

two types of boundary conditions are common: Dirichlet con-

ditions at ohmic contacts and Robin conditions at Schottky

and similar semi-insulating contacts.26 The boundary of the

sample domain X2 consists of the Dirichlet part @X2 (where

the sample is in contact with the walls of the SEM chamber or

another highly conducting material), and the Robin part R
(sample-vacuum interface). At ohmic contacts (sides and the

bottom of X2), the space charge vanishes, i.e.,

p� n ¼ 0 on @X2 � ½0; tend�: (9)

Furthermore, the system is in thermal equilibrium there,

which is expressed by the relation

np ¼ n2
i on @X2 � ½0; tend�: (10)

From the above relations, we have

nðx; tÞ ¼ ni; pðx; tÞ ¼ ni on @X2 � ½0; tend�: (11)

We also assume homogeneous Dirichlet conditions for the

potential on the wall of the SEM chamber, i.e.,

Vðx; tÞ ¼ 0 on ð@X1 [ @X2Þ � ½0; tend�; (12)

which could be easily adjusted to account for any finite value

of the electric potential.

The dielectric-vacuum surface recombination model can

be obtained as a simplification of the SRH model35 and leads

to a somewhat unusual Robin-type boundary condition at the

sample-vacuum interface. Namely, it is a semi-insulating

contact for the electrons and an insulating contact for the

holes (since holes cannot exist in vacuum)

Jn � � ¼ vnðn� niÞ on R� ½0; tend�; (13)

Jp � � ¼ 0 on R� ½0; tend�; (14)

where vn is the SRV for electrons, and � denotes the unit out-

ward normal vector on the boundary R. This parameter has

an important role in the model and will be discussed later. In

fact, the insulating condition (14) can be also considered a

semi-insulating contact with its surface recombination veloc-

ity set to zero (vp¼ 0).

The intrinsic carrier density has been considered as the

initial condition

nðx; 0Þ ¼ ni; pðx; 0Þ ¼ ni; in X2: (15)

III. BEAM MODEL

A. Impact of an individual primary electron

When an electron beam illuminates the sample, some of

the primary electrons will reflect as backscattered electrons

(for silicon oxide on average 20%), while the rest penetrates

the sample and produces a large number of secondary elec-

trons/holes.

It is important to realize that the DDR model (1)–(7)

describes the equilibrium transport of charged particles with

the distribution of kinetic energies either depending only on

the (effective) temperature of the sample or simply being sta-

ble throughout the simulation time. However, the impact of

the primary electron and its immediate aftermath are not

equilibrium processes. Yet, since typical dielectric samples

are made of dense materials, the numerous collisions will

lead to the thermalization of all generated secondary par-

ticles shortly after the PE impact, so that their subsequent
transport can indeed be modelled by (1)–(7). The precise rate

of this thermalization is not known, but could be obtained

with dedicated Monte-Carlo simulations,27 which are beyond

the scope of the present paper. Here, we simply assume that

all the secondary particles are in equilibrium by the time, the

primary electron looses most of its kinetic energy.

To account for the initial non-equilibrium transport, we

introduce an effective source model based on the available

experimental data about the secondary charge distributionFIG. 1. General schematics of the problem.
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inside dielectrics. Moreover, since most of the SE emission

happens during this initial non-equilibrium stage (in practice

as well as in our simulations), the surface recombination ve-

locity of the sample-vacuum interface (discussed below)

allows further fine-tuning of the model using the material-

dependent experimental SE yield data.

Mathematically, the injection of electrons is described

by the terms Snðx; tÞ and Spðx; tÞ in the right hand sides of

the continuity Equations (2) and (4). In our model, these

source functions consist of two factors. The first factor repre-

sents the density of charge at the end of the ionization stage

following the impact by a primary electron. The second

purely temporal factor approximates the dynamics of the ion-

ization stage, i.e., the build-up of the secondary charge dur-

ing the first picosecond after collision. Thus, the source

function has the form

Sn;p x; tð Þ ¼
hn;p x;Eeffð Þ
L tgð Þ � L 0ð Þ

dL

dt
; if 0 � t � tg;

0; otherwise;

8<
: (16)

where hðx;EeffÞ is the charge distribution function depending

on the effective energy of the primary electron, as will be

explained shortly, and L is the following logistic function:

L tð Þ ¼ 1

1þ 1

w
� 1

� �
e�kt

;
dL

dt
¼ kL 1� Lð Þ; (17)

where k is the Malthusian parameter, and w is an initial

condition related to the so-called carrying capacity ranging

from 0 to 1. The values for k and w used in our calcula-

tions are reported in Table I. We choose L to be the logis-

tic function since pair creation is an avalanche-type process

and as such is mathematically similar to the population

growth.

In (16), tg denotes the thermalization time, which is

taken here to be approximately the time of the ballistic flight

of the primary electron. Special relativity provides a simple

relation between the velocity of a primary electron and its

energy

v ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

1þ E0

mc2

� �2

vuuut ; (18)

where c is the speed of light in vacuum. The time of flight tg
can be estimated by dividing the penetration depth (will be

explained below) by this velocity (or a twice lower

“average” velocity). In either case, it appears that for the rel-

evant range of primary energies tg is in the order of 10�14

seconds, i.e., extremely short with respect to the average

time between electron impacts in a typical SEM beam. If this

estimate is correct, then the DDR model is indeed applicable

to the charge dynamics not only on large time scales but also

on the scale of individual impacts.

Let RðE0Þ denote the maximum penetration depth by the

primary electrons with initial energy E0. There exist several

empirical formulas for RðE0Þ. For example, the experimental

results by Potts29 indicate that R is given by

R ¼ 0:1
E1:5

0

q
lm½ �; (19)

where q is the mass density of the sample material in g=cm3,

and E0 is in keV. On the other hand, theoretical considera-

tions by Kanaya and Okayama18 lead to

R ¼ 2:76� 10�2 AE1:67
0

qZ0:89
lm½ �; (20)

where Z is the atomic number, A is the atomic mass, and E0

is in keV. The following composite formula proposed by

Fitting6 has been used by several authors:7,9,12,28,34

R ¼ 900q�0:8E1:3
0 ½Å� for E0 < 10 keV;

450q�0:9E1:7
0 ½Å� for E0 > 10 keV;

(
(21)

where q is in g=cm3. Here, we employ the most recent esti-

mate by Fitting11

R q;E0ð Þ ¼ 93:4
E1:45

0

q0:91
nm½ �; (22)

where q is in g=cm3, and E0 is in keV.

According to several studies,4,8,34 the actual distribution

of the secondary electrons and holes is well-approximated by

a three-dimensional (3D) Gaussian function with its focus x0

located 0:3R below the vacuum-sample interface

g x;E0ð Þ ¼ aA

Ei

exp �Bjx� x0j2
� �

; (23)

where Ei is the mean creation energy for one SE, a is the

yield factor close to one, and

B ¼ 7:5

R2
; A ¼ BC

p
: (24)

The constant CðE0Þ is proportional to the fraction g of back-

scattered PE. For silicon, silicon dioxide, and aluminium ox-

ide, with g � 0:2, C can be obtained from

TABLE I. Parameters of dielectric materials.

Parameter SiO2 Al2O3 Unit

e 3.9 (Ref. 21) 10 (Ref. 28)

ln 20 (Ref. 30) 4 (Ref. 15) cm2V�1s�1

lp 0.01 (Ref. 30) 0:002a cm2V�1s�1

rn 10�15 (Ref. 36) 10�15 cm2

rp 10�18 (Ref. 36) 10�18 cm2

vth 107 (Ref. 30) 107 cm s�1

sn;p 2� 10�9 (Ref. 15) 2� 10�9 s

q 2.65 (Ref. 14) 3.98 (Ref. 28) g cm�3

Eg 9 (Ref. 28) 9 eV

Nn;p 1:6� 1019 (Ref. 30) 1:6� 1019 cm�3

cn;p 104 (Ref. 16) 104 s�1

k 25 25 s�1

w 10�5 10�5

aThis value could not be found in literature and has been chosen by analogy

with the relation between the electron and hole mobilities in SiO2.
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C ¼ 1:544
E0

R
; (25)

where C is in eVÅ
�1

, and E0 is in keV.

To account for the action of the surface potential Vs on

the primary electron, we introduce the effective energy

Eeff ¼ E0 þ VsðtiÞ, where ti is the time of impact, which

should be applied in the distribution function instead of E0,

thus arriving at

g x;Eeffð Þ ¼ 11:58
Eeff

pR3Ei

exp � 7:5

R2
jx� x0j2

� �
; (26)

where Rðq;EeffÞ is given by (22), and the pair creation

energy Ei depends on the material of the sample via34

Ei � 3 Eg þ 1 eV; (27)

with Eg denoting the energy gap of the material in eV.

The total numbers NSE;SH of secondary electrons and

holes corresponding to the distribution (26) can now be esti-

mated as

NSE ¼ NSH �
ð ð ð

R3;z�0

g x;Eeffð ÞdV � 0:877
Eeff

Ei

; (28)

showing that approximately 88% of the effective energy is

spent on the creation of charge pairs, which generally agrees

with MC simulations. According to (28), the number of sec-

ondary electrons generated by one primary electron is some-

where between hundreds and thousands. Hence, we may

expect the drift-diffusion-reaction approach to be a reasona-

ble approximation at this scale.

Thus, we take the hp for holes in (16) to be equal to g as

introduced in (26). Whereas for the electrons, we recall that

the primary electron is still present in the sample at t ¼ tg.

Hence, we adjust the coefficient in front of the exponent in

the function g so that it features one additional particle upon

the integration (28). Thus, the factors of Eq. (16) are

hn x;Eeffð Þ ¼ 11:58
Eeff

Ei

þ 13:158

� �

� 1

pR3
exp � 7:5

R2
jx� x0j2

� �
;

hp x;Eeffð Þ ¼ g x;Eeffð Þ;

(29)

where Eeff depends on the surface electric potential at the

time of impact. Of course, the source functions proposed

here are only approximations. Nevertheless, they are based

on the best experimental evidence and first principles calcu-

lations available to date.

B. Bombardment and temporal smoothing

Depending on the beam current, primary electrons may

arrive at an average rate as high as tens of millions per sec-

ond. Previous applications of the drift-diffusion-reaction

approach typically describe the SEM beam as a constant flux

of electrons. The goal of the present paper is to avoid the lat-

ter approximation and directly consider, say, m, primary

electrons arriving at times ti, i ¼ 0; 1;…;m. Thus, one

obtains a pulsed source where the next PE arrives in a me-

dium with some residual charge left from the impact of the

previous PE.

Although, we gain some valuable insights about the sub-

surface charge dynamics and the effect of beam current, it is

obviously too time consuming to consider bombardments of

a sample by a large number of electrons in this way. Hence,

a different approach is needed to study saturation effects at

larger time scales. Also, the SE yield calculations on the

level of single PE’s, although possible, are hard to justify

and interpret.

The main technical challenge preventing direct large-

scale simulations with our method is the pulsed nature of the

source terms requiring many time steps to be performed by

the solver between electron impacts. A way to reduce the

computational burden is to derive a smoother function

describing the behavior of source terms at larger time scales.

In the limit, such a smoother source function should

approach the constant beam currents of the other DDR

models.

To achieve this, we employ a temporal average of our

source function, which also mimics the way the SEM

response is measured (time-averaged yield, rather than the

yield due to individual PE’s). The average value of Snðx; tÞ
over a period of time T between the impacts can be

expressed as

�Sn xð Þ ¼ 1

T

ðT

0

Sn x; t0ð Þdt0; (30)

and is a time-independent function. In what follows, we call

this a time-uniform or simply a uniform source.

Unfortunately, smoothing of the source has its price.

Due to the presence of nonlinear terms in (1)–(7), solutions

obtained with a time-averaged source term will not be the

exact time-averaged values of the unknowns, but only the

approximations thereof. Hence, to apply the DDR approach

at both time scales successfully, one needs to define constitu-

tive relations and material parameters, such as the surface

recombination velocity, for each scale separately. This is the

so-called homogenization problem, typical for spatial multi-

scale analysis in physics (e.g., effective medium problem in

electrodynamics).

Further, although a uniform source switched on at t¼ 0

may be expected to eventually produce a steady-state distri-

bution of charge, it is an open theoretical question whether

the actual pulsed source leads to the corresponding periodic

charge variations.

IV. NUMERICAL METHOD

A. Numerical scaling

To avoid numerical difficulties and maintain the accu-

racy of the solution, a simple scaling of variables has been

performed. To this end, we introduce a set of characteristic

dimensionless quantities. We denote the characteristic length

scale by l	, the characteristic time scale by t	, and the charac-

teristic density scale by q	. The numerical values of these
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dimensionless parameters relevant to the scale of the present

problem are

l	 ¼ 10�6; t	 ¼ 10�12; q	 ¼ 1018: (31)

There is a relation between these values (t	 ¼ ðl	Þ2 and

q	 ¼ ðl	Þ�3
) that does not change the form of the equations,

so that one only needs to introduce the rescaled versions for

some of the constitutive parameters

~sn;p ¼
sn;p

t	
; ~ni ¼

ni

q	
; ~e ¼ e

q	 l	ð Þ2
;

~rn;p ¼ t	q	rn;p; ~cn;p ¼ t	cn;p;

~Nn;p ¼
Nn;p

q	
; ~S ¼ t	

q	
S ¼ dN

d~t
g ~xð Þ:

(32)

Also, the boundary and initial conditions should be rescaled,

since, e.g., the rescaled version of the surface recombination

velocity is given by

~vn ¼ l	vn: (33)

B. Finite element method (FEM) solver

We employ the FEM for the numerical solution of the

coupled system (1)–(7) and implement it as a solver within

the COMSOL Multiphysics package. Although there are

many predefined modules and solvers in COMSOL, none of

them can be directly applied with the present problem. The

closest match is the semiconductor module. However, it is

neither suited for studying the two different domains

defined above, i.e., X1 [ X2 for Equation (1) and X2 for the

rest, nor does it allow to incorporate the additional

Equations (3) and (5). Therefore, we have opted for building

a new model using the general PDE and the ODE interfaces

of COMSOL.

Since the charge densities may be extremely concen-

trated around the impact zone and form very thin layers near

the vacuum-sample interface, a careful discretization strat-

egy is required. To achieve sufficient accuracy, one is

advised to use the adaptive mesh with refinement in the

impact zone and at the interface as well as the second-order

Lagrange shape functions. A fully coupled approach with

Newton-Raphson solver and adaptive time-stepping algo-

rithm has shown the best performance with the present

problem.

The computational complexity of the problem prohibits a

full 3D simulation of realistic domains with sufficient spatial

resolution on a standard computer. Nevertheless, one can

obtain 3D results for certain configurations at a typical two-

dimensional (2D) cost by exploiting their symmetry.

Consider, for example, the cylindrical geometry presented in

Figure 2. In the cylindrical coordinate system ðr; h; zÞ, the PE

beam impinging along the z-axis corresponds to the source

term and boundary conditions independent of the angular

coordinate h. The solution will also be independent of h and

the original 3D model is reduced to a 2D model in the (r, z)-

coordinates. To arrive at the corresponding FEM solver, the

PDE’s (1), (2), and (4) must be written in the so-called weak

form, which is derived in the Appendix.

V. NUMERICAL EXPERIMENTS

A. Parameters and parameter-tuning

It is clear that the values of the many constitutive param-

eters in the Equations (1)–(7) may have considerable influ-

ence on the results of simulations. In the ideal situation,

these parameters are either measured in dedicated experi-

ments or computed from the first principles of quantum

physics. While this status-quo has long been established with

the usual semiconductor materials, the data for insulators are

virtually absent. Often, very different values for the same pa-

rameter are reported in the literature, which could be the

result of varying sample properties, experimental conditions,

or even trivial human errors (see, e.g., detrapping rates in

Refs. 16 and 36). In particular, there is a lot of uncertainty

about the parameters of recombination processes in the bulk

and at interfaces. With this in mind, we have made a selec-

tion of typical values for two distinct dielectrics shown in

Table I.

In the boundary condition (13), the surface recombina-

tion velocity vn plays an important role analogous to the

reflection coefficient of the current-based approach. In the

FIG. 2. Cylindrical geometry.
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literature, the SRV is mostly discussed and measured for the

metal-oxide-semiconductor interfaces. With respect to our

case, which is a vacuum-semiconductor interface, the only

reference that could be found refers to Germanium under ion

bombardment,25 reporting the value of ð5 to 7Þ � 103 cm=s.

Considering the SRV to be material-dependent we believe

that its value should be determined based on the consistency

between the results of the present model and dedicated

experiments.

The SE yield is defined as the number of secondary elec-

trons emitted through the sample-vacuum interface and

picked up by the detector per one incident electron. The im-

portance of the SE yield stems from the fact that it is one of

the few directly measurable quantities in SEM.17 Monte

Carlo simulations of the SE yield are also available.5,20,30,31

Therefore, in the tuning of the SRV parameter, one would

mostly be relying on the SE yield data as a function of the

PE energy. In the present continuous approximation, the SE

yield is computed as the flux density through the boundary R
integrated over this boundary and over time from t¼ 0 to

t ¼ tend, and divided by the number of PE’s that arrived at

the sample during that time interval.

The following steps describe a simple optimization pro-

cedure for tuning the value of SRV:

• Let Y exp be the SE yield measured for PE’s with energy

E0.
• Let vð0Þn be the initial guess for the SRV, and let Yðvð0Þn Þ be

the SE yield computed by the DDR solver with the SRV

set to vð0Þn .
• For vð0Þn sufficiently close to the true (optimal) value, we

can assume a linear relation:

Y exp � Yðvð0Þn Þ ¼ aðvn � vð0Þn Þ: (34)

Since, obviously, Yð0Þ ¼ 0, the coefficient a can be

obtained as a ¼ Yðvð0Þn Þ
v
ð0Þ
n

, so that vð1Þn ¼ vð0Þn
Y exp

Yðvð0Þn Þ
.

• Compute Yðvð1Þn Þ with the DDR solver.
• If Yðvð1Þn Þ is sufficiently close to Y exp , then stop and set

vn ¼ vð1Þn . Otherwise, continue with vð1Þn as the new initial

guess.

In principle, this process should be repeated with the SE

yield data for a whole range of PE energies E0. Unless

changes in E0 significantly alter the temperature of the sam-

ple, the SRV of a given material is supposed to be independ-

ent of E0. Hence, if the corresponding tuned values of vn for

some material are all close to each other, then we have an

additional confirmation that the DDR method is working

properly.

We conclude this section with a word of caution concern-

ing the use of SE yield in determining the SRV. First of all,

typical SE yield data correspond to some kind of stationary

regime. It is known, however, that the SE yield keeps chang-

ing after the start of bombardment for quite a long time.

Hence, we can compare the results of simulations with experi-

mental data and tune the vn parameter only upon bombard-

ment of the sample with a sufficiently large number of PE’s.

In our approach, such long-time simulations can only be per-

formed with the time-uniform source. This means, however,

that the tuned value of vn will be effective in nature.

Second, numerical experiments demonstrate that the

electron flux through the sample-vacuum interface is not

only time-dependent but also depends on the extent of the

sample and the proximity of ohmic contacts or other con-

ducting materials to the beam’s entry point. Hence, one may

expect different SE yield values with different samples of

the same material.

B. Impact of a single primary electron

In this section, we investigate the events following the

injection of a single primary electron into a neutral dielectric

sample. The goal of these numerical experiments is to esti-

mate the space-time scales of the dynamics separately for all

four particle species, i.e., n, p, nt, and pt, as well as the total

charge density qðpþ pt � n� ntÞ and the potential V. In par-

ticular, these simulations will help us to demonstrate that de-

spite the poor mobility and diffusivity of dielectrics, the drift

and diffusion of free charges are generally much faster than

the characteristic time scales of the charging process.

We focus on two common materials featured in many of

the previous studies, namely, on the oxides SiO2 and Al2O3.

As one can see from the data of Table I, the difference

between these materials is in the values of the relative permit-

tivity e (SiO2 has a smaller e), the electron and hole mobilities

ln;p (SiO2 is relatively more conductive), and the mass density

q (SiO2 has a smaller density). The effective values of the

SRV, vn¼ 100 cm/s for SiO2 and vn¼ 200 cm/s for Al2O3,

were obtained with the optimization procedure explained

above and typical experimental SE yield data1,17,37 using the

time-uniform source model. Below, we focus on a fixed PE

energy E0 ¼ 1 keV.

Figures 3 and 4 show the snapshots of the time evolution

of the four charge species in the two materials. As can be

seen from the upper-left images of these figures, the smaller

mass density of SiO2 means, see Eq. (22), that with the same

E0 the maximum PE penetration depth R and the center of

the initial charge distribution are deeper for SiO2 than for

Al2O3. The overall shapes of the initial charge distribution

are different as well, see Eqs. (26) and (29), with the one of

SiO2 being broader. Hence, the DDR dynamics starts with

different initial states in these materials.

The generation of charge pairs by ionization takes

place in the period of 1 ps after injection (tg¼ 1 ps). Note that in

our model the processes of recombination and trapping

begin already at t¼ 0. At tg, the density of free electrons is

already beginning to decrease. In fact, the density of free

electrons reaches its maximum of 2:07� 1018 cm�3 and 6:35

�1018 cm�3 for SiO2 and Al2O3, respectively, at around t¼ 0.6

ps. The density of free holes reaches its maximum roughly at

t¼ 0.7 ps and remains constant till the end of the generation pe-

riod tg. The maximum density of free holes in this stage for SiO2

is 2:31� 1018 cm�3 and for Al2O3 is 7:01� 1018 cm�3.

As expected, the density of trapped electrons and holes

initially increases with time reaching, respectively, (at tg) the

values of 1:79� 1017 cm�3 and 2:02� 1014 cm�3 in SiO2,

204101-7 Raftari, Budko, and Vuik J. Appl. Phys. 118, 204101 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.161.210.68 On: Mon, 21 Dec 2015 16:11:30



and 5:31� 1017 cm�3 and 6:09� 1014 cm�3 in Al2O3. The

lower density for the trapped holes compared with trapped

electrons is due to the smaller trapping cross sections. In

SiO2, the density of trapped electrons reaches its maximum

of 2:01� 1018 cm�3 at t¼ 50 ps. Then, for more that 50 ns,

which is a relatively long time, no change is seen in the dis-

tribution of trapped electrons. After that the maximum den-

sity of trapped electrons starts to decrease dropping to

1:69� 1018 cm�3 at t¼ 1 ls. For the trapped holes, reaching

the maximum density takes much longer time compared to

the trapped electrons. The density of trapped holes keeps

increasing at t¼ 1 ls and reaches its maximum of 1:71

�1018 cm�3 at t¼ 50 ns. The maximum density for trapped

holes at time t¼ 1 ns is 2:74� 1017 cm�3, and at t¼ 1 ls the

density of the trapped holes is 1:7� 1018 cm�3. A similar

dynamics of trapped particles is observed in Al2O3.

During the first microsecond, a fast decrease in the den-

sity of free electrons and a slower decrease in the density of

free holes are observed owing to the relatively strong trap-

ping of electrons and a weaker trapping of holes. In SiO2, the

major drop in the density of free electrons happens during

the first 50 ps. The maximum density of free electrons is

5:21� 1014 cm�3 at t¼ 50 ps and reaches almost the intrin-

sic carrier density of the material at t¼ 1 ls. At t¼ 50 ps, the

density of free holes is higher than that of the free electrons

(2:11� 1018 cm�3).

The interplay of the four charge species leads to the total

charge density resembling an expanding spherical wave with

FIG. 3. Evolution of the total charge

ðpþ pt � n� ntÞq ðC cm�3Þ in SiO2

after the impact of a single primary

electron with the energy E0 ¼ 1 keV.

Top row: vertical cross-section, side

length is 100 nm; bottom row: top-

view of the sample-vacuum interface,

diameter is 200 nm.

FIG. 4. Evolution of the total charge

ðpþ pt � n� ntÞq ðC cm�3Þ in Al2O3

after the impact of a single primary

electron with the energy E0 ¼ 1 keV.

Top row: vertical cross-section, side

length is 100 nm; bottom row: top-

view of the sample-vacuum interface,

diameter is 200 nm.
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initially a positive charge region in the middle surrounded by

a shell of negative charge followed by a negative middle

region with a positive shell. Due to the emission of electrons,

the initial predominantly negative charge at the sample-

vacuum interface is gradually replaced by the positive

charge. In SiO2, the positive charge reaches its maximum of

0.13 C/cm3 at the surface at t¼ 50 ps, and the negative

charge has the maximum of (in the sens of absolute value)

�0.05 C/cm3 at t¼ 2 ns and is situated close to the surface.

In Al2O3, the positive charge increases its maximum of

0.4 C/cm3 at the surface at time t¼ 200 ps, and the negative

charge has the maximum of �0.23 C/cm3 in the center of

impact zone at time t¼ 18 ns.

Obviously, the electric potential closely follows the dis-

tribution of the total charge. Initially, we observe a positive

potential in the middle of the impact zone surrounded by a

shell of weak negative potential. For example, in SiO2 at the

beginning, a positive potential with the maximum of 0.11 V

is observed stretching across the sample-vacuum interface. A

shell of weak negative potential is situated around this posi-

tive central region and appears inside the sample only. After

a few hundred picoseconds, a transition occurs which results

in a different situation for potential and that is the negative

potential appears in the middle with shells of positive and

negative potentials, respectively. The minimal value

achieved by the potential during the first microsecond is

�0.1 V in SiO2 which is situated in the center of impact zone

and in the period of 20 to 50 ns.

C. Electron bombardment

The electron gun of a typical SEM is able to produce PE

currents in the range of pico to nano Amp�eres (i.e., average

interval between PE impacts from nano to picoseconds). The

charge dynamics following the impact of a single PE, ana-

lyzed in Sec. V B, clearly shows that the next electron faces

highly variable conditions in the sample depending on the

time of its arrival.

Since the main features of the charge dynamics in Al2O3

and SiO2 are essentially similar, we restrict our discussion to

the latter material. In this section, a SiO2 sample is consid-

ered under focused beams with the currents of 160 nA and

160 pA (average times between PE impacts are 1 ps and 1 ns,

respectively). To illustrate the nontrivial effect of the varying

PE current, the results in Figures 5 and 6 are presented for

the same number of PE impacts in both beams that, obvi-

ously, correspond to different illumination times.

We start with the higher current of 160 nA modelled as

a sequence of PE’s arriving with exact one picosecond inter-

vals between them. Figure 5 shows the evolution of the total

charge density during the first 50 impacts. On the fine tempo-

ral scale (not shown), we observe that the densities of free

electrons and holes reach their maxima of 9:05� 1019 and

1:06� 1020 cm�3, respectively, at the end of the generation

(ionization) stage after impacts and decrease afterwards.

The maximum density of trapped electrons reaches its

maximum (the density of trapping sites Nn) for the first time

at t¼ 30 ps (after 30 PE impacts) inside the impact zone. A

similar local saturation for the trapped holes does not happen

during the first 50 PE’s, although their density grows.

Similar to the aftermath of a single PE impact, we

observe a (semi) spherical wave of charge density emerging

from the impact zone. However, now it remains a growing

positive charge zone surrounded by the shell of negative

charge without the charge-sign oscillation as in Figure 3. At

the very beginning, the positive charge has access to the sur-

face, but towards the 50th impact, a layer of negative charge

prevents the positive charge from touching the surface. The

maximum positive charge of 1.36 C/cm3 is observed at the

end and at the surface (lower-left image of Figure 5). The pos-

itive charge in the center of the expanding zone increases to

0.05 C/cm3 towards the end (upper-right image of Figure 5).

The negative charge remains confined to a shell around the

positive charge. This shell becomes distorted by growing

thicker with time along the sample-vacuum interface with the

distance from the injection point, thus, reaching the maximum

value of �0.08 C/cm3 at the 50th impact. In the beginning and

at time 8 ns, the positive potential reaches its maximum of

0.11 V in the center of impact zone and the negative potential

reaches the minimum of �0.15 V at the end of this initial

bombardment period.

Next, we consider the beam current of 160 pA corre-

sponding to one nanosecond intervals between PE impacts.

Again, for a very short time after each impact, an increase in

the density of free electrons is observed, which, after less

that 0.5 ns, drops to the almost the intrinsic carrier density of

the material. The maximum of 2:08� 1018 cm�3 occurs at

the end of the generation (ionization) stage. The density of

free holes reaches its maximum of 4:18� 1018 cm�3 in the

middle of the generation stage.

For about 30 ps after each impact, an increase in the

density of the trapped electrons is seen after which the den-

sity remains constant until the next impact. Comparing this

with the previously considered higher current, we observe

that now it takes a longer time (21 ns) but less impacts (21

PE impacts) for the density of the trapped electrons to reach

the density of trapping sites in the middle of the impact

zone. Similarly to the previous higher current, the density of

trapped holes does not reach the trapping site density during

the considered bombardment period.

Comparing the surface charge of the high (Figure 5, bot-

tom) and low (Figure 6, bottom) currents, we see that with

the higher current the positive charge at the injection point is

present surrounded by a ring of negative charge, whereas

with the lower current the charge at the injection point is

negative surrounded by a ring of positive charge (Figure 5,

bottom). In fact, with the 160 pA current, the positive surface

charge is also seen, but not at the time of impact.

Subsequently, after each impact, the positive potential is

observed at the center of impact zone, and after a few hun-

dred picoseconds it is replaced with a negative potential. In

the middle of the ionization time, both positive and negative

potentials reach their maxima of 0.17 V and �0.07 V,

respectively.

Apart from the absence of rapid charge oscillation in the

expanding spherical wave pattern, one can notice another

substantial difference with the dynamics of Figure 3.
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Namely, the visible speed of expansion of the charged zone

is much slower under the bombardment conditions, than dur-

ing a single impact. Later, we shall see that this speed of

expansion roughly corresponds to the growth of the zone

occupied by the trapped charges.

We have extended the simulation to 500 PE impacts (at

160 nA) and compared the idealistic source with periodic

impacts considered above with the more realistic source

whose PE’s impact the sample at time instants drawn from

the Poisson distribution. Another purpose of this 500-impact

simulation is to test the applicability of the time-uniform

source model, see Eq. (30). Figure 7 shows the electron flux

through the sample-vacuum interface obtained by the pulsed

model with regular and random impacts as well as time-

uniform source model. The result shows that for this rela-

tively short period at the beginning of the bombardment all

three fluxes are in good agreement with each other. Based on

these promising results, simulations for longer intervals of

time can be carried out with the time-uniform source model.

D. Steady state

From the mathematical point view, no steady-state solu-

tion exists with the pulsed source model (where each PE

impact is modelled individually). At most, one can expect a

time-periodic solution if PE impacts happen at regular

FIG. 5. Evolution of the total charge

ðpþ pt � n� ntÞq ðC cm�3Þ in SiO2

during bombardment with a beam cur-

rent of 160 nA. Top row: vertical

cross-section, side length is 100 nm;

bottom row: top-view of the sample-

vacuum interface, diameter is 200 nm.

FIG. 6. Evolution of the total charge

ðpþ pt � n� ntÞq ðC cm�3Þ in SiO2

during bombardment with a beam cur-

rent of 160 pA. Top row: vertical

cross-section, side length is 100 nm;

bottom row: top-view of the sample-

vacuum interface, diameter is 200 nm.
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intervals. The time-uniform source may, on the other hand,

result in a solution that converges to a steady state for

t!1. In this section, we investigate the large t behaviour

of the time-uniform source model in various circumstances.

Figures 8–11 show the simulation results by the time-

uniform source model in the case of the high beam current of

160 nA. The electron flux through the sample-vacuum inter-

face in Fig. 8 shows that a steady state starts around 400 ns

in this case. To confirm that this, indeed, is a steady state we

initiate the pulsed-source bombardment of the sample with

the initial conditions set to the time-uniform steady-state so-

lution. If such a steady state is stable, then the corresponding

charge distributions and potential could be in the neighbour-

hood of a time-periodic solution expected in the case of the

pulsed-source model with impacts at regular intervals. As

can be seen from the magnified portion of the flux plot in

Fig. 8, the flux computed with the pulsed-source model,

indeed, appears to oscillate around the time-uniform flux.

The evolution of the surface charge shown in Fig. 8

starts with the positive charge at the injection point sur-

rounded by a ring of negative charge. However, as the

images show, after a few nanoseconds, this negative charge

ring is removed by an outward-going (surface) wave and the

positive charge settles in the center as a steady state. This

positive charge grows up to the value of 88 C/cm3.

This behaviour and other features of the total charge dy-

namics are strongly influenced by the evolution of the trapped

charge density shown in Fig. 9. As one can see, the trapped

charges rapidly reach their saturation value Nn in the impact

zone, after which this saturated trapped-charge zone spreads

FIG. 7. Electron flux through the

sample-vacuum interface in SiO2 illu-

minated by the 160 nA beam obtained

with the pulsed model (regular and

random impacts) and the time-uniform

source model.

FIG. 8. Electron flux through the

sample-vacuum interface (top plot).

Inset shows the zoomed-in portion of

the plot corresponding to the end of the

simulated interval, where the oscillat-

ing curve represents flux obtained with

the pulsed-source model. Lower

images: the evolution of the surface

charge obtained by the time-uniform

source model with the 160 nA beam

current.

204101-11 Raftari, Budko, and Vuik J. Appl. Phys. 118, 204101 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

130.161.210.68 On: Mon, 21 Dec 2015 16:11:30



outwards towards the ohmic boundaries. The electron trapping

process and the spread of the corresponding zone are slightly

faster than that of the holes (due to the higher mobility and

trapping cross-section of the electrons). This, in particular,

explains the presence of a slowly spreading negative shell in

the top images of Figures 5 and 6. Also, around t¼ 100 ns, a

surface channel reaching the ohmic contacts develops, consist-

ing of saturated trapped holes. It provides a path free of

trapping for the positive charge transport along the sample

vacuum interface. The latter can explain the saturation of the

positive surface charge density shown in Fig. 8.

Further, the steady state with this beam current is char-

acterized by the densities of free electrons and holes around

2:31� 1021 cm�3 and 2:49� 1021 cm�3, respectively. The

evolution of potential is shown in Fig. 10. It can be noted

that potential follows the surface charge behavior, starting as

a negative ring around a positive impact region. Then, the

negative potential moves to the ohmic boundaries with time,

and, after a few nanoseconds, the positive potential domi-

nates in the sample as well as the vacuum close to the inter-

face. A weak negative potential is observed below the

positive one, however, it disappears after a few nanosecond.

Since Nn¼Np in the present simulations, and both the

trapped electrons and the trapped holes reach their saturation

values almost everywhere (thus, effectively neutralizing the total

FIG. 9. The evolution of the densities of trapped electrons and holes

obtained by the time-uniform source model with the 160 nA beam current.

Vertical cross-section, width �100 nm, height �200 nm.

FIG. 10. The evolution of potential

obtained by the time-uniform source

model with the 160 nA beam current.

Vertical cross-section (vacuum part

included), width �100 nm, height

�400 nm.

FIG. 11. Evolution of the total charge along the beam direction (z-axis) with

the 160 nA beam current. The coordinate z¼ 0.2 corresponds to the sample-

vacuum interface. Vertical axis is clipped. See Fig. 8 for the actual surface

charge values.
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trapped charge), the positive potential at large t is the result of

free rather than trapped holes. For example, at t¼ 400 ns, the

free charge, ðp� nÞq, at the center of the surface is about

89:4 C=cm3 while the trapped charge, ðpt � ntÞq, at the surface

and around the injection point is almost homogeneous and

around zero and close to the ohmic contact is 2:56 C=cm3.

The evolution of the total charge along the beam direc-

tion when the beam current is 160 nA is shown in Fig. 11,

where the charge is displayed at three different time instants.

The slight spatial advance of the saturated trapped-electron

zone with respect to the saturated trapped-holes zone may

explain the slowly expanding negative charge shell. As men-

tioned above, in the equilibrium state, the sample is posi-

tively charged by the free holes. At this stage, the trapped

electrons and holes cancel each other, whereas the free elec-

trons disappear not only at the ohmic contacts but also

through the sample-vacuum interface as well.

Figure 12 shows the simulation results with the lower

160 pA beam current. The electron flux through the sample-

vacuum interface demonstrates that the system reaches the

steady state at a later time, compared to the previous higher

160 nA current, but with fewer PE impacts. A significant dif-

ference is observed between the free charge distributions for

these two values of beam currents. In particular, the shapes

of the free electrons and free holes distributions in the steady

state are same in the case of higher 160 nA beam current.

Whereas the difference between these distributions at

160 pA is obvious from the images of Fig. 12. The maximum

density of free electrons is at the center of the impact zone,

while for the free holes it is at the surface. The overall posi-

tive potential in the steady state is the result of the excess of

free holes at the surface.

The total charge distribution along the beam direction for

the beam current of 160 pA is shown in Fig. 13. It is apparent

that the spatial variations in the total charge density happen

closer to the sample-vacuum interface (at depths less than

70 nm) if compared to the higher 160 nA beam current. Also, the

surface charge remains positive from the start of the process.

Finally, we consider an even lower 16 pA beam current.

The electron flux through the sample-vacuum interface in

Fig. 14 and comparison with the previously obtained fluxes

due to higher beam currents bring us to the conclusion that

the flux rate and the time it takes to reach the steady state are

roughly proportional to the beam current. Yet the number of

PE impacts to reach the steady state is roughly inversely pro-

portional to the beam current. The total charge distribution

along the beam direction shown in Fig. 14 demonstrates

that, compared to the 160 pA current, the significant spatial

variations happen closer to the sample-vacuum interface,

FIG. 12. Electron flux through the

sample-vacuum interface, electric

potential (vertical cross-section, vac-

uum part included, width �100 nm,

height �400 nm), and the densities of

free charges (vertical cross-section,

side length �100 nm) obtained by the

time-uniform source model with the

160 pA beam current.

FIG. 13. Evolution of the total charge along the beam direction (z-axis) with

the 160 pA beam current. The coordinate z¼ 0.2 corresponds to the sample-

vacuum interface.
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approximately within the depth of 40 nm. The system

reaches the steady state around 0.1 ms. The densities of free

electrons and holes reach the maxima of 1:77� 1016 cm�3

and 4:5� 1017 cm�3, respectively.

This simulation confirms that a lower beam current

results in significant differences in the densities and spatial

distribution between the free electrons and the free holes. At

lower beam current, the free electrons tend to concentrate at

the center of the impact zone at some distance to the sample-

vacuum interface, while the free holes are densely concen-

trated at the interface (see Fig. 14).

The lower-right image of Fig. 14 shows the spatial dis-

tribution of the recombination term U, with the highest rate

of 8:25� 1024 cm�3s�1 achieved in the steady state. In the

beginning of the process, the recombination occurs at the

center of the impact zone and at the sample-vacuum inter-

face, approximately at the same rate. After a short time (few

microseconds), the recombination is mostly active around

the center of the impact zone due to the low density of free

electrons at the surface. The highest recombination rates of

5:45� 1026 and 5:79� 1029 cm�3s�1 in the steady state are

obtained with the beam currents of 160 pA and 160 nA,

respectively. These results indicate that the recombination

rate increases almost linearly with the beam current. Also,

the variation of the recombination rate with the beam current

clearly shows that applying a constant recombination rate in

computational models does not reflect the actual recombina-

tion process in dielectric samples under SEM.

The SE yield can be calculated from the electron flux

through the sample-vacuum interface shown in Figures 8, 12,

and 14. A clear discrepancy in the measured SE yield of insula-

tors is found in the literature, which can be attributed to the dif-

ferences in the assumptions and conditions of the experiments.

The present simulations, where the only varying parameter is

the applied beam current, show that the SE yield increases with

the beam current (provided all other conditions are fixed). The

SE yields obtained here for the particular SiO2 sample under

focused beam currents of 16 pA, 160 pA, and 160 nA are 0.12,

1.67, and 2.74, respectively, which are, generally, within the

range of experimental values reported in the literature. In fact,

we observe a weak (logarithmic) dependence of the SE yield

on the beam current. The experimental values of the SE yield

for the SiO2 (steam formed) sample in the database by Joy17

are 0.25, 1.02, and 1.18. The measured SE yield for the SiO2

(quartz) sample in Ref. 1 is approximately 3. Whereas, accord-

ing to the experiment of Yong et al.,37 the SE yield of a “wet

and sputtered” silicon dioxide is found to be greater than 3.

VI. CONCLUSIONS

We have proposed a fully self-consistent drift-diffusion-

reaction model augmented with a dynamic charge trapping

model for the quantitative numerical investigation of the elec-

tron beam interaction with dielectric samples. The pulsed and

non-equilibrium nature of the charge injection mechanism and

the back reaction of the accumulated charge on the incoming

FIG. 14. Electron flux through the

sample-vacuum interface and the evo-

lution of the total charge along the

beam direction (z-axis) with the beam

current of 16 pA. The bottom row

shows the densities of free charges and

the recombination rate in the steady-

sate regime (vertical cross-section,

side length �100 nm).
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primary electrons are incorporated in the model through an

explicit semi-empirical source formula. We have presented

and compared two approaches to the charge injection prob-

lem. The first one is a pulsed source model reflecting the

actual discrete nature of the electron beam. The second

approach reduces the computational burden by applying a

temporal average of the actual pulsed source function, which

allows simulation at much longer time scales. Our results con-

firm the agreement between these two approaches in the initial

stage and in the saturation regime.

The proposed model features a Robin-type semi-perme-

able boundary condition at the sample-vacuum interface

reflecting the fact that the electrons are allowed to go

through the boundary, while holes are not. We have devised

a simple optimization procedure to deduce the SRV of

dielectrics in vacuum from the experimental SE yield data.

The results of our simulations clearly demonstrate the

need for the dynamic trapping equations in computational

models of this kind. The trapping dynamics, namely, the

time evolution of the spatial distributions of the trapped

charge densities, has a major influence on (and helps to

explain) the total charge distribution within the sample and

the apparent transients in the surface charge density (in the

high-current regime).

Inclusion of the dynamic generation-recombination

model is also deemed necessary, since, as it turns out, the

recombination rate depends on the beam current. Other quan-

tities depend either strongly or weakly on the beam current

as well, e.g., the local charge densities in the steady state

show a linear dependence, whereas the dependence of the SE

yield turns out to be logarithmic.

Another conclusion of our study that requires a deeper

mathematical analysis is the apparent existence of a time-

periodic steady state in the considered system of equations

for a pulsed source with PE impacts at regular intervals

observed in the neighborhood of the steady-state solution for

an averaged time-uniform source.
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APPENDIX: WEAK FORM

Consider the partial differential equations (1), (2), and

(4) in the axisymmetric geometry (see Fig. 2)
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To derive the weak formulation we integrate over the

cross-sectional area (rdrdz) arriving at the following form of

the Equation (A1):ð
X1[X2

w � 1
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where w is the weight function. Integrating the highest-order

terms by parts we obtain
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where �̂ ¼ h�̂ r; �̂ zi is the outward unit normal vector to the

boundary. Therefore, the weak form of the Equation (A1)

can be written asð
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Integrating the highest-order terms by parts we get
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Therefore, the weak form of the Equation (A2) can be writ-
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Along similar lines the weak form of the Equation (A3)

can be derived asð
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